LETTERS TO

THE EDITOR

Variation between observers in classifying multiple sclerosis

There has been no study of the reliability between observers of the widely used Poser criteria for the diagnosis of multiple sclerosis. We aimed to determine if the Poser diagnostic criteria could be consistently applied in practice, and whether the course of multiple sclerosis could be defined reliably.

The case records of 85 consecutive outpatients with multiple sclerosis attending a general neurology outpatient clinic at St James's University Hospital were retrospectively analysed by two independent observers (HFL: observer 1; MH: observer 2). The patients had an average age of 46 (range 23-74) years; 62 (73%) of the patients were women. The patients were classified according to the Poser criteria as clinically definite multiple sclerosis, laboratory supported definite multiple sclerosis, clinically probable multiple sclerosis, laboratory supported probable multiple sclerosis, suspected multiple sclerosis, or unable to classify. The course was defined as early relapsing-remitting, benign, secondary progressive, primary progressive, and unable to classify.

Overall, there was substantial agreement between the two observers in classifying multiple sclerosis according to the Poser criteria ($\kappa = 0.65, 95\%$ confidence interval (95\% CI) = 0.52-0.78). There was no agreement in the historical information used to classify the cases ($\kappa = 0.30, 95\%$ CI = 0.03-0.57). There was also disagreement as to whether a patient had had one or more "attacks of multiple sclerosis." Agreement was substantial for clinical evidence of separate lesions and was almost perfect for both paraclinical evidence and laboratory support (all κ values above 0.90). There was only moderate agreement between two observers in describing the clinical course of multiple sclerosis ($\kappa = 0.57, 95\%$ CI = 0.43-0.71). In particular, the two observers differed in their opinion in nine cases of whether there was progressive deterioration from the outset without any relapses or remissions (primary progressive disease) or whether there was an initially relapsing-remitting course followed by progressive deterioration (secondary progressive disease).

The main variation between observers in classifying multiple sclerosis lay in defining "attacks" of multiple sclerosis. In practice, clinical judgement is used to decide whether new symptoms are due to a relapse or are the result of other factors such as infection, psychological factors, temperature, or fatigue. This is much more difficult in retrospective analysis of case records. Retrospective analysis may also underestimate the extent of variation between observers.

Some of the variation may have been due to differences in abstracting information from the case notes. However, when a standardised proforma of clinical information about 30 cases was sent to neurologists worldwide to classify each case as either probable, possible, or unlikely multiple sclerosis, the diagnostic accuracy for a group of 108 neurologists was only two thirds overall. There were wide discrepancies in the evaluation of individual patients.

Reliability between observers has been found to be poor for many neurological symptoms and signs. Neurological examination is the basis for many of the currently used rating scales. Variation between observers is important to recognise as it may occur when these scales are used in multicentre trials as a means of assessing clinical change.

The main difficulty in defining the clinical course of multiple sclerosis was in distinguishing a secondary progressive course from a primary progressive course. This may have been due in part to poor documentation of relapses early in the course of the disease. Whereas the development of new symptoms was often reported, whether they resolved, persisted, or progressed was often not. Also, early symptoms may not be recognised as such or reported by the patient. On analysis of these characteristics, defining the course, there was a significant number of patients who did not fit readily into any of the defined categories. These patients had relapsing disease but without full recovery and they also showed the usual signs of disability with each relapse. Their course was thus progressive from the outset but with superimposed relapses.

Consequently, it is not necessary to have a classification of the course of multiple sclerosis. We propose a division between those patients with relapsing-remitting disease with full recovery between relapses and those patients with relapsing disease who have partial recovery but have increasing disability.

H. L. FORD
M. H. JOHNSON
Department of Neurology,
St James's University Hospital, Leeds
RIGBY
Nauffield Institute for Health and Department of Clinical Medicine,
University of Leeds, Leeds, UK

Correspondence to: Dr H L Ford, Department of Neurology,
St James's University Hospital, Beckett Street,
Leeds LS9 7TF, UK.

3 Landis RJ, Koch GG. The measurement of observer agreement for categorical data. Biometrics 1977;33:159-74.

High dose intravenous immunoglobulin does not improve abnormalities in the blood-brain barrier during acute relapse of multiple sclerosis

High dose intravenous immunoglobulin (IVMP) has an established role in the treatment of acute exacerbations of multiple sclerosis. Treatment with IVMP increases the rate of recovery in relapses and therefore shortens hospital stay. However, some patients do not improve after a single course of high dose IVMP. An alternative treatment would be useful for all these patients. The role of intravenous immunoglobulins (IVGPs) in treatment of relapses in multiple sclerosis was first investigated using 5 g at two to four week intervals; improvement was noted within 24 hours of infusion but lasted only for a rate of 14 days. In a subsequent study, van der Meulen and colleagues obtained spectacular results using IVG in a patient with previous unre sponsiveness to IVGMP. Nevertheless there is a lack of controlled trials and MRI monitoring of this treatment. Few studies have investigated the effects on the efficacy of high dose IVG treatment in reducing blood-brain barrier impairment in exacerbation of multiple sclerosis by means of serial Gd-DTPA MRI performed in a few patients.

We prospectively studied six patients with clinically definite multiple sclerosis in acute relapse of the disease. They were randomly assigned to receive 5 g of IVG daily (5 days, three times per week), followed by oral prednisone tapered over 18 days, or IVG (400 mg/kg, daily for five days). Duration of symptoms of the current attack was less than 10 days in all patients. All patients were treated using the Poser criteria. Early MRI was performed at baseline, 10 days, and then after 10 days, using the Kortzke expanded disability status scale (EDSS) which was repeated at the third and 10th days. Clinical assessment was carried out by a non-blinded examiner but MRI was performed by a blinded examiner. MRI was repeated at the last day. MRI was repeated after the oral prednisone taper was obtained for each patient before inclusion in the study. All MRI was performed on one 1.5 T (Magnetom SP) or on a 1.0 T (Magnetom Imager) using a spinecho pulse sequence (Siemens, Erlangen, Germany). Individual patients were always scanned on the same system.

T2 weighted double echo (2000/20-90) (repetition time/echo time) spin echo pulse sequences in the transverse plane were used in all patients through the whole brain using 5 mm slice thickness and 0.5 mm interslice gap, one excitation and 256 x 256 matrix. T1 weighted spin echo (600/20) (repetition time/echo time) scanning was also performed and before and after Gd-DTPA injection at a dose of 0.1 mmol/kg. (Magnevist, Schering, Germany), using 5 mm slice thickness and 0.5 mm interslice gap, two excitations and 256 x 256 matrix.

Brain MRI was carried out three times in each patient (except in patient No 6 who was treated after the third day with IVMP because of considerable worsening, therefore his third MRI was not performed). The first scan was performed at time minus one and follow up scans three and 10 days after the beginning of treatment using the same scan parameters. The middle transverse slice was oriented parallel to a line joining the most inferoanterior and infero-posterior parts of the corpus callosum, to facilitate accurate repositioning.

Image evaluation was visually performed by a neuroradiologist experienced in grading white matter abnormalities and blinded to the clinical data. Measures of outcome on MRI evaluated were the number and size of enhancing lesions. In the first scan, contrast enhanced T1 weighted images were compared with non-enhanced T1 weighted images, to detect enhancing plaques that were easily recognised as increased signal intensity areas in the white matter. The second and third scans were compared simultaneously with the previous scan to establish enhancement in new plaques and to assess the increase or decrease in the enhancement pattern of the multiple sclerosis plaques. On completion of the study, all scans were reread.
Hypothermia due to hypothalamic involvement in multiple sclerosis

Hypothermia can be caused by several different mechanisms, the most common being environment, neglect, drug overdose, and endocrine disturbance such as hypoglycaemia, hypothyroidism or hypopitu-
itarism. Disease affecting the hypothalamic regulatory centre can rarely cause hypother-
mia. We describe the first case of hypothermi-
a in association with pathologically established hypothalamic damage due to multiple sclerosis.

A 53 year old woman with longstanding, severe, clinically definite multiple sclerosis presented with a five day history of dyspha-
gia and lethargy. She was well cared for, in an adapted and centrally heated flat. Her skin was warm and well perfused. Although she was dysarthric with a severe spastic tetraparesis, her pupils were normal. There were no new neurological signs. A relapse of multiple sclerosis was provisionally diag-
nosed and arrangements were made to admit her to the ward the next day.

Hypothermia was considered likely on initial assessment. She was treated with methylprednisolone (originally × 15).