STUDIES IN DENERVATION

A.—METHODS

BY

J. DOUPE, Winnipeg *

(From the E.M.S. Hospital, Winwick, nr. Warrington)

(RECEIVED 14TH OCTOBER, 1943)

Introduction

It is proposed to report under the above general heading a number of investigations on patients with peripheral nerve lesions. The following titles indicate the nature of the papers.

A. Methods.
B. The Circulation in Denervated Digits.
C. Inflammation and Trophic Ulcers in Denervated Areas.
D. The Mechanism of Axonal Vasodilatation.
E. Observations Concerning Adrenaline.
F. The Circulation of the Skin of the Proximal Parts of the Limbs.
G. Sebaceous Secretion.
H. The Effect of Electrical Treatment on the Circulation and Recovery of Denervated Muscles.
I. The Contractility and Excitability of Denervated Muscle.

The original intention of bringing these studies within the compass of one or two papers has been found impractical and for convenience of presentation and of reference the work has been divided into sections. These sections will be found to be of unequal merit as some merely report incidental observations which have not been elaborated. Another disadvantage of this method of presentation is that it leads to unnecessary repetition. This, however, has been obviated by the Editor who has kindly arranged to publish the papers seriatim. This grouping permits a single description of the patients and methods to suffice for the majority of these studies and allows of ready reference between papers. It is the purpose of the present paper to describe the methods and the subjects used in these investigations.

Methods

The skin temperature of the finger pads has been used as an index of the peripheral circulation and recorded by multiple gauge 34 copper-constantan couples leading to a galvanometer permitting readings to within 0-1°C. The simplicity of this technique recommended it even though rapid changes are not observable. Moreover, the results are difficult to interpret in terms of actual blood flow due to a variety of factors such as sweating and the size of the digit affecting the cooling curve. However, for comparative purposes and especially for detecting the direction of a change of flow the method seems adequate.

The hands were supported on a sand bag reaching to the proximal interphalangeal joints and the couples held in place by a narrow strip of adhesive plaster on the dorsum of the middle phalanx. At times a shield of white paper was put between the fingers if it appeared likely that there was any transference of heat from a warm to a cold digit. In the case of the feet there was less difficulty in ensuring equal opportunities for air circulation around the two extremities. The room temperature was measured by a thermocouple suspended several feet above the parts under observation. Air movement was not measured but it was probably high and variable though direct draughts were avoided. Temperatures were recorded at intervals of one to three minutes from two or more digits of both lower or both upper extremities. In the charts reproduced only the results from representative digits are recorded and in most figures the time scale is too small to permit charting of individual measurements.

In some instances thermometry was supplemented by plethysmographic records of the digits taken according to the method of Bolton et al. (1936). In those records in which denervated and normal digits are compared the recording systems have the same sensitivity.

Blood flow measurements by the displacement method of Hewlett and Zwaluwenburg (1909–10) were obtained using a water plethysmograph.

Systolic blood pressure was measured in the digital arteries by slowly deflating a cuff 1.5 cm. wide on the proximal phalanx and determining the pressure at which pulsation first returned to the distal part of the digit. This pulsation was detected by the use of a plethysmograph and a sensitive tambour.

During the period of observation the subjects, clothed in shorts, half reclined in a comfortable...
chair and the limbs under investigation rested motionless slightly below heart level. Unless otherwise indicated the patients come direct from a comfortable ward and temperature recording started within 10–15 minutes so that the initial temperatures were a sample of their usual state. Before plethysmographic records were taken the parts were warmed by immersion in water at 38°C for 15 minutes and the indifferent limbs were put in water at 44°C.

Various measures were used to modify the circulation. Thermoregulatory mechanisms were brought into play according to the method of Gibbon and Landis (1932) by immersing the indifferent limbs in baths which were filled with water at 18°C or 44°C, hereafter referred to as cold or hot. At times this influence was augmented by covering or uncovering the trunk with a blanket. It was also possible to vary the room temperature by opening a window and by the use of electric heaters directed so that there was no direct radiation on the subject.

The local effect of moderate heat and moderate cold was investigated by removing the thermocouples and immersing the feet or hands in agitated water at 18–20°C or 37–38°C for 5–15 minutes. The parts were then gently dried and the couples replaced. This procedure took 2–3 minutes.

The effects of more extreme heat and cold were studied by the method of Lewis (1929–31). The couples were held in place under a loosely fitting surgical glove by two layers of adhesive strapping. The distal one-and-a-half phalanges were then immersed in a moving stream of hot water or in a bath of crushed ice and water stirred by compressed air. The temperature of the ungloved opposite hand was recorded as a control.

Adrenaline was used in the strength of 1 in 500,000 freshly prepared from a 1–1,000 stock solution and normal saline. It was injected intravenously by the use of the apparatus shown in Fig. 1. This could be easily dismantled for sterilization. The adrenaline solution was connected by pressure tubing with the inner barrel of a double barreled adaptor which extended to the shaft of the intravenous needle. This arrangement ensured that no large volume of saline was contaminated with adrenaline and so permitted the time relations of a period of injection to be accurately known. By the use of a three-way tap the adrenaline could be given either in brief periods by the use of a 1 c.c. syringe or for longer periods by the drip method. The rate of flow could be varied by adjusting the upper tap, and it was measured by counting the drops per minute. The saline solution was connected to the outer barrel of the adaptor and ran continuously to prevent blocking of the needle. The solutions were at room temperature and a cold sensation in the arm gave some patients a clue as to when injections were being given. The adrenaline solution tended to deteriorate rapidly after the first hour (see paper E, Fig. 2). After this time a fresh solution was prepared and the contents of the connecting tube washed out.

Subjects.—The subjects were all young male members of His Majesty’s Forces and these reports are a testament to their co-operation and endurance. For convenience they are listed in alphabetical order in Table I with the nature and site of their lesions along with the letter of the paper in which observations on them are discussed. If the letter is followed by a number it indicates the figure in which their records are shown. Unless otherwise stated the nerve lesions were complete as verified at operation and were in all respects typical and there was no evidence of trauma to the large vessels. The approximate time after the nerve injury at which the observations were made is given in the table.

A small group of patients with sympathectomies has also been available for study and details of these subjects are appended to Table I. The completeness of the operation was verified in each instance by a thermoregulatory sweat test using the chinizarin technique described by Guttmann (1940). The normal volunteers were members of the medical staff.

Comment

It is not profitable to attempt to summarize the results obtained in these investigations, but it may be helpful to indicate at the outset that they have little practical value in the treatment of peripheral nerve injuries. In general their chief significance appears to be that they demonstrate the ease with which physiological methods may be applied to the study of phenomena in the human. The fact that in some instances the particular juxta-position of the results has lead to conclusions at variance with those drawn by previous workers shows that in addition to ease of investigation even such a
subjects was anhydrosis side for urgency formed by department and Mr. that obliterans. Nearly vascular responses formed 96 L 4.

Subject J.R.—R. Stellate Ganglionectomy performed by Mr. C. H. Cullen for hyperhidrosis marked on the right side of the face and less marked on the arm. Vascular responses normal before operation. Result—complete anhydrosis above T 3. See paper B 8, 10, 12.

Subject C.S.—Bilateral Lumbar Sympathectomy performed by Mr. C. H. Cullen for thrombo-angitis obliterans. Nearly normal vasodilatation in left foot and slightly deficient in right foot before operation. Result—complete anhydrosis below L 4 and patchy in L 4. See paper B 8.

restricted field as the limb presents fruitful opportunities for research. It should also be mentioned that these investigations have only been possible because as a result of the organization of the Emergency Medical Service a large group of subjects was available for study.

It is a pleasure to acknowledge the great assistance given by all members of the staff of the Winwick Emergency Hospital and by the dispensary and the engineering department of the Winwick Mental Hospital.

Grateful thanks are tendered to Mrs. Irmgard Watkins, formerly of the Department of Surgical Research of the University of Manchester for help in translating various languages, and to the librarians of the Royal Society of Medicine and the Manchester Medical Society for help in consulting the literature.

References


Lewis, T. (1929–31), Heart, 15, 177.