recently it has become clear that hyponatraemia in the cerebral salt wasting syndrome is accompanied by hypovolaemia.1,2

We report a patient with cerebral salt wasting after aneurysmal subarachnoid haemorrhage who showed remarkable changes in urine protein concentrations during surgery. A 46 year old woman was admitted with severe headache and vomiting. Physical examination was unremarkable. Brain CT showed subarachnoid haemorrhage with blood in the suprasellar cisterns and the left Sylvian fissure. Two days later she developed mild hyponatraemia and polyuria; salt and fluid loss were fully compensated by 0.9% NaCl solution. On day 9 she was found unconscious with respiratory failure and bradycardia and CT disclosed a recurrent subarachnoid haemorrhage in the left Sylvian fissure. The patient regained consciousness and she gradually recovered from a mild aphasis and right facial weakness. However, from day 12 onwards she again developed a progressive polyuria of up to 24 l/day (on day 22) and a 24 hour renal sodium loss of 2630 mmol/l. The plasma sodium range was between 128 and 142 mmol/l, and the colloid osmotic pressure was between 18.7 and 24.0 mm Hg. Sodium excretion was increased. Treatment with fludrocortisone had no effect on renal sodium loss. Despite the extreme polyuria plasma atrial natriuretic protein concentrations were within the normal range (up to 11.1 pmol/l); atrial natriuretic protein in CSF was not assessed. Daily transcranial Doppler sonography was indicative of cerebral vasospasm and therefore angiography was performed. During the procedure the left middle cerebral artery was disclosed, which was successfully clipped on day 24. Whereas the diuresis 24 hours before and after the neurosurgical procedure was 600–700 ml/hour, the mean intraoperative (from incision to the last suture) production of urine was 150 ml/hour. The largest reduction in diuresis was seen while the dura was open and during the intraoperative dura; urine production rose to preoperative values. Two days after surgery diuresis decreased remarkably and was back to normal on the fourth day after operation. Repeated measurements of sodium concentration in serum and urine were normal. The patient had fully recovered two months after the operation.

Our patient had a very pronounced urinary sodium loss of up to 60 g per day. Opening of the dura resulted in a decrease in diuresis of 75%. Both a reactive increase of CSF production and a decrease in the intracranial pressure may have been important. Because an increase of atrial natriuretic protein in CSF (and maybe other humoral factors) results in a decrease in CSF production and an increase in natriuresis,1 an increase in CSF production after loss of CSF is possible. When the dura was opened atrial natriuretic protein was induced in a decrease of atrial natriuretic protein, resulting in a decrease in natriuresis.

In patients with subarachnoid haemorrhage, Dolenc and Bodosi found a linear correlation between intraparenchymal protein and atrial natriuretic protein concentrations in CSF.1 If lowering the intracranial pressure might result in reduced concentrations of atrial natriuretic protein in CSF and lead to an increase in CSF production and a decrease in natriuresis.1

If either assumption is correct, continuous CSF drainage—for example, by an external lumbar drain—may be an effective treatment for the cerebral salt wasting syndrome, especially in more severe cases.

WM MULLENERS
Department of Neurology
Amsterdam University Hospital
Vrije Universiteit Medical Center
Amsterdam, The Netherlands

RHIMA BARTELS
Department of Neurosurgery, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands

Correspondence to: Dr WIM Verhagen, Canisius Wilhelmina Ziekenhuis, Department of Neurology, PO Box 9015, 6500 GS Nijmegen, The Netherlands.


A patient with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) confirmed by sural nerve biopsy

“Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy” (CADASIL)1 is a newly defined syndrome characterised, in the absence of hypertension, by recurrent subcortical ischaemic strokes and by peculiar non-amyloid, non-arteriosclerotic angiopathy of cerebral vessels. On MRI described subcortical ischaemic lesions and diffuse atrophy are seen both in symptomatic and asymptomatic family members.1 Recently, genetic linkage analyses in two unrelated French families have assigned the disease locus to chromosome 19q12 with the most likely location of the disease gene between D19S221 and D19S222. Around 2 cm long segment of the sural nerve was processed for light and electron microscopy. Six fascicles were present. The area of the fascicle amounted to 0.120 mm2; subcutaneous and intramuscular connective tissue accounted in the endoneurial and epineurial spaces. The largest epineurial arteries (size up to 100 μm) appeared normal. Small epineurial and perineurial vessels were unchanged in paraffin sections. The arteriolar wall was not thickened on semi-thin sections and no increase in number of nuclei was evident. The perineurium was not thickened and there was no increase of endoneurial connective tissue. The density of myelinated fibres was 6600/mm2 (normal range for the sural nerve for this age 6000–8000/mm2). Myelin degradation products were not encountered.

Electron microscopy showed changes in a few epineurial vessels, consisting of electron dense, extracellular granular deposits along the outer aspects of the vessel walls (fig 2A). Many of these granules were located on the endoneurial surface of pericytes and less often on endothelial cells. Most granules measured 0.2 to 0.5 μm in diameter. However, some were measured up to 1.2 × 0.8 μm. Dense deposits were frequently located in thickened basal laminae and were often pushing back the cell membrane of an adjacent pericyte (fig 2B and C). Most dense deposits were round or oval but some were bar or disc-shaped and oriented parallel to the cell surfaces (fig 2A). The number of dense deposits ranged from none to five or six around a single vessel. Some were found in very small arterioles but most were seen in larger capillaries or meta-arterioles (size 14–15 μm) consisting of endothelial cells surrounded by pericytes but without the presence of smooth muscle cells. In some vessels, the basal lamina surrounding the endothelial cells was clearly redundant and tortuous (not shown). Many piconycotic vesicles were found along and underneath the surface of cell membranes. Their density was not altered at the site of close apposition to the cell membrane with the electron dense granular deposits.

The presence of granular electron dense
material in the media of leptomeningeal and small cerebral penetrating arteries is considered to be a characteristic ultrastructural feature of CADASIL. The pathophysiological relevance of these lesions is unknown and their specificity has still to be established. Deposition of an identical material has also been reported in small vessels of a sural nerve obtained from a patient with suspected CADASIL. Here we present a patient with very similar ultrastructural findings in a sural nerve biopsy and who was diagnosed as CADASIL based on clinical data, neuroimaging features, and genetic linkage analysis. Ultrastructural changes in the nerve biopsy of this patient, apart from electron dense deposits along abluminal surfaces of endothelial cells and pericytes, were characterised by redundant basal membrane type material, possibly pointing to some metabolic disturbance in extracellular matrix production by endothelial cells, pericytes, and possibly myocytes in larger vessels. The typical fine structural lesions encountered in epineurial or perineurial capillaries, meta-arterioles, or small arteries of sural nerve hardly have any light microscopical equivalent. In addition, large epineurial vessels seemed to be normal. Thus diagnostic confirmation of CADASIL by sural nerve biopsy clearly requires electron microscopy. The same applies to other tissues, as recently shown by Ruchoux et al. Performing skin and muscle biopsies in several members of a family with known CADASIL, these authors found non-specific light microscopical changes in biopsied tissues. Electron microscopy showed thickened vascular basal lamina of capillaries and arterioles with diameters from 10 to 50 μm and patches of granular and electron dense material close to the cell membrane of vascular smooth muscle cells. These and our own findings indicate that the vasculopathy of CADASIL is more widespread than initially reported, despite the fact that, until now, only cerebral vessel pathology has been shown to be of relevance by causing strokes and dementia. Present morphological evidence points to a diffuse microangiopathy throughout the body. More studies are needed to compare the respective values, especially the sensitivity, of skin, muscle, and sural nerve biopsies, in establishing the diagnosis of CADASIL.

We thank Dr E Tournier-Lasserve and Dr K Vahedi for performing linkage analysis.

J LECHNER-SCOTT
S ENGELTER
A STECK
Department of Neurology
S DELLAIS
Department of Radiology
M TOLNAY
A PROBST
Institute of Pathology,
Kantonsspital Basel, Basel, Switzerland

Correspondence to: Professor A J Steck, Department of Neurology, Kantonsspital Basel, Petersgraben 4 CH 4031 Basel, Switzerland.