treatment and plasmapheresis are effective in preserving sensory nerve potentials and motor function.

JAU-SHIN LOU
ROBERT SNYDER
ROBERT C. GRIGGS
Department of Neurology, University of Rochester Medical Center,
Rochester, NY, USA

Correspondence to: Dr Jau-Shin Lou, University of Rochester Medical Center, Department of Neurology, Box 673, 601 Elmwood Avenue, Rochester, NY 14642, USA.


Axial T2 weighted (SE 2000/80) MRI shows an increased signal intensity in the right hemispheric cerebellar region without mass effect, corresponding to an ischaemic infarction in the territory of the posteroinferior cerebellar artery.

Physiologically, the vestibular pathways make contact with the ocular motor system, the spinal cord, and the vestibular cortex, contributing to the stabilization of posture and perception of velocity and self-motion.1-1 The tonic bilateral vestibular input builds up the actual central vestibular tone in the three major planes: horizontal or “yaw”, sagittal or “pitch”, and frontal or “roll”.1-1 It seems that central pathways that mediate vestibular function in either of the three planes travel independently of each other, so that a specific lesion could cause a disorder restricted to one of them.1-1 The vestibular tone in the frontal or “roll” plane allows a correct perceptual, ocular, and postural alignment to the “gravitational vertical”;1 an imbalance in this tone causes a lateral tilt with alteration in perception of verticality, head and body posture, misalignment of the visual axes, or ocular torsion.1-1 Patients perceive the surroundings and their body as if they were tilted in the opposite direction to what the CNS erroneously computes as being vertical and try to adjust the visual objects and posture to it. Dietrich and_brandt showed that an alteration in the perceived verticality is not just the sensory consequence of the rotation of the eyes, as they can appear separately and are not proportional in degree.1 Furthermore, it is possible that not all the effects of tilt occur in one patient, and the perceptual disorder itself is the most sensitive sign of a vestibular tone imbalance in the frontal plane.1-1 Brainstem structures that mediate the vestibular tone in the “roll” plane include the vestibular nuclei and the interstitial nucleus of Cajal—perhaps the most rostral structure related to the control of vertical and torsional head and eye position. Both are connected by the medial longitudinal fasciculus, which crosses the midline in thepons.1-2 Visual vertical tilt is, then, ipsiversive to peripheral or pontomedullary lesions and contraversive to pontomesencephalic lesions and, in both cases, is usually associated with other tilt effects; in most rostral lesions it may be either ipsiversive or contraversive and is usually isolated.1,2 The role of the vestibular cerebellar structures with respect to the control of subjective verticality is not well known at the moment.1-1

Our patient’s clinical findings suggest that he had an inclination of the internal representation of the gravitational vector to his left and he tried to adjust both visual objects and posture to what he perceived as being vertical. It would have been interesting to assess whether there was ocular torsion to define his clinical setting more exactly, but it makes no difference to interpretation as ocular torsion can be associated or not with perceptual or other tilt effects.1-1 Our patient showed a right hemispheric cerebellar ischaemic lesion, in a territory dependent on the posteroinferior cerebellar artery (PICA), with no mass effect and no brainstem or other alterations on MRI. His perceptual and postural tilt was contraversive to the lesion. It is possible that an additional subtle medullary lesion in the distribution of the PICA, not evident with clinical and imaging studies, reduced the tilt effects that we observed, because the major infratentorial arteries supply both brainstem and cerebellum and it is very difficult to differentiate the effects of cerebellar and brainstem lesions.1-1 But the tilt should then be ipsiversive to a pontomesencephalic, to the hypothetical lesion. Therefore it is not likely that an associated medullary ischaemia could cause the tilt effects in our patient. A mesencephalic injury could cause this clinical picture but there were no MRI alterations of the brainstem and sensory symptoms and MRI was normal at this level. A supratentorial disorder is unlikely because there were no MRI alterations and there were associated postural tilt effects. In this patient, we think that cerebellar dysfunction could be responsible for the tilt effects.

The present report confirms a previously hypothesized role for the cerebellar structures in the control of perception of verticality,1-2 and may contribute to a better knowledge of the pathophysiology and the topographic diagnosis of the central vestibular syndromes.

M BARON
JM GONZALEZ-GARCIA
MJ MAMUL
M LOUSA
Servicio de Neurologia, Hospital Ramon y Cajal, Centro de Salud, Madrid, Spain

Correspondence to: Dr M. Baron, Servicio de Neurologia, Hospital Ramon y Cajal, Ctra de Colmenar, Km 9.100, 28304 Madrid, Spain.


Low striatal D2 receptor binding as assessed by [11]IBZM SPECT in patients with writer’s cramp

Writer’s cramp is a form of idiopathic focal task specific dystonia. In accord with other studies on idiopathic and symptomatic dystonia, Tempel and Perlmutter suggested the presence of an abnormal striatal dopaminergic cortical drive in writer’s cramp.1 In view of the