Enzyme activities in cell sonicates grown in normal or OH-Cbl supplemented medium

<table>
<thead>
<tr>
<th>OH-Cbl in medium (µg/l)</th>
<th>Methionine synthase (pmol/min/mg)</th>
<th>MCM (pmol/min/mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No added MeCbl & +50 µmol MeCbl</td>
<td>No added AdoCbl & +50 µmol AdoCbl</td>
</tr>
<tr>
<td>Patient</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controls</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>24-10</td>
<td>64-244 (n = 14)*</td>
</tr>
<tr>
<td>1000</td>
<td>644±</td>
<td>810±</td>
</tr>
</tbody>
</table>

*n refers also to the assay without added coenzyme.†Not detected; detection limit of the assay < 5 pmol/min/mg.

Eugen distributedly assured control.

MCM activity was assayed in fibroblast homogenates as described.† Methionine synthase activity was determined by measuring the formation of labelled methionine from [14C] methyl tetrahydrofolic acid and homocysteine. All of these activities were related to the protein content determined by the Lowry method.

lower normal range. Screening for more common metabolic white matter diseases was inconclusive.

Quantitative analysis of organic acids by gas chromatography—mass spectrometry showed an increase in urinary methylmalonic acid (MMA) (2900 mmol/mol creatinine; normal < 2 mmol/mol creatinine). Total plasma homocysteine was raised (174 µmol/l; normal < 15 µmol/l) and methionine was abnormally low (<7 µmol/l, normal 13–28 µmol/l). A disorder of Cbl metabolism was suggested and treatment with intravenous OH-Cbl was started at 500 µg/day at the age of 25. Weaning from the respirator was possible. The patient gradually improved but remained confined to a wheelchair with mild ataxia of the arms. She had to continue on intramuscular OH-Cbl (10 mg weekly) because oral OH-Cbl failed to maintain metabolic control.

Metabolism of Cbl and Cbl related enzymes were investigated in skin fibroblasts. The principal findings were reduced MCM and methionine synthase activities, which were in the presence of the coenzymes (table). The incorporation of [14C]-propionate and the formation of labelled methionine and serine from formate were much reduced in cells grown in normal medium and returned to almost normal with OH-Cbl supplementation (data not shown). Complementation studies in fibroblasts were performed with previously characterised cell lines displaying a Cbl or a cblG mutation. Metabolism was increased more than 4-fold above baseline values with the CblG mutant cell line and remained unchanged with the CblC cell line. These results confirmed the cblC defect.

In a sural nerve biopsy obtained before B12 treatment odd numbered long chain fatty acid concentrations were increased (4-13% of the total 14- to 22-carbon fatty acids in the samples; controls 0-82 (SD 0-42%)) but not in muscle whereas the content in erythrocyte membrane lipids was moderately increased after six months of OH-Cbl treatment (13%, controls 0-7 (0-12%)) and returned to normal (0-84%) after prolonged OH-Cbl treatment.

The sister of patient 1, who is 4 years older, was first examined at the age of 23. Electrophysiological studies disclosed normal motor conduction velocity of the peroneal nerve (58 m/s; normal > 43 m/s). Neurological examination was normal. At the age of 31 tabial nerve conduction velocity was at the lower limit of normal (41 m/s) and the deep tendon reflexes of the legs were hypoactive indicating a subclinical neuropathy. Metabolic screening performed at the age of 29 showed increased excretion of MMA (1550 mmol/mol creatinine). A single intramuscular dose of 2 mg OH-Cbl led to a 60% reduction of MMA excretion. The patient refused further investigations and did not accept treatment.

A thorough laboratory screening of the parents of the sisters including analysis of urinary MMA excretion and plasma methionine and homocysteine concentrations was normal. Our patients illustrate the extremely variable presentation of inherited disorders of Cbl metabolism. During the 18 year disease course patient 1 presented with neurological symptoms and signs of the CNS and PNS that developed gradually over time and remitting fashion over many years and seemed to respond to glucocorticosteroid treatment. Neither the variability of disease expression, as exemplified by the finding in our patient 2, nor the surprising initial response to steroids can be explained at present.

All previously described patients with the cblC/D defect have responded biochemically to a varying degree to treatment with pharmacological doses of OH-Cbl. Adequate long term control of MMA and homocysteinemia was obtained only by systemic treatment. There was a good correlation between the clinical response and the results of fibroblast studies in which normalisation of activities was shown when cells were grown in OH-Cbl supplemented medium (table). The response to OH-Cbl was greater than seen in fibroblasts of most patients with this defect (B Fowler, E R Baumgartner, unpublished data). The clinical benefit from OH-Cbl treatment was evident by full restoration of arm function although improvement in walking was limited. Moreover, no further relapses occurred over six years and the disease did not progress. The lack of complete recovery is not unexpected in view of other reports.1

Our cases add a new variant to the clinical range of inherited Cbl disorders. Disturbance of Cbl metabolism including the CblC/D defect should be taken into consideration in patients with relapsing and remitting disorders of the CNS and PNS, regardless of the age of the patient. Screening must be performed by measurement of total homocysteine and methylmalonic acid and concentrations of Cbl measured in a routine assay do not rule out inherited disorders of Cbl metabolism.

We are indebted to Dr Hunneman, Göttingen, for analysis of organic acid excretion in 1989, and to Dr Harzer, Tübingen, for analysis of lysosomal enzymes. The assistance of Dr Winkler, Würzburg, in completing family studies is greatly appreciated. We thank professor emeritus HG Mertens, Würzburg, for support and encouragement at an early stage of the evaluation.

J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.60.1.108 on 1 January 1996. Downloaded from http://jnnp.bmj.com/ on September 17, 2023 by guest. Protected by copyright.
Letters to the Editor

Alzheimer's disease in a case of cortical basal ganglionic degeneration with severe dementia

Cortical basal ganglionic degeneration (CBGD) is a neurodegenerative disease with core features of both basal ganglionic and cortical dysfunction. CBGD typically presents as an akinetic rigid syndrome poorly responsive to levodopa, often with asymmetric limb dyssynergia. Signs of cortical dysfunction include limb apraxia, asterognosis, and language disturbance. Cognitive function is characteristically well preserved, even in the advanced stage of the illness. Dementia is so unusual as an early sign in pure CBGD that presentation with cognitive impairment has been proposed as an exclusionary criterion for the diagnosis. We describe a patient with clinical features of CBGD who presented with prominent, early dementia. Neuropathological examination confirmed the diagnoses of both CBGD and Alzheimer's disease. A 72-year-old woman presented with a six-month history of gait disturbance, falls, and confusion. Examination showed cognitive impairment, pronounced rigidity in all four limbs, and left limb apraxia. Examination at the age of 74 disclosed that she was alert and cooperative, but unable to give any meaningful history. She was not oriented to day or year. Speech was slow but she could name objects (C) and follow a two-step command. There was left/right confusion. Facial dystonia was apparent. All four limbs were very rigid, left more than right. Although strength was good in both arms, she was unable to voluntarily raise her left arm or to use her left hand for any skilled movement. Her left hand spontaneously assumed unusual postures suggestive of an alien limb phenomenon. She could not manipulate a coin with her left hand but could pick up and identify a coin with her right hand. Her dementia precluded further assessment of cortical sensory deficits. There was no rest- or postural tremor. Muscle stretch reflexes were brisk at the left biceps but otherwise unremarkable. Plantar responses were equivocal. There were pronounced snout, snout, and bilateral grasp reflexes. With the oculocephalic test, the patient showed a generalised cerebral atrophy, mild perivenricular white matter hypodensity, and asymmetrically enlarged frontal horns of the lateral ventricles, more evident on the left. The patient deteriorated steadily with progressive motor impairment and inability to speak. She died aged 76, four and a half years after the onset of her disorder.

At necropsy, the brain (weight 1010 g) displayed moderate diffuse, symmetric frontal-temporal atrophy and mild temporal atrophy. The lentiform nuclei were shrunken and discoloured and the thalamus was decreased in mass. The white matter showed a rusty hue. The pons, medulla, and cerebellum were grossly normal.

Microscopic examination of the cerebral cortex showed neuronal loss, most evident in layer 3, with spongiosis in layer 2 and pronounced in the parietal and frontal regions. Swollen, achromatic neurons or “balloon cells” (figure A) were seen in the deeper layers of the parietal cortex, particularly around the central sulcus, and in other cortical areas. Neuronal degeneration with achromasia was pronounced in the globus pallidus and lateral thalamus, moderately severe in the putamen. The thalamus was grossly normal. There was severe degeneration of pigmented neurons in the substantia nigra, particularly the lateral portions. Some of the remaining nigral neurons contained lightly basophilic fibrillar inclusions (figure B), typical of “corticalbasal inclusions,” whereas others contained homogeneous pale eosinophilic cytoplasm. Corticobasal inclusions were also present in the red nucleus and locus ceruleus. Swollen achromatic neurons were seen in the substantia nigra, red nucleus, periaqueductal grey, pontomedullary tegmentum, basis pontis, olivary nuclei, and cerebellar dentate nucleus. Reactive gliosis paralleled the severity of neuronal loss.

Bielawschovsky silver staining showed neurolabile bristle-like neuritic plaques and neuritic plaques in the cerebral cortex and hippocampi (figure C). Maximum plaque densities were: frontal cortex 30–40/mm²; parietal cortex 15–20/mm²; temporal cortex 20–30/mm²; occipital cortex 15–20/mm². Neuritic plaques were common in the caudate nucleus, putamen, and medial basal ganglia of Meynert, but rare in other subcortical regions.