LETTERS TO THE EDITOR

Magnetic resonance imaging in Creutzfeldt-Jakob disease: evidence of focal involvement of the cortex

Creutzfeldt-Jakob disease is a prion disease clinically characterised by rapidly progressing dementia, cerebellar and extrapyramidal signs, and myoclonus. Cerebral imaging procedures are considered to be of little value for definite pre-mortem diagnosis, which still depends on brain biopsy. Corresponding to cognitive deficits neuropathological changes mostly affect the cerebral cortex, and less severely other grey matter areas such as the caudate, putamen, and thalamus.1 The following case report suggests that MRI using a fluid attenuated inversion recovery (FLAIR) sequence might detect pathological changes in the cerebral cortex.

A 45 year old man presented with a three month history of progressive memory deficit, listlessness, and loss of speech. He repeatedly lost his orientation in the forest where he had worked as a wood cutter for many years. His history was remarkable for bullectomy of the right eye at the age of 15 months, probably due to retinoblastoma. On examination he complied with simple requests, only. He spoke very little with multiple perseverations. Severe deficits of memory and orientation were obvious. Pronounced irritability with bursts of aggressiveness made neuroleptic therapy necessary. Deep tendon reflexes were brisk but plantar responses were flexor. Rigidity affecting all limbs and hypomimia indicated involvement of the extrapyramidal system. On walking the right arm did not swing. The gait was broad based and fixation did not suppress the oculocephalic reflex suggesting cerebellar involvement. Serial electric ECG recordings disclosed a progressive general slowing and a left frontotemporal, non-periodic slow wave activity. Cerebrospinal fluid cell count and protein composition were normal. Caeruloplasmin and urinary copper concentrations were within the normal range. In accordance with a negative family history for prion disease a single strand conformation polymorphism analysis did not detect any mutations in the coding sequence of the prion protein (PrP) gene. At residue 129 the patient was homozygous for valine.

Two months after onset of clinical symptoms MRI was performed. T1 weighted images before and after infusion of a contrast agent were normal, whereas on T2 and proton density weighted images the left frontal cortex appeared thicker and returned a higher signal than the other hemisphere (figure). However, when using a FLAIR sequence the patchy hyperintense signal of the cortical layer was more apparent. An open brain biopsy of the left frontal lobe was performed. Histopathological examination disclosed spongiform changes of the cerebral cortex, loss of neurons and astrogliosis, but no inflammatory infiltrates. A diagnosis of spongiform encephalopathy (Creutzfeldt-Jakob disease) was made based on typical pathological changes. Immunohistochemistry showed no PrP deposits.

On follow up, the patient continued to deteriorate. Eight months after onset of symptoms he was reported to be completely unresponsive. At that time myoclonus of the arms were seen. He died 16 months after onset of symptoms. At necropsy the brain showed pronounced frontal cortical atrophy. The ventricular system was enlarged and atrophy of the caudate nucleus was seen. No cerebellar atrophy was detectable. Histology showed severe spongiform degeneration, severe gliosis, and nerve cell loss in the cerebral cortex. Similar changes were also found in the putamen and to a lesser extent in the thalamus. In the cerebellum only mild spongiform changes in the molecular layer were seen. The granular cell layer seemed unaffected. Immunohistochemistry was performed using the antibodies G0138 and 3F4. As in the brain biopsy no prion protein deposits were detectable in the neocortex or cerebellum. In western blot analysis, protease K resistant prion protein was found.

This patient presented with the clinical features of Creutzfeldt-Jakob disease. Diagnosis of spongiform encephalopathy was confirmed by brain biopsy. Whereas T1 weighted MRI was normal, and T2 and PD weighted images showed only subtle findings, a cortical hyperintensity could be easily seen on FLAIR images. This hyperintensity predominantly affected the left frontal, insular, and parietal cortex; the right frontal cortex was also involved (figure). Findings in MRI have been reported in several cases of pathologically established Creutzfeldt-Jakob disease. Brain MRI might be normal or show either brain atrophy or symmetric, hyperintense signals of the basal ganglia in T2 weighted images.

Occasionally, hyperintense signals of the cerebral cortex have been reported.4 The low incidence of cortical involvement reported on MRI contradicts neuropathological data. In a series of 21 necropsied cases, the cortex was the earliest and most severely involved by spongiform changes.1 The basis of this discrepancy may be that on conventional T2 weighted MRI the high intensity of CSF interferes with a sensitive display of cortical signal.

To our knowledge, application of the FLAIR sequence in Creutzfeldt-Jakob disease has not been reported so far. The FLAIR sequence is a heavily weighted inversion recovery sequence with an inversion time...
Primary central nervous system lymphoma presenting with multiple myeloma-like clinical picture

Primary cerebral lymphoma is a unique and infrequent CNS malignancy in which the B lymphocyte subtype constitutes most cases. B cell neoplasms other than multiple myeloma including non-Hodgkin's lymphomas, and acute and chronic leukemias might also exhibit lytic bone lesions, hypercalcemia, and monoclonal gammopathy via the particular actions of interleukin (IL-1), IL-6, or tumour necrosis factor-α secreted by the neoplastic B cell clone, but not reported previously secondary to a primary cerebral lymphoma. 4 We describe an unusual presentation of a B cell primary cerebral lymphoma mimicking a plasma cell dyscrasia.

A 64 year old woman was admitted with complaints of headache, ataxia, and urinary incontinence. Physical examination disclosed motor dysfunction in the legs, dysphasia, and impaired cerebellar function. On initial evaluation, a mass of 6x4 cm in diameter was shown in the left frontal lobe by MRI of the cranium (fig 1). Haematological and blood biochemistry values were within normal limits. Direct skull radiography disclosed multiple lytic lesions (fig 2). Serum immunoglobulin (Ig) G concentration was high (3400 mg/dl; normal<1800) and a monoclonal protein band of IgG-k type was detected by immunoelectrophoresis. Total excision of the lesion disclosed large lymphocytes with oval and vesicular nuclei, and prominent nucleoli consistent with "intermediate grade large cell lymphoma" according to the working formulation. 1 Methyl green pyrone stain was positive indicating cytoplasmic RNA accumulation and lymphoplasmocytoid differentiation. Staining with CD10 was also positive confirming the diagnosis of B cell lymphoma. The tumour margins showed infiltration into the surrounding white matter and extending to perivascular spaces with absence of involvement of subarachnoid spaces, dura, or bony structures. Pathological examination of the largest lytic skull lesion disclosed "osteolysis without a neoplastic infiltration". Immunoelectrophoresis of CSF showed a monoclonal IgG-k band similar to the results of serum assays whereas biochemical and cytopathological CSF examinations were normal. Enzyme linked immunosorbent assay (ELISA) tests for HIV and antibody
tires against Epstein-Barr virus were also negative in both serum and CSF samples. Slit lamp examination was normal, with no lymphomononuclear deposits in the uvea or vitreous fluid. Staging procedures including CT of the abdomen and pelvis, bilateral bone marrow aspiration and biopsy disclosed no abnormality. Serum and CSF alkaline phosphatase levels were within normal limits precluding the diagnosis of primary cerebral lymphoma. She received 4920 cGy radiotherapy to the whole cranium followed by COPP (cyclophosphamide, vincristine, procarbazine and prednisone) chemotherapy, repeated every fourth week. By the third month of follow up, serum and CSF paraprotein disappeared and lytic skull lesions regressed. Concerning the neurological findings, MRI disclosed no residual or recurrent mass and repeated investigation for systemic lymphoma was also negative. She is still being followed up and has so far survived more than a year.

Despite the differences in localisation and biology, non-Hodgkin's lymphomas arising from the CNS are not histologically different from the ones arising at extraneural sites, except that almost all have intermediate or high grade histology, predominantly of B cell subtype. 4 The monoclonality of intracranial immunoglobulins and cell lines obtained from primary cerebral lymphoma tissue cultures is well established. 5 These specific clonal products might be detected in CSF but not reflected in systemic circulation probably owing to the presence of an intact blood-brain barrier that, to our knowledge, a B cell primary cerebral lymphoma with raised serum monoclonal paraprotein and lytic skull lesions simulating multiple myeloma has not been previously reported. The probable factors of disturbed blood-brain barrier, tumorous penetration of vascular spaces, or stimulation of angiogenetic collateral formation secondary to neoplastic outgrowth might be, alone or in combination, responsible for those remote effects of primary cerebral lymphoma. This remains to be verified. The contradictory pattern of overlapping symtomatology of B cell neoplasms makes it obligatory to achieve the definitive histopathological diagnosis particularly in the case of primary cerebral lymphoma, in which the therapeutic algorithm as well as the prognosis have diverse features.

MARKUS SCHWANINGER
RALF WINTER
WERNER HACKE
Department of Neurology

RUDGER VON KUMMER
Department of Neuroradiology

CLEMENS SOMMER
MARKA KIESSLING
Department of Neuropathology, University of Heidelberg, Heidelberg, Germany

WALTER J SCHULZ-SCHAEFFER
HANS A KRETZSCHMAR
Department of Neuropathology, University of Heidelberg, Germany

Correspondence to: Dr Markus Schwaninger, Department of Neurology, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany.

Attacks of pain in the leg from classic syringomyelia

Neurologists should not be surprised if the cause of a disorder is remote from its effect, such as a paraspinal meningioma causing foot dragging, or a sacral ependymoma leading to deafness as the first sign of侧视 sense of the nervous system. Yet we were for some time bewildered by the following problem.

A 67 year old woman consulted us in 1996 for attacks of pain in the left leg that had started in 1978 and had gradually increased in severity and frequency up to three to four attacks an hour, each lasting a few minutes and so severe that she had to stop anything she was doing to nurse her pain. It was sharp and stabbing in character and radiated from the gluteal region to the groin, and further down to the lateral part of the upper and lower leg. Between attacks she was completely free of pain. The stabs also woke her up at night, six or seven times. In 1988 investigations at another hospital had established the diagnosis of cervical syringomyelia, secondary to tonsillar ectopia (Chiari I malformation); a year later a syringopleural drain was inserted. Subsequently the syrinx collapsed, but the attacks of pain continued unabated. Examination (in 1996) showed normal power and sensation in the arms, a thoracic kyphosis, and on the left side of the trunk a suspended level of hypaesthesia and hypalgesia, extending from just under the nipple down to the left leg, as far as 10 cm below the knee; vibration sense was abolished below the sterna on both sides. Power in the legs was normal; the tendon jerks were very brisk on the right and sluggish on the left, both plantar responses flexor. Repeated MRI studies confirmed a collapsed syrinx in the cervical region, extending throughout the thoracic cord, and deviating to the left at the level of the lumbar cord (figure). Many analgesic, antidepenetive, antispasmodic, and tranquilizing drugs had previously failed or only provided partial relief. In our patient with acute demyelinating polyradiculoneuropathy, tiarrhythmic drugs had previously failed or only provided partial relief. In our patient with acute demyelinating polyradiculoneuropathy, anti-GQ1b IgG antibodies have been often reported in the serum of patients with Miller Fisher syndrome or Guillain-Barré syndrome with or without syringomyelia: case report. "Neurology" 1995; 45:1746-53. Posters J, Rong C, Capdevila A, et al. Motion of the cerebellar tonsil in Chiari type I malformation studied by cine phase-contrast MRI. "Neurology" 1995; 45:1746-53. Williams B. The cystic spinal cord. "Neurology" 1995; 45:649-54. Milhorat TH, Johnson RW, Milhorat RH, Capocelli AL, Jr, Persson PH. Clinicopathological correlations in syringomyelia using axial magnetic resonance imaging. "Neurosurgery" 1995; 37:206-13. Milhorat TH, Kotzen RM, Mu HTM, Capocelli AL Jr, Milhorat RH. Dysesthetic pain in patients with syringomyelia. "Neurology" 1996; 3:890-6.

Anti-GQ1b and anti-GT1a IgG antibodies in a patient with acute demyelinating polyradiculoneuropathy without ophthalmoplegia

Anti-GQ1b IgG antibodies have been often detected in the serum of patients with Miller Fisher syndrome or Guillain-Barré syndrome with or without syringomyelia: case report. "Neurology" 1995; 45:1746-53. Anti-GT1a IgG antibodies in patients with acute demyelinating polyradiculoneuropathy had no ophthalmoplegia despite having anti-GQ1b and anti-GT1a IgG antibodies in their serum.

An 80 year old woman was admitted because of weakness of her limbs. Ten days before admission to our hospital, after a common cold, she developed difficulty standing and paraesthesia in her lower legs. Within a few days, walking and prolonged sitting were nearly impossible and her arms became weak. On the day of admission, she developed dysphagia. There was no dysphagia on the day of admission.

Her ocular and facial muscles were normal. She had difficulty in drinking water. Her limbs were weak (upper limbs MRC grade 3/5 and lower limbs 2 to 3/5). Deep reflexes were diminished or abolished. Pathological reflexes were not elicited. Superficial and deep sensation were abnormal below the knees. Stool culture was negative for Campylobacter jejuni. The CSF contained 159 mg protein/dl and no cells.

The right tibial motor nerve conduction velocity (MCV) was slow and the peroneal nerve did not respond. The median and ulnar nerves showed delayed distal latencies. Slowing of sensory nerve conduction velocity (SCV) was found only in the median nerve. F waves could not be elicited from the median and tibial nerves. A sural nerve biopsy on the 24th day showed loss of myelinated fibres without cell infiltration.

Dysphagia disappeared on the 27th day. Strength in her upper limbs recovered to MRC grade 4/5 a week later. One month after admission, she could walk with a little help.

The protein concentrations in her CSF were 82 and 57 mg/dl after a month and four months respectively. Three months later, the median and tibial MCVs were still slow and could not be elicited in the peroneal nerve.
The distal and F wave latencies in both the median and ulnar nerves were delayed. F waves could not be elicited in the peroneal or tibial nerves. Median SCV did not improve. The patient was discharged with no disability in activities of daily life four months after admission.

The patient’s serum was tested at intervals for anti-ganglioside antibody activities by enzyme-linked immunosorbent assay (ELISA), GM1a, GM2, GM3, GD1a, GD1b, GT1a, GT1b, and GQ1b were prepared from bovine brain. The antigen solution contained 20 pmol/50 μl of each ganglioside. Each patient’s serum was tested in triplicate at 1:100 dilution, and binding detected with horse radish peroxidase conjugated goat antihuman IgM or IgG antibody (Jackson ImmunoResearch Laboratories, Inc, West Grove, PA, USA) at 1:1000 dilution. On admission, the serum reacted with both GQ1b and GT1a at a dilution of 1:3200. These two antibody activities, expressed as optical densities, fell to 1/2 in parallel with her improvement, but they could still be detected in her last blood sample (at 16 weeks). IgG antibodies against the other gangliosides were not detected at any time. No anti-GM antibodies to any ganglioside detected.

To determine whether these two antibodies react independently with each ganglioside or react with a common epitope sharing GT1a/IgG antibodies in six patients with Miller Fisher syndrome and Guillain-Barré syndrome, classical and immunohistochemical studies. Neurology, 1999;53:1911–7.

Idiopathic trigeminal neuralgia (ITN) is increasingly regarded as being due to microvascular compression of the trigeminal sensory root, especially to a vein close to the brainstem. Yet vascular contacts are found in entirely asymptomatic cases, no vascular contacts are found in some asymptomatic patients. Many investigators. ITN suddenly switches off, even for years, only to return later, in the face of continuing vascular compression. Despite this, microvascular decompression produces immediate virtually complete (98–100%) relief in 82% of the cases and 64% after 10 years. Adams has suggested that, ITN being a hyperfunctional disorder of the brainstem, microvascular compression “produces chronic trauma to a sensitive zone of the cranial nerve... by the dissection necessary and by the manipulation required microvascular decompression produces sufficient trauma to achieve interference of normal function of that nerve”, thus damping the abnormal brainstem activity responsible for ITN. Failure to achieve an initial result or early recurrence would imply insufficient surgical trauma. We evaluated this hypothesis in our patients submitted to microvascular decompression. Forty one out of 410 patients with ITN have had keyhole microvascular decompression in the posterior fossa from December 1986 to February 1996 at the neurosurgical pain relief unit of the University of Turin. Twenty six patients showed pronounced arterial or arterovenous compression, three distally (group 1), three mild or disputable contacts (group 2), four pronounced venous compressions (group 3), five with arachnoiditis, two with a sharp root kink, four distally (group 4). In four cases (group 5), no anxiety whatsoever could be found, despite adequate magnification and careful exploration; vessels were noted close to the root, but no contact or groove could be seen. The root was gently “massaged” with a microdissector; no other manoeuvre was attempted. These four patients included one woman and three men, with a mean age of 59 (range 34–66). All had typical ITN, which at some point could no longer be controlled by drugs at adequate dosage. In all other cases, the vessels were separated from the root by intervening Suggic’s; the arachnoiditis was dissected to free the root and, as in the patients with slight venous compression partial (25%) rhizotomy was also carried out. In several patients, “massage” of the trigeminal root was performed.

All patients were relieved by surgery. Follow up disclosed the following recurrences: two in group 1 (follow up 4 months-9 years), none in group 2 (follow up 2.5–3.5 years), all in group 3 (follow up 1–5 years), two in group 4 (follow up 1 year) and one in group 5 six years postoperatively (follow up 6 months-8 years). Importantly, one of the group 1 recurrences was operated on and no vascular contact whatsoever could be found (partial rhizotomy was elected). The only group 5 recurrence could be controlled by drugs. Whereas this was seen in other groups as well, all four group 5 patients showed transient slight to moderate hypoesthesia in two to three branches after surgery, a hallmark of trauma. In 1961, Taarnhøj reported that simple manipulation of the trigeminal root by running a nerve hook along the root obtained 60% long term pain free results after 6.5 years (longest follow up 10 years). Gardner and Miklos also obtained 67% pain free results over 4.5 years by manipulating the trigeminal sensory root at the point of crossing the petrosa apex or petrosa apex, suggesting that manipulation not at the root entry zone (as suggested by Jannetta), but peripherally at the petrosa apex produces as good results as microvascular decompression. As no other report considered the problem, the microvascular compression hypothesis for ITN gained favour. Our data suggest that (1) trauma alone can ensure long term relief; (2) this relief is similar between patients showing microvascular compression and those without; it should be stressed that several patients of the microvascular compression group were “massaged” to ensure a control with the group without.

The trigeminal nerve root is surrounded by many arteries. In 60% of the roots, the trigeminal vessels form arterial rings encircling at least half of the root or its entry zone in a symmetrical pattern, increasing the frequency of vascular contacts at large. Despite a plethora of vessels reported to compress the trigeminal nerve in a recent series, initial relief could not be achieved in 18% of the patients. Recently, a group reported electrophysiological data supporting the concept of trauma during microvascular decompression, despite attempts to limit the procedure to simply moving the vessel. The trauma hypothesis would explain recurrences of successful microvascular decompression in which no new compression is found (for example, our case and see Yamaki et al) at re-exploration. Adams’s contribution is being appreciated in the case of hemifacial spasm. Payner and Twes, discussing their results with microvascular decompression for this disorder, stated that “...perhaps there is truth that the early success in most patients results from minor trauma... to support this theory, additional analysis is needed of the long term follow up in patients without vascular compression and treated by “manipulation” alone”. This is what has been done in this study.
Correspondence to: Dr S Canavero, Via Montebello 46, 10132 Torino, Italy.

About the original description of cerebellar tonsil herniation by Pierre Marie

Transfalcinal and transtentorial herniation and the engagement of the cerebellar tonsils into the posterior fossa are well recognized consequences of increased intracranial pressure. They were discovered through both experimental findings carried out in the 19th century, and pathological and clinical experience reported in the first decades of this century. Harvey Cushing (1869–1939) is usually acknowledged as the first clinician who, in 1902, correlated the clinical picture of neurological disturbances and cardiorespiratory failure with the herniation of the cerebellar tonsils into the foramen magnum. However, when in his book on pontocerebellar angle tumours Cushing made use of the noto-vestibulo-cerebellar pressure cone, he was employing a term first introduced in the English language by Collier,4 as Cushing himself acknowledged in an earlier article.5

Here we report on the observations of Pierre Marie (1853–1940) that bear on the same issue and antedate those of both Cushing and Collier. On July 1899, during a session of the Société de Biologie, Pierre Marie reported on two cases of cerebral haemorrhage that resulted in secondary decompression of the cerebellum. In the first case, a haemorrhage of the external segment of the lenticular nucleus flattened the superior face of the left cerebellar lobe and shifted the vermis to the right. In the second case, a thalamic haemorrhage resulted in compression of the superior face of the left cerebellar hemisphere and caused a protrusion of the cerebellar tonsils that “appeared to have engaged the occipital foramen”. Pierre Marie drew attention to the pathophysiological work of Leonard Hill. In his Hunterian Lectures in 1896, he showed that the brain does not transmit the pressure on one point in all directions. Indeed, a clear pressure difference is created between the main cranial cavity and the posterior fossa. According to Hill, the pressure gap is due to:

(1) the viscosity of the cerebral substance; and
(2) the interposition of the falx cerebri and the tentorium cerebelli. This explains why a haemorrhage lesion causes a localised compression on a particular part of the cerebrum, instead of creating a uniform pressure growth on the whole cerebral mass, as some think. In the present circumstance, the compression is exerted on a cerebellar hemisphere.

Furthermore, according to Leonard Hill “the compression exerted by the haemorrhaged cerebral hemisphere upon the superior surface of the cerebellum can have very serious consequences, and epilepsy, if the compression is sufficiently strong, the downward push on the cerebellum causes the engagement of its inferior surface into the foramen magnum. In this process the cerebellum takes the form of a cone with its point directed towards the cerebellar tonsils. As a result the medulla oblongata is trapped within the foramen magnum, and if the pressure is strong enough its vessels will be compressed to the point of failing to supply the organ. Hence a severe bulbar ischaemia will ensue.” Pierre Marie concluded his communication by considering the possibly severe consequences of cerebellar tonsillar penetration into the occipital foramen and the resulting bulbar hyperpuffusion, exactly devising the mechanism of cerebellar herniation. In the next year, Pierre Marie reported the pathological findings of another two cases of raised intracranial pressure.1 In the first case with a thalamic haemorrhage the rise in intracranial pressure caused the caudal shift of a cerebellar tonsil, that consequently “engaged into the occipital foramen”. The second case was one of increased intracranial pressure of unknown origin, disclosed by pronounced hydrocephalus. “Both cerebellar tonsils had shifted into the occipital foramen such as to form a sort of cone enclosing a portion of the cerebellum more than half of its circumference.” In his conclusions, Pierre Marie suggested that the compression of the medulla could have contributed to the fatal outcome.

A few years later, in 1905, Louis Pierre Marie Alquier (1872–1929) and Pierre Marie reported another case of cerebellar tonsillar herniation into the occipital foramen.1 In Alquier’s article the discussion of Jean Athanase Sicard (1872–1939) and Pierre Marie on the topic is reported. Mentioning his personal experience in similar cases, Pierre Marie also made the somewhat surprising suggestion that Alquier’s pathological findings might be attributed to a postmortem process.1 In 1920, Pierre Marie published a further case of cerebellar tonsillar herniation into the occipital foramen. 1

6 Cushing H. Strangulation of the nervi abducentes by a large suboccipital foramen magnum in cases of brain tumour. Brain 1910;33:204–35.

Blepharospasm induced by flunarizine

Flunarizine is a calcium channel antagonist that has been widely prescribed for vertigo, cerebral or peripheral vascular diseases, migraine, and epilepsy.1,2,3 Flunarizine has been re-reported to have antihistaminic, antiserotoninergic, and antidopaminergic activities.1 This interference with dopaminergic transmission seems to be both complex and particularly

Letters, Book reviews
relevant. On the one hand, flunarizine blocks dopamine receptors and might have a toxic effect on dopaminergic neurons. On the other hand, its calcium channel antagonism leads to inhibition of dopamine neurotransmission. In addition, the antiastimic activity of flunarizine may also have some importance. The blepharospasm that occasionally follows the use of decongestants has been explained by the antiastimic component of these drugs. Whatever the mechanisms involved, the early development of blepharospasm in a young adult on a low dose of flunarizine would suggest that individual susceptibility played a part in its emergence. The present case would favour the inclusion of flunarizine among the causes of isolated blepharospasm.

A KOUKOULIS
J S HERRERO
J GÓMEZ-ALONSO
Neurology Department, Hospital Xeral, Pazoarino 22
36204 Vigo, Spain

Correspondence to: Dr A Koukoulis.

Expression of tenascin in astrocytic tumours: too much ado about nothing?

The stroma of astrocytic tumours has been investigated in the past years by various authors. Among the proteins of the extracellular matrix tenascin is considered a very important molecule because of presumed links with the malignancy of the tumours and with the angiogenesis and also a possible target for therapy. To verify these opinions we have performed an immunohistochemical analysis of 10 astrocytic tumours of the cerebral hemispheres. The series of patients comprised six men and four women, ranging in age from 43 to 72 years; seven underwent gross total resection and three subtotal resection. The study focused on the following molecules of the extracellular matrix: tenascin, laminin, fibronectin, and type IV collagen. The results were evaluated in relation to the following indices: grading according to the St Anne/Mayo System, proliferating cell nuclear antigen labelling index, dimensions of the tumour evaluated radiologically (CT and MRI) and expressed according to the criteria of the manual for staging of cancer by means of the parameter “T”.

Primary monoclonal antibodies were purchased from Dako and staining was performed by the labelled streptavidin biotin staining method on 10% formalin fixed and paraffin embedded tissue.

The tumours were grade II in two cases (one gemistocytic), grade III in three cases, and grade IV in five cases. Tenascin was present in the extracellular matrix in all grade IV astrocytomas and in the gemistocytic astrocytoma. In two grade III astrocytomas and in all grade IV astrocytomas the basement membranes of the vessels with or without endothelial proliferation showed a positive immunohistochemical staining for tenascin (figure). Tenascin and fibronectin were detected in some neoplastic cells of grade IV tumours and also in the gemistocytic cytes. Laminin, fibronectin, and collagen type IV were found around the vessels of all grades. The PCNA labelling index was <1% in tumours of grade II and grade III. In grade IV tumours the areas of highest PCNA staining did not correspond to the greater expression of tenascin on serial sections. In some areas with strong staining for tenascin the PCNA labelling index was <5%, whereas the total percentage in grade IV tumours ranged from 5% to 18%.

Evaluation of the parameter “T” failed to provide a correlation between the size of the tumour and the presence of the molecules of the extracellular matrix. For instance, a grade IV tumour evaluated as T1 expressed the tenascin as well as a grade IV tumour evaluated as T4.

In conclusion, we have shown that tenascin does not correlate with the indices of malignancy we have studied—namely, grading, PCNA labelling index, and size of the tumour. The presence of tenascin in the extracellular matrix could only be a signal of progression of astrocytic tumours. This could explain its presence in the gemistocytic astrocytoma, which is well known as a tumour with a high probability of progression.

Furthermore, it is well known in oncology that the size of the tumour must correlate with neoangiogenesis. Our hypothesis is that if the expression of tenascin does not correlate with the dimension of the tumour it cannot really correlate with the angiogenesis.

This work was supported by the contribution of the Department of experimental and clinical medicine of the University of Reggio Calabria.

G DONATO
A LAVANO
G VOLTENESTRA
D CHIRCHIGLIA
C D SIGNORELLI
Department of Neurosurgery of the University of Reggio Calabria, School of Medicine (Catanzaro), Italy

L TUCCI
Department of Pathology, General Hospital of Catanzaro, Italy.

Correspondence to: Dr G Donato, Department of Neurosurgery, Policlinico “Mater Domini”, Via T Campanella, 88100 Catanzaro, Italy.

65

Multiple sclerosis associated with duplicated CMT1A: a report of two cases

The concomitant involvement of both the peripheral and central nervous system myelin is rare and may occur in the course of inherited lysosomal storage diseases. In inflammatory autoimmune diseases of the peripheral nervous system or CNS, a demyelination of central or peripheral myelin has sometimes been reported. In such conditions, a single pathogenetic mechanism has been tentatively considered as responsible for the nervous tissue damage and the association of peripheral nervous system and CNS demyelinating disorders due to different pathogenetic mechanisms has never been reported.

We describe two patients with definite multiple sclerosis and hereditary peripheral neuropathy of Charcot-Marie-Tooth type 1A (CMT1A).

Patient 1, a 38 year old woman, was admitted to hospital because of episodes of gait disturbances and optic neuritis. Neurological
examination showed ataxia, lower limb weakness, bilateral Babinski's sign, increased tendon reflexes, mild sensory loss in all four limbs, impaired bladder function, and bilateral pes cavus. Her CSF showed an IgG index of 0.89 and IgG oligoclonal bands. Electrophysiology disclosed features of CNS and peripheral nervous system demyelination (table).

Patient 2, a 30 year old woman, had recurrent episodes of hemiparesis and paraesthesiae, optic neuritis, and facial palsy since the age of 22. When admitted to our department, she had spastic paraplegia, absent ankle tendon reflexes, bilateral Babinski's sign, distal loss of vibration in the legs, inverted visual acuity, internuclear ophthalmoplegia, and ataxic speech. Bilateral pes cavus was found in the patient as well as in several members of her family. Her CSF showed an IgG index of 0.98 and IgG oligoclonal bands. Brain MRI showed diffuse foci of demyelination in the white matter of the cerebral hemispheres and in the spinal cord. Neurophysiological studies disclosed aspects of CNS and peripheral nervous system demyelination (table).

In both patients sural nerve biopsy showed loss of myelinated fibres and aspects of demyelination and remyelination with onion bulb formation.

Both patients had clinically definite multiple sclerosis; in addition, the neurophysiological, neuropathological, and genetic analysis investigations disclosed a demyelinating and remyelinating neuropathy of CMT1A.

The involvement of the peripheral nervous system in the course of multiple sclerosis has been previously reported. The authors suggested the diagnosis of chronic inflammatory polyradiculoneuropathy (CIDP) as the consequence of a peripheral nervous system invasion by the same pathological process affecting the CNS. Our patients did not fulfill laboratory criteria for CIDP. In addition, the amnestic presence of foot abnormalities in family members suggested inherited neuropathy. Finally, the detection of characteristic genetic alterations in chromosome 17 confirmed the diagnosis of CMT1A.

Aspects of CNS involvement have been reported in CMT1 and also in hereditary neuropathy with liability to pressure palsy, the last being caused by a reciprocal deletion of the region duplicated in CMT1A; these changes have been tentatively attributed to an increased or decreased expression of peripheral myelin protein (PMP) 22 within the CNS. However, this is the first report describing an association of multiple sclerosis and CMT1A. CMT1A encompasses most of the cases of CMT and is associated with a duplication in chromosome 17 p11.2-12 where the PMP22 gene is located. PMP22 is mainly expressed in the peripheral nervous system, but it shares similarities with other proteins of the CNS such as the proteolipid protein. In duplicated CMT1A, myelin development is normal, but an overexpression of PMP22 may affect the maintenance of the peripheral nervous system myelin, which undergoes progressive destruction. The present finding raises the question whether the concomitant presence of CMT1A and multiple sclerosis represents a chance association or whether the genetic defect responsible for the peripheral neuropathy can play a part in triggering the autoimmune disorder of CNS myelin. We speculate that the PMP22 overexpression may also involve its antigenic properties, thus inducing modifications of self tolerance. In this context, the partial homology among peripheral nervous system and CNS proteins, such as the proteolipid protein, could account for the occurrence of autoimmune disorders targeted to the CNS myelin.

We suggest that patients with multiple sclerosis must be carefully evaluated for the presence of peripheral nervous system involvement. In such circumstances, neurophysiological, neuropathological, and genetic analyses may greatly contribute towards a correct diagnosis.

This work was supported by grant 750 95 from Telethon Italy.

EMMA FRASSON
ALBERTO POPO
ALFONSOI A SUMMA
GIANNI FABRIZI
PIERO TATOLI
ANTONIO FIASCHI
NICOLA RIZZUTO
GIUSEPPE MORETTO
Sezione di Neurologia Clinica, Dipartimento di Scienze Neurologiche e della Visione, Università di Verona, Italy

Correspondence to: Dr Giuseppe Moretto, Sezione di Neurologia Clinica, Policlinico Borgo Roma, 37134 Verona, Italy.

Table 1 Neurophysiological studies

<table>
<thead>
<tr>
<th></th>
<th>Patient 1</th>
<th>Patient 2</th>
<th>Normal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MNC</td>
<td>Ampl (mV)</td>
<td>0.5</td>
<td>12.0</td>
</tr>
<tr>
<td>Median</td>
<td>DL (ms)</td>
<td>10.0</td>
<td>13.0</td>
</tr>
<tr>
<td>CV (m/s)</td>
<td>18.6</td>
<td>24.7</td>
<td></td>
</tr>
<tr>
<td>Ampl (mV)</td>
<td>8.0</td>
<td>8.0</td>
<td></td>
</tr>
<tr>
<td>Ulnar</td>
<td>DL (ms)</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>CV (m/s)</td>
<td>20.1</td>
<td>20.1</td>
<td></td>
</tr>
<tr>
<td>Peroneal</td>
<td>Ampl (mV)</td>
<td>1.0</td>
<td>NE</td>
</tr>
<tr>
<td>DL (ms)</td>
<td>96.7</td>
<td>96.7</td>
<td></td>
</tr>
<tr>
<td>CV (m/s)</td>
<td>186.6</td>
<td>186.6</td>
<td></td>
</tr>
<tr>
<td>SNC</td>
<td>Ampl (µV)</td>
<td>4.0</td>
<td>NE</td>
</tr>
<tr>
<td>Sural</td>
<td>DL (ms)</td>
<td>5.8</td>
<td>NE</td>
</tr>
<tr>
<td>CV (m/s)</td>
<td>26.0</td>
<td>NE</td>
<td></td>
</tr>
<tr>
<td>SSEPS:</td>
<td>Right</td>
<td>+118.0</td>
<td><180.0</td>
</tr>
<tr>
<td>Median</td>
<td>Lat (ms)</td>
<td>151.0</td>
<td>149.0</td>
</tr>
<tr>
<td>Amp (µV)</td>
<td>14.7</td>
<td>6.4</td>
<td></td>
</tr>
<tr>
<td>Left</td>
<td>Lat (ms)</td>
<td>105.0</td>
<td>150.0</td>
</tr>
<tr>
<td>Amp (µV)</td>
<td>14.7</td>
<td>5.4</td>
<td></td>
</tr>
<tr>
<td>BAERs:</td>
<td>Right</td>
<td>I <1.72</td>
<td>I-III</td>
</tr>
<tr>
<td>Median</td>
<td>I (µs)</td>
<td>1.66</td>
<td>1.66</td>
</tr>
<tr>
<td>BAERs:</td>
<td>Left</td>
<td>I-III</td>
<td>>7.0</td>
</tr>
<tr>
<td>Median</td>
<td>I (µs)</td>
<td>1.54</td>
<td>1.59</td>
</tr>
<tr>
<td>BAERs:</td>
<td>III (µs)</td>
<td><2.37</td>
<td><4.30</td>
</tr>
<tr>
<td>Median</td>
<td>I-V</td>
<td>3.68</td>
<td>3.64</td>
</tr>
<tr>
<td>MEPs:</td>
<td>Right</td>
<td>V <8.0</td>
<td><18.0</td>
</tr>
<tr>
<td>Thaner</td>
<td>PCT (ms)</td>
<td>26.0</td>
<td>28.9</td>
</tr>
<tr>
<td>Median</td>
<td>CCT (ms)</td>
<td>15.0</td>
<td>32.8</td>
</tr>
<tr>
<td>Tibial ant</td>
<td>PCT (ms)</td>
<td>28.0</td>
<td>NE</td>
</tr>
<tr>
<td>Median</td>
<td>CCT (ms)</td>
<td>32.0</td>
<td>NE</td>
</tr>
</tbody>
</table>

MNC=Motor nerve conduction; SNC=sensory nerve conduction; Lat=latency; Ampl=amplitude; DL=distal latency; CV=conduction velocity; BAERs=waves I-III-V; VEPs=P100; MEPs=hand and leg muscles; PCT=peripheral conduction time; CCT=central conduction time; −=not performed; NE=not evoked.
recruitment was full but during prolonged maximal voluntary activation there was a pronounced reduction of the interferential pattern amplitude. Quantitative motor unit analysis showed a 20% reduced mean duration with 4% of polyphasias. Repetitive stimulation at 3 Hz documented an increase in peroneal nerve-abductor digitii minimi latency which was almost never observed in whole skeletal muscle fibers. Calcium channel antibodies were negative. Antibodies (IgG and IgM) against gangliosides (GM1, GD1a, GD1b, GM2), SGPG, and sulphatides were negative. Chest CT excluded a thymoma or a lung cancer. A screening for breast, ovarian, and other gynaecological malignancies was negative. Tumorous markers were negative. Foot drop was greatly improved with pyridostigmine bromide and prednisone (75 and 25 mg every other day) and after three months the patient did not complain of paraesthesiae and could walk on her toes and stand on her heels.

By indirect immunofluorescence, the patient's IgG strongly reacted with the cytoplasm of rat small size dorsal root ganglia neurons up to a dilution of 1:1280, whereas it did not react to large size dorsal root ganglia neurons (figure). With an indirect neurotoxin oxidase technique, using sections of rat cerebellum, the patient's serum strongly immunostained the cytoplasm of Purkinje cells in a fine granular pattern up to a dilution of 1:2560. The patient's serum did react with neurons of the molecular layer and Golgi neurons. To determine whether the binding to Purkinje cells and dorsal root ganglia neurons was due to the same antibody, the patient's serum was adsorbed either with whole cerebellum homogenate, the IgG from our patient reacted with a 50 kDa protein band present in whole cerebellum and dorsal root ganglia homogenates (figure). These immunostaining and immunoblot findings are clearly different from the features required for the identification of anti-Yo and anti-Hu antineuronal antibodies.

In conclusion this case is unique for several reasons:

(1) Clinical presentation pointed to a sensory-motor neuropathy but the foot drop was sustained by an atypical, distal presentation of myasthenia gravis.

(2) Peroneal nerve repetitive stimulation (not usually performed in EMG laboratories) played an important part in confirming myasthenia gravis.

(3) Myasthenia gravis has been reported to be associated with other autoimmune disorders but never to a sensory neuropathy with antibodies reacting with dorsal root ganglia neurons and Purkinje cells.

(4) 50 kDa antineuronal antibodies reacting with small size dorsal root ganglia neurons and in a fine granular pattern with the cytoplasm of Purkinje cells have never been described previously.

The financial support of Telethon Italy to AU (project 520) and RN (project 613) is gratefully acknowledged.

A Uncini
G Di Guglielmo
A Di Muzio
M Repaci
L Lucchinetti
Center for Neuromuscular Diseases of University of Chieti, Italy

G M Forno
R Nemin
Department of Neurology, IBCCS S, Rome, Italy

Milan, Italy

Correspondence to: Dr Antonio Uncini, Clinica Neurologica, Ospedale Clinico “SS Annunziata”, I-66019 Chieti, Italy.

BOOK REVIEWS

The three editors of this book have played a central part in the renaissance of interest in the clinical, neuropsychological, and neurobiological subtleties of non-Alzheimer dementias. This book is based on their truly remarkable experience of some 200 patients with lobar atrophy studied over the past decade, 40 of whom have reached postmortem. It represents, therefore, an unequalled source of information and is essential reading for all those working in the area.

After a historical introduction, the initial chapters are dedicated to the three principal syndromes under consideration: frontotemporal dementia, progressive aphasia, and semantic dementia. Each section integrates clinical neurology with neuropsychology, radiology, and pathology. There are also very useful chapters which deal with differential diagnosis and the relation of lobar atrophy to motor neuron disease. The final chapters are more theoretically oriented and cover the role of the frontal lobes in behaviour and aspects of semantic memory. Besides the integrated approach and the highly readable style, the other strength of the book is the liberal use of clinical vignettes and useful summaries at the end of each chapter. The quality of illustrations is very high but mere MRI images would perhaps have been desirable.

Some readers naive to the field may emerge confused by the current terminologies, which cross levels of analysis: the newly adopted term, frontotemporal dementia (which has replaced dementia of frontal type), has obviously neuroanatomical connotations, whereas semantic dementia and progressive aphasia are syndrome terms which do not imply any neurobiological research and its relevance to the older term for a dementia of frontal type. This book admirably illustrates the value of careful analysis of such cases, both for the understanding of the dementias and of the influence of Professor Sears and his coworkers in their chapters. There are over 40 chapters, and most are only a few pages long. When trying to distill essential contributions made in any one field, there is inevitable variation in the degree to which this is achieved and in the readability between chapters.

The book is split into four sections: the first deals with physiology and pathophysiology of nerve fibres, the second with pain, the third with the control of nervous system output, and the fourth with development, survival, regeneration, and death. There are concise contributions from Ritchie and Waxman on ion channels and the molecular anatomy of the node of Ranvier, which introduce the first section. Further chapters consider normal central and peripheral nerve conduction before dealing with disease. Throughout the book the authors attempt to direct their contributions towards the classification and how disease occurs. Newsom-Davis provides a chapter on autoimmunity at the neuromuscular junction, Fearby on the pathophysiology of human demyelinating neuropathies, and McDonald on the mechanisms of relapse and remission in multiple sclerosis. There is a well written chapter by Smith on conduction properties of central demyelinated axons and the generation of symptomatic demyelinating disease. Pain is dealt with in the second section, and this includes a readable chapter on myofacial pain syndromes by Westguard, as well as Shen's attempt to assess the neurophysiological basis of pain relief by acupuncture.

Part III deals with the control of central nervous system output, and obviously contains the widest range of topics. I would single out the chapters by Prochazka, Gorassini, and Taylor on the cerebellum and proprioceptive control of movement, together with Jeffery's chapter on cortical circuit synchronisation and seizures. There are also several contributions relating to respiration. The final section considers development, survival, regeneration, and death. This is the least inspiring part of the book, which is disappointing as this is currently the most exciting area of neuro-science.

Overall the editors have succeeded in condensing a huge amount of information in a readable and educative fashion. This book will appeal to all those interested in clinical neurology, but it would also be of interest to all those neuroscientists who seek to broaden their own field of research.

JOHN HODGES

This multi-authored book sets out to explore the neuroscientific basis, clinical examination, and evaluation of disorders of balance and locomotion. The book has an opening section on the organisation of the sensorimotor systems involved in balance, posture, and walking with particular reference to the vestibular system. This forms an essential basis for the rest of the book but is somewhat intimidating to the naive reader who may fail to get beyond discussions—for example, on the role of strategies or synergies in the control posture in response to balance disturbances. This would, therefore, prevent the reader from entering the excellent section on clinical disorders of balance and gait, and the assessment of such patients, which certainly appeal to most general neurologists. In this section of the book we are entertained by some excellent chapters especially with respect to the diverse and sometimes devastating symptoms and signs of vestibular disorders and the range of different gait disorders that can now be distinguished. Such disorders include the well recognised isolated gait ignition failure as well as less widely known states such as those gathered under the rubric of subcortical disequilibrium states (includingthalamicastasia). In addition, there are detailed discussions on the cautious gait and psychogenic disorders of gait and balance—cases of which abound in every neuro-otological clinic. The classification and clinical features of different disorders of gait and balance are complemented by chapters on the analysis and investigation of such patients from an orthopaedic, neurological, and psych-otological point of view. This serves not only to highlight a strength of this book—namely, the multidisciplinary approach, but also highlights the shortcomings of most neurological practices, which have limited access to specialist neuro-otological units. In most centres the patients are reviewed by non-specialist neurologists and ear, nose, and throat surgeons and orthopaedic surgeons and falls in elderly people—an important and often neglected area of medicine which will no doubt become more of an issue as the elderly population continues to grow. These chapters, I found, the ones that tended to be too wordy with little detail given to summary points—for example, in chapter 20 there is an eight page table on all the studies that have analysed the effects of medications on the risk of falls.

Overall this book sets out to define and explore a much neglected area of neuro-science and clinical neurology and goes a long way to achieving this aim. The problem with a book such as this, however, is that, to combine detailed technical accounts and models for the specialist while holding the interest of the neurologist. Ultimately the book has chapters of great value to the non-specialist neurologist, but these have to be looked for and the opening and closing sections of the book will scare off many possible readers. However, for those who are prepared to do battle with these chapters the rewards are worth seeking, because the book does give one of the best overviews of the control of posture, balance, and locomotion and with this comes an understanding of such disorders as camptocormia, otolith Tullio phenomenon, and Tunarrick’s otolithic cri- sis.

ROGER BARKER