Hatred of the hemiparetic limbs (misoplegia) in a 10 year old child

Injury to the right parietal region in adults may cause disorders of visuospatial ability in drawing and construction, neglect of the left side, and a left hemiparetic denial of left hemiparesis (anosognosia), and sometimes an active hatred of the paralysed limb (misoplegia), occasionally associated with a personalisation of the limb (calling it "the nuisance") or attempting to injure the paralysed left limbs. Although misoplegia is reputed to be fairly common, it seems not to have been reported in adults since the classic work of Craig. These neuropsychological signs have been far less often reported in children. There have been reports of left neglect and extinction in children, together with reports of general tendency in children with head injury to deny their deficit. However, there seem to be no previous reports of anosognosia proper, or misoplegia, in children in relation to the classic symptoms of right parietal neuropsychological deficits.

A 10 year old right handed boy, with no previous neurological history of note, had an episode of acute loss of consciousness (Glascow Coma Scale score 6) after a spontaneous intracerebral haemorrhage. Brain CT showed a lesion in the deep white matter and basal ganglia of the right temporoparietal region (figure).

He had a dense left hemiparesis with reduced sensation, hemianopia, and a tendency to ignore things on the left side (for example, failing to dress his left limbs). His mother reported that he seemed to have regressed emotionally (for example, he had episodes of weeping, tantrums, and impulsive behaviour). He had become more self centred, often feeling that he had been "left out". His physiotherapist and occupational therapist reported that it was impossible to please him, as he found their treatment "wrong" or "faulty". This was dramatically different from his pre-illid state, where he was described as a normal and emotionally stable child. Corroborating accounts of his change in behaviour were reported by his school teachers, although they noted no decline in his general intellectual abilities, and he returned to his old class at school.

His mother reported that everything was "a laugh", and that you could not hold a serious conversation with him (although his serious side "came back" when he was "in trouble"). His physiotherapist reported that he avoided conversations about his hemiparesis, "as if it wasn't there", and instead talked exclusively about other things. In an early physiotherapy session he insisted that he could run, but soon tripped and fell as a result of his hemiparesis. He had been a member of a football team and maintained that he would be able to return to the team, but he was clearly unable to play and was not selected. He then asserted that the team was inferior, and promised to find a better team. Both his physiotherapist and occupational therapist reported that it was difficult to gain his cooperation in therapy because of his denial of deficit. However, apart from anosognosia, he showed no other delusional beliefs.

In sharp contrast with this denial of deficit, his family, physiotherapist, and occupational therapist also reported that he held some unusual attitudes towards his left side. He was described as feeling that his "hated" him, blamed them, and wanted to get rid of them. In the acute period in hospital he once actually threw himself out of his bed, on to his left side, in an attempt to injure his left arm and leg. He would often bend the fingers of his left hand downwards, attempting to break them. Both his mother and his physiotherapist reported him as saying that he "would rather destroy it, if he couldn't use it". They also reported that he expressed a desire that his left side might be replaced, with that of his mother.

He was assessed by us three months after the cerebrovascular accident, at which stage the left hemianopia and hemiparesis were still present, although the paresis had improved slightly so that he could now walk (with typical circumduction in gait). His left arm had recovered proximal movement, but he still had very poor control over his hand and finger movements. During our assessment his speech was entirely normal, as was his recent memory and recognition of well known faces. However, he performed poorly on drawing and constructional tasks (the block design subtest of the WISC-III, scaled score 5), showing some features of constructional dyspraxia, as well as occasionally omitting components on the left. He showed further features of hemispatial neglect—missing some words on the left in reading, neglecting lines well to the left of true centre (mean line length 9.7 cm), mean bisection position 59.7% from the left) and omitting items on the left in a figure cancellation task (Bell test, 11 of 16 targets identified in the left hemispace, 17 of 17 in the right).

At this stage he was anosognosic for his hemiparesis and neglect, but was aware that his drawing and constructional abilities seemed poor. Although he agreed that his left arm was "not the same" as before the injury, he denied that it caused him any disability. Asked directly to judge whether he might be able to use his arm to open a door, he said that he would not be able to do this. When challenged to do this, he found it impossible, and solved the problem by using his right (good) hand to wrap the fingers of the left hand around the handle, and then involving the door open using his body.

As regards the misoplegia, he said that he hated his arm and leg because he couldn't use them, and that he wanted to break them. He believed that, if the bones were broken, his muscles might grow "back again", and he would be miraculously healed. Concerning his wish to have the left side replaced with that of his mother he confirmed that he had, quite naturally, asked her to do this.

This patient therefore showed the classic pattern of neuropsychological deficits seen after right parietal lesion in adults: misoplegia, anosognosia, left hemispatial neglect, and constructional apraxia. The case seems to be the first in which misoplegia has been reported in a child. It has been suggested that signs of denial of deficit are common in all children after a brain injury, but is of clinical relevance to be able to differentiate between different forms of denial of illness. A pattern of neuropsychological deficit known to be associated with anosognosia, visuospatial errors, and constructional apraxia, would be a suitable marker in making a distinction between anosognosia as part of a right parietal syndrome, denial of deficit, and constructional apraxia, as part of a frontal syndrome, or as a purely psychogenic defence mechanism.

The nature of the misoplegia in this case seems to be largely the result of a denial of deficit in adults, that is it involved a hatred for the left limbs, and a desire to injure them. In one respect, however, his attitude was different from that of misoplegic adults, in that he expressed a desire for the limbs to be "replaced", and it is surprising that his mother was chosen as the source of the exchanged body parts.

Another interesting feature of the case is the finding that anosognosia and misoplegia coexisted in one patient. This is surprising given that they reflect polar opposites in attitude to the disabled limbs. However, we noted during our assessment denial of anosognosia and misoplegia were never present simultaneously. Rather he often switched between hating the left limb and denying his hemiparesis.

We thank Emily Le Marie and Jennette Bell for their reports on the patient and Professor Christine Temple for her assistance with the literature on neglect in children.

AVRON D MOSS
Child and Family Centre, St Mary's Hospital, Westucking, London E1 1BB, England

Correspondence to: Dr Jake Timothy, Department of Neurosurgery, Leeds General Infirmary, Great George Street, Leeds LS1 3EX, UK.
Valproate induced encephalopathy treated with carmine in an adult

Hepatotoxicity due to valproate often necessitates discontinuation of the drug. We report a patient with unstable epilepsy in whom valproate was an irreplaceable component of anticonvulsant treatment. Hepatic encephalopathy was reversed and remanent controlled by combining carmine supplementation with an essentially unchanged valproate schedule.

A 35 year old previously healthy woman developed status epilepticus secondary to viral encephalitis initially requiring mechanical ventilation and phenobarbital concentrations of over 100 μg/ml with phenytoin to maintain seizure control. Phenytoin was discontinued due to rash and replaced by carnitine. This patient further illustrates that identification and correction of a drug induced deficiency may allow continuation of treatment without disturbing control of an unstable seizure disorder. Much as folate is used in chronic phenytoin administration, supplemental carmine should be considered in adult patients with epilepsy at risk for hyperammonaemia.

Valproate-induced encephalopathy

OLIVER H TURNBULL
Department of Psychology,
King's College, Aberdeen University,
Aberdeen AB 2 9UB, Scotland

Correspondence to: Dr O Turnbull.


Increased serum neopterin concentrations in a patient with Creutzfeldt-Jakob disease

Spongiform encephalopathies may be caused by human prions and animals. The human transmissible spongiform encephalopathies include Kuru, Creutzfeldt-Jakob disease, and the Gerstmann-Strassus-Scheinker syndrome (GSS), and animal transmissible spongiform encephalopathies include scrapie and bovine spongiform encephalopathy. Serum neopterin concentrations were measured from paired linked immunosorbent assay (ELISA; BRAHMS-Diagnostica, Berlin, Germany). Neopterin concentrations were 16-3 nmol/l (first occasion) and 12-4 nmol/l (second occasion), clearly raised compared with the serum neopterin concentrations in healthy controls (mean SD) 3.4-2.3 nmol/l. Increased neopterin concentrations are indicative of activation of cellular immunity in humans, because large amounts of neopterin are released from human monocytes and macrophages on stimulation with interferon-γ. Similarly, increased serum neopterin is seen in prion diseases, infections of the CNS, and other diseases, usually correlating with the extent and the activity of the diseases and showing prognostic information, confirming the diagnosis of Creutzfeldt-Jakob disease. Blood specimens were obtained two months and one month before death. Among other routine laboratory tests, neopterin concentrations were measured from paired linked immunosorbent assay (ELISA; BRAHMS-Diagnostica, Berlin, Germany). Neopterin concentrations were 16-3 nmol/l (first occasion) and 12-4 nmol/l (second occasion), clearly raised compared with the serum neopterin concentrations in healthy controls (mean SD) 3.4-2.3 nmol/l.

Increased serum neopterin concentrations are indicative of activation of cellular immunity in humans, because large amounts of neopterin are released from human monocytes and macrophages on stimulation with interferon-γ. Similarly, increased serum neopterin is seen in prion diseases, infections of the CNS, and other diseases, usually correlating with the extent and the activity of the diseases and showing prognostic information, confirming the diagnosis of Creutzfeldt-Jakob disease. Blood specimens were obtained two months and one month before death. Among other routine laboratory tests, neopterin concentrations were measured from paired linked immunosorbent assay (ELISA; BRAHMS-Diagnostica, Berlin, Germany). Neopterin concentrations were 16-3 nmol/l (first occasion) and 12-4 nmol/l (second occasion), clearly raised compared with the serum neopterin concentrations in healthy controls (mean SD) 3.4-2.3 nmol/l.

Increased serum neopterin concentrations in a patient with Creutzfeldt-Jakob disease

OLIVER H TURNBULL
Department of Psychology,
King's College, Aberdeen University,
Aberdeen AB 2 9UB, Scotland

Correspondence to: Dr O Turnbull.


Increased serum neopterin concentrations in a patient with Creutzfeldt-Jakob disease

Spongiform encephalopathies may be caused by human prions and animals. The human transmissible spongiform encephalopathies include Kuru, Creutzfeldt-Jakob disease, and the Gerstmann-Strassus-Scheinker syndrome (GSS), and animal transmissible spongiform encephalopathies include scrapie and bovine spongiform encephalopathy. Serum neopterin concentrations were measured from paired linked immunosorbent assay (ELISA; BRAHMS-Diagnostica, Berlin, Germany). Neopterin concentrations were 16-3 nmol/l (first occasion) and 12-4 nmol/l (second occasion), clearly raised compared with the serum neopterin concentrations in healthy controls (mean SD) 3.4-2.3 nmol/l.

Increased serum neopterin concentrations are indicative of activation of cellular immunity in humans, because large amounts of neopterin are released from human monocytes and macrophages on stimulation with interferon-γ. Similarly, increased serum neopterin is seen in prion diseases, infections of the CNS, and other diseases, usually correlating with the extent and the activity of the diseases and showing prognostic information, confirming the diagnosis of Creutzfeldt-Jakob disease. Blood specimens were obtained two months and one month before death. Among other routine laboratory tests, neopterin concentrations were measured from paired linked immunosorbent assay (ELISA; BRAHMS-Diagnostica, Berlin, Germany). Neopterin concentrations were 16-3 nmol/l (first occasion) and 12-4 nmol/l (second occasion), clearly raised compared with the serum neopterin concentrations in healthy controls (mean SD) 3.4-2.3 nmol/l.

Increased serum neopterin concentrations are indicative of activation of cellular immunity in humans, because large amounts of neopterin are released from human monocytes and macrophages on stimulation with interferon-γ. Similarly, increased serum neopterin is seen in prion diseases, infections of the CNS, and other diseases, usually correlating with the extent and the activity of the diseases and showing prognostic information, confirming the diagnosis of Creutzfeldt-Jakob disease. Blood specimens were obtained two months and one month before death. Among other routine laboratory tests, neopterin concentrations were measured from paired linked immunosorbent assay (ELISA; BRAHMS-Diagnostica, Berlin, Germany). Neopterin concentrations were 16-3 nmol/l (first occasion) and 12-4 nmol/l (second occasion), clearly raised compared with the serum neopterin concentrations in healthy controls (mean SD) 3.4-2.3 nmol/l.

Increased serum neopterin concentrations are indicative of activation of cellular immunity in humans, because large amounts of neopterin are released from human monocytes and macrophages on stimulation with interferon-γ. Similarly, increased serum neopterin is seen in prion diseases, infections of the CNS, and other diseases, usually correlating with the extent and the activity of the diseases and showing prognostic information, confirming the diagnosis of Creutzfeldt-Jakob disease. Blood specimens were obtained two months and one month before death. Among other routine laboratory tests, neopterin concentrations were measured from paired linked immunosorbent assay (ELISA; BRAHMS-Diagnostica, Berlin, Germany). Neopterin concentrations were 16-3 nmol/l (first occasion) and 12-4 nmol/l (second occasion), clearly raised compared with the serum neopterin concentrations in healthy controls (mean SD) 3.4-2.3 nmol/l.

Increased serum neopterin concentrations are indicative of activation of cellular immunity in humans, because large amounts of neopterin are released from human monocytes and macrophages on stimulation with interferon-γ. Similarly, increased serum neopterin is seen in prion diseases, infections of the CNS, and other diseases, usually correlating with the extent and the activity of the diseases and showing prognostic information, confirming the diagnosis of Creutzfeldt-Jakob disease. Blood specimens were obtained two months and one month before death. Among other routine laboratory tests, neopterin concentrations were measured from paired linked immunosorbent assay (ELISA; BRAHMS-Diagnostica, Berlin, Germany). Neopterin concentrations were 16-3 nmol/l (first occasion) and 12-4 nmol/l (second occasion), clearly raised compared with the serum neopterin concentrations in healthy controls (mean SD) 3.4-2.3 nmol/l.