Anosognosia for hemiplegia after a brainstem haematoma: a pathological case

The pathogenesis of anosognosia for hemiplegia (AHP) remains unclear, but recent theories have involved global cognitive deterioration or more modular mechanisms. Persistent AHP is usually found in left hemiplegic patients with large right frontoparietal cortical lesions or with subcortical damage, especially to the perithalamic regions. Anosognosia for motor deficit is exceptionally reported in “non-hemispheric” damage and is related to a simultaneous confusional state. We report a patient with severe and prolonged anosognosia for left hemiplegia occurring after a right pedunculopontine haematoma. A possible explanation for this AHP might be the association of a left complete somatosensory deficit secondary to brainstem lesion with a global cognitive impairment due to histologically established Alzheimer’s disease. This case, to our knowledge, is unique in the literature and it raises interesting questions on the origin of AHP. An 83 year old right handed woman was admitted to hospital because she was found confused with a left hemiplegia. She had an history of hypertension treated with a diuretic. She had lived alone since the death of her husband, 15 years ago, and was taking good care of herself, despite a moderate impairment of memory for recent events noticed by her daughter since the past two years. On admission, she was lethargic with a blood pressure of 185/105 mm Hg, a heart rate of 80/min and an oxygen saturation of 96% when breathing air. Her body temperature was 36.9°C. She had no other abnormalities. The medical history included a stroke dementia who sustained hemiplegia and bilateral pulmonary embolism. Her brain MRI performed during the fifth week after onset showed no associated cortical or subcortical lesion. Serial cutsofthebrainstemshowinga haematoma extending from the right ventrolateral part of the caudal midbrain to the right upper midpart of the pons. The patient never reported her deficit in the following situations: casual conversation, following a general question, or after specific questions regarding her limb strength or feeling. When confronted with the reality of the deficit, she would sometimes admit that she was not able to walk, and that her left limbs were “a little bit stiff”. A few minutes later she would manifest no concern about her deficit. Conversely, she repeatedly questioned the resident about her blood pressure, and complained about the inconvenience due to the loss of her glasses. We did not assess with a formal questionnaire the presence of anosognosia to cognitive deficits, but we noticed that the patient acknowledged (but never reported spontaneously) mild memory disturbances and cognitive slowing. She twice received a psychiatric assessment that showed a slightly blunted affect, with no depression or anxiety. The patient died suddenly during the eighth week after onset. Necropsy showed that death was due to bilateral pure embolism. Her brain weight 1210 g. The left temporal lobe showed a moderately atrophic aspect. There was no focal cortical or subcortical lesion in the cerebral hemispheres. A 1cm wide haematoma was found in the right rostral pons extending from the caudal midbrain to the middle pons (figure). We performed the usual histological staining (haematoxylin-eosin, Bodian silver, Luxol fast blue, and Congo red) and an immunohistochemical analysis of Aβ and tau proteins. Lesions of Alzheimer’s disease were found in all the cortical areas, characterised by numerous Aβ positive amyloid plaques. Neurofibrillary tangles were rare in the isocortices, but were numerous within hippocampus (mostly in CA2) and entorhinal cortices on both sides. Neuronal loss was more severe in the left CA1 subiculum. We describe a patient with a mild Alzheimer’s disease who had a lateralised brainstem lesion and developed subsequently a severe and long lasting AHP, in all points similar to that described in right hemispheric damage. This AHP contrasted with a very mild anosognosia to cognitive deficits and normal concerns with other medical problems. We found no associated subcortical infarction, specially in the right parietal, frontal, or perithalamic regions, nor myelin palor such as described in microvascular hypertensive pathology. The brainstem lesion obviously caused the patient’s motor and somatosensory deficits, but cannot by itself explain the AHP. Hemisensory loss (spatially specific proprioception) is necessary for persistent AHP, but not sufficient. The initial confusional state did not last long enough to cause the AHP, as proposed in other reports. A feed forward deficit is not an appropriate explanation, as the lesion site would not cause a motor neglect (postulated as the main factor of AHP in this hypothesis), and because the AHP remained almost unchanged when the motor deficit started to improve. The patient’s death prevents us from knowing whether a greater recovery would have overcome the anosognosia. The patient showed no behavioural particularity that could contribute to the AHP; she presented no visuo-verbal confabulation nor delusion, and psychiatric examination disclosed no depression or specific attitude toward illness. We think that this unusual AHP could result from the association in the same patient of a stroke and Alzheimer’s disease through a special pattern of cognitive deficit. Levine et al have reported several patients with pre-stroke dementia who sustained hemiplegia and had no AHP. These patients, however,
had no hemisensory loss. Starkstein et al. have shown that cognitive deficits are not necessary to produce AHP but could constitute a contributing factor in some patients. In our patient, is not clear whether the AHP was due to a global or to a specific cognitive impairment. We think that a global reduction of attentional resources cannot explain the AHP in this case, given the specificity of the anosognosia. We could not relate AHP to a degraded body scheme, a hemispatial neglect, or an anosognosia. The memory deficit was mild, without confabulatory tendency, and it would not explain the AHP by a difficulty of remembering the newly acquired hemiplegia. Some theories of unawaresness post that AHP could be, at least partly, related to some mental inflexibility or to deficits in self monitoring and internal representation. Such deficits are usually associated with damage to the frontal lobes or to frontal-subcortical circuits. In our patient, the analysis of the Mattis scale subscores showed a prominent frontal dysexecutive syndrome. This peculiar cognitive pattern has may have been of some importance in the appearance of AHP in the patient. Starkstein et al. have proposed two domains of anosognosia in Alzheimer's disease, cognitive and non-cognitive. Based on this very unusual case, we think that anosognosia to non-cognitive behavioural. In our case, anosognosia in Alzheimer's disease, cognitive and non-cognitive behavioural, might be very useful to the understanding of mechanisms of anosognosia.

We thank Professor Ch Duyckaerts for his most helpful comments.

SERGE BAKCHINE
ISABELLE CRASSARD
Centre du Langage et de Neuropsychologie, Hôpital La Salpêtrière, Paris, France

DANIELE SEILHAN
Laboratoire de Neuropathologie R Escourolle, Hôpital La Salpêtrière, Paris, France

Correspondence to: Dr Serge Bakchine, Centre du Langage et de Neuropsychologie, Hôpital La Salpêtrière, 75675 Paris Cedex 13, France.

Otoscalonus as a paraneoplastic manifestation of pancreatic carcinoma

Otoscalonus refers to involuntary, repetitive, and disorganised rapid conjugate eye movements in all directions of gaze. The diagnosis is usually a clinical one, as, strictly speaking, it requires the demonstration of no interfacadic interval on oculography. It may be associated with myoclonus of the trunk and limbs and cerebellar dysfunction. Otoscalonus can occur in many systems and has been associated with numerous neoplastic conditions, including neuroblastoma in children and breast, lung, uterine, ovarian, and thyroid carcinoma, and Hodgkin’s disease in adults. It has not previously been reported as a paraneoplastic phenomenon associated with carcinoma of the pancreas.

A 70-year-old man, with a past medical history of hyper tension and osteoarthritis, presented with a 10-day history of intermittent vomiting and increasing gait unsteadiness. He complained of vertigo, which was worse on standing, and ataxia, falling to the right. There was no history of headache, neck stiffness, photophobia, or pain in the ear. There were no cranial nerve palsy and the patient did not vomit. His hearing was normal.

His past medical history included hypertension and osteoarthritis. He had had a general medical examination in May to screen for an occult malignancy, and had had a diagnosis of vestibular neuronitis made, with no evidence of vestibular neuropeptide antibodies. He was started on 500 µg clonazepam later.

Over the next four days, he remained nauseated and vertiginous. He then developed a left upper motor neuron facial weakness, left upper limb clumsiness, left ptosis, bidirectional nystagmus, and dysarthria. A provisional diagnosis of a brainstem infarct was made, intravenous heparin started, and a cerebral MRI organised. The next day, his pupils were small but equal and reactive, and there was a partial left lateral rectus palsy. His visual axes were disturbed with left over right hypertropia. Otoscalonus was present with involuntary, improper, and disorganised rapid conjugate eye movements in all directions of gaze. Speech and swallowing were unimpaired, and there were no long tract signs. The cerebral MRI showed atrophic changes in the deep white matter of both hemispheres, but no other abnormalities.

One week later he was still nauseated, and had developed past pointing on the right more than the left, with an action tremor of his hand. He now had a complete left half visual field loss, right upper limb weakness, and right leg weakness. He had had a complete left lateral rectus palsy and the left upper motor neuron facial weakness had recurred. Otoscalonus was still evident. Power and deep tendon reflexes remained normal.

A lumbar puncture (LP) was normal, with 80 µl of CSF protein of 0.66 g/l, with 30/10 µm mononuclear cells and no polymorphonuclear cells. Paraneoplastic antibodies were not detected in the serum or in the CSF.

The patient’s overall condition deteriorated over the next few days and he required nasogastric feeding. Episodes of respiratory distress, possibly as a result of aspiration, became more frequent and he died two days later.

A postmortem disclosed an occult 3 cm multiloculated cyst in the tail of the pancreas. The morphological diagnosis was primary large duct adenocarcinoma of the pancreas. There was also a 6 cm subcapsular hepatic nodule consistent with a metastasis from a pancreatic primary. There was no microscopic evidence of cerebral haemorrhage, infection, or infarction. Microscopically, there was perivascular lymphocyte cuffing in the upper medulla, pons, midbrain, thalamus, and hippocampus, with some neuronal proliferation and gliosis. This finding was thought to be consistent with a paraneoplastic meningoneoencephalitis.

We think that this is the first case to be reported in the literature of a paraneoplastic otoscalonus syndrome secondary to carcinoma of the pancreas. The syndrome has, however, been reported in association with other malignancies. Otoscalonus has been suggested, but there seems to be insufficient evidence to support this. Paraneoplastic autoantibodies, anti-Purkinje cell antibodies (anti-Yo), and the antineuronal nuclear antibodies type 1 (anti-Hu) and type 2 (anti-Ri or anti-Nova) were not detected.

Paraneoplastic neurological syndromes may present in many organs, but the syndrome is of the most interest when there are more distinctive syndromes, such as Eaton-Lambert syndrome and subacute cerebellar degeneration. The index of suspicion for occult malignancy should also be high in patients present with otoscalonus.

ARUN AGGARWAL
DAVID WILLIAMS
Clinical Neurophysiology Unit, John Hunter Hospital, Locked Bag No 1 Hunter Region Mail Centre, Newcastle, NSW 2310, Australia

Correspondence to: Dr Arun Aggarwal, 3 D’aram Street, Hunters Hill, NSW 2110, Australia.
Female predominance in spasmodic dysphonia

We were interested to see the sex prevalence results in the recent review of focal dystonia by Soland et al.³ They found that of 956 patients with dystonia, 558 (58.4%) were female, for a ratio of 1.4:1. All but the cases of writer’s cramp had more females than males. In their spasmodic dysphonia group the ratio was 2.6:1 female:male (n=36). We have reviewed our database of the cases of spasmodic dysphonia seen at the Mayo Clinic, Scottsdale, between 1989 and 1996. There have been a total of 270 patients seen, 241 with adductor, and 29 with abductor spasmodic dysphonia. The overall ratio of females:males was 214:56 or 3.8:1. Thus females made up 79.3% of our population of patients with spasmodic dysphonia. Broken down into subgroups, the female:male ratio was 4:1 for the adductors and 2.2:1 for the adductors. The mean age was 60 years for the men and 64.6 years for the women. Most (186) of these patients continue to be followed up for botulinum toxin injections.

Our results, in this much larger population of patients with spasmodic dysphonia, suggest a greater female predominance than most previous studies. The only other large magnitude study was by Blitzner and Brin³ who reported 260 patients with idiopathic spasmodic dysphonia with a female:male ratio of 1.4:1. They later separated out their patients with adductor spasmodic dysphonia (n=52) and found a female:male ratio of 0.5:1. The other studies have been smaller, 21 and 41 patients, with a female:male ratio of 2.85:1 and 3.5:1.⁴ Ludlow et al.⁴ had only 16 patients and all but one were females. Given the overall similarities (female predominance) among the published series, we do not think that the female predominance is due to ascertainment bias. Whether there are genetic, hormonal, or autoimmune factors causing this is unknown. Only one series of abductor spasmodic dysphonia showed a male predominance, although our series had a female predominance. Certainly further investigation is needed.

Recurrent Guillain–Barré syndrome and CNS demyelination

It is commonly assumed that multiple sclerosis exclusively affects the central nervous system but there is growing evidence that it is not so. There is evidence that dysfunction and tissue damage in Guillain–Barré syndrome, chronic idiopathic demyelinating polyneuropathy, and multiple sclerosis result from immune responses against the peripheral or central nervous systems.³ Although it is commonly assumed that multiple sclerosis exclusively affects the central nervous system, central nervous system demyelination has been suggested, and some studies have shown a central idiopathic demyelinating polyneuropathy.⁵ There are few reports of acute inflammatory demyelinating neuropathy associated with multiple sclerosis.⁶ Here, we report a patient with a recurrent Guillain–Barré syndrome who developed a first episode of central nervous system demyelination several years later.

A 26 year old woman was admitted to our hospital because of acute right hemiparesis. In 1977, at the age of seven, the patient gradually developed a tetraparesis with areflexia. The neurological deficit reached a peak two weeks after the onset of symptoms. Her CSF showed 217 mg/dl protein without cells. The motor and sensory nerve conduction study included median, ulnar, peroneal, and sural nerves. The motor nerve conduction velocity in the median nerve was 50 ms and 4 ms in the ulnar nerve, 39 ms and 7 ms in the peroneal nerve. Sensory nerve conduction and EMG studies did not show any abnormalities. She slowly improved and was discharged three weeks later without symptoms. The patient was asymptomatic until 1991, when she was readmitted because of an ascending weakness and distal paraesthesiae, two weeks after a flu syndrome with fever. Neurological examination disclosed a paresis in all four limbs, more severe distally in the upper limbs and proximally in the lower limbs. She was areflexic. Sensory examination showed a mild deficit to pin prick, and vibration and reduced proprioception was found distally in her four limbs. Lasègue sign was positive in both legs. The CSF contained 148 mg/dl protein and 21 cells. Nerve conduction studies disclosed an absence of F responses and dispersion of motor nerve compound action potentials. Median, radial, ulnar, peroneal, and sural nerves were examined. Motor and sensory NCVs were normal except in the peroneal nerve (40 ms) and median nerve (48 ms). Distal motor latencies were 5 ms, 4 ms, and 8 ms in median, ulnar, and peroneal nerves respectively. The neurological deficit reached a peak three weeks after onset and she had recovered fully in two months and was there after asymptomatic. A control electromyographical study was performed several months later and no abnormalities were found.⁴ In 1996, she was readmitted because of an acute right hemiparesis. Neurological examination showed an ascending weakness, with right Babinski’s sign and without sensory impairment. The haematological and blood chemical values were normal. A CSF analysis showed 24 mg/dl protein with three leucocytes/mm³ and oligoclonal bands were detected. Brain MRI showed multiple T2 weighted hyperintense white matter lesions in both cerebral hemispheres, brain stem, and cerebellum. One of the lesions located in the left corona radiata disappeared after gadolinium administration. High dose intravenous steroids were started and there was a pronounced clinical improvement. When the patient was discharged 10 days later the neurological examination was normal. Motor NCVs were greater than 50 ms in the arms and 45 ms in the legs, and no prolonged distal motor latencies were found. Transcranial magnetic stimulation showed a delay in central motor conduction time in the right arm. An EMG examination did not show abnormalities. A new MRI performed two weeks later showed a decrease in inflammatory activity.

Our patient had a recurrent Guillain–Barré syndrome with subsequent development of a first attack of a central nervous system inflammatory demyelinating disease. Recurrent Guillain–Barré syndrome consists of multiple episodes of typical acute Guillain–Barré syndrome with CSF findings and EMG abnormalities during each individual episode similar to those described in the acute monophasic disease.⁷ Although our patient does not fulfil criteria of clinically definite multiple sclerosis, MRI and CSF findings make the diagnosis very probable. Cranial MRI lesions have been found in chronic inflammatory demyelinating polyneuropathy although without clinical symptoms suggestive of multiple sclerosis.⁸ Acute inflammatory demyelinating neuropathy associated with multiple sclerosis has been described very often. As far as we know, this is the first case of recurrent Guillain–Barré syndrome associated with a central nervous system demyelinating disease. In our patient both peripheral and central nervous myelin involvement were clinically symptomatic.

It seems that dysfunction and tissue damage in Guillain–Barré syndrome and multiple sclerosis result from impairment of immune regulation within the peripheral or central nervous system. Peripheral and central nervous system myelins exhibit a similar macro-molecular organisation and some protein molecules are present in myelin from both systems; thus it is likely that under certain circumstances, immune processes may be directed selectively against either peripheral nerves or CNS white matter. In the animal model, experimental allergic encephalomyelitis, the induction of this disease is complicated by different degrees of peripheral involvement. Because closely related epitopes may be expressed in peripheral and central myelin, it is not unexpected that in some people there may be cross reactivity between peripheral and central nervous white matter.⁹ On the other hand, it has been suggested that activated T lymphocytes may function as effector cells that exert cytotoxic actions towards Schwann cells or myelin.¹⁰

CHARLES H ADLER
BRIAN W EDWARDS
Department of Neurology
STEPHEN F BANSBERG
Department of Otolaryngology,
Mayo Clinic, Scottsdale, AZ, USA

Correspondence to: Dr Charles H Adler, Parkinson’s Disease and Movement Disorders Center, Department of Neurology, Mayo Clinic Scottsdale, 13400 E. Shea Boulevard, Scottsdale, AZ 85259, USA.

Although caution is appropriate in interpreting the few reports in the literature supporting the idea that peripheral nerves are involved in multiple sclerosis, it seems likely that at least in some patients both peripheral and central nerve myelin may be involved in an acute demyelinating attack. Perhaps the peripheral and central nervous systems share antigenic properties.

J RIO
C NOS
M TINTORE
M E MARZO
X MONTALIAN
Unitat de Neuroimmunología Clínica, Hospital General Universitari Vall d’Hebron, Barcelona, Spain

Correspondence to: Dr J Río, Unitat de Neuroimmunología Clínica, Escola d’Enfermeria 5ª planta, Hospital Universitario Vall d’Hebron, Psg Vall d’Hebron 119-129, 08035 Barcelona, Spain.

CORRESPONDENCE

Non- or pseudoepileptic seizures?

We agree with Scull that consensus is badly needed for the nomenclature of manifestations which mimic, but are not, epileptic seizures. His plea for using the term “non-epileptic seizure”, however, is unconvincing. Non-epileptic seizures cover a wide range of diagnoses, both organic and psychogenic. It is evident that, after it has been proved that seizures are not epileptic, another diagnosis should be sought. From the point of view of the epileptologist this diagnosis is, by definition, “non-epileptic”, just as epileptic seizures may be called “non-syncopal”, “non-narcoleptic” or “non-dissociative” by other specialists. We think that Scull does not have this wide range in mind when he proposes to use the term “non-epileptic seizure”.

From experience, we all know that there remains a group of patients, often with a diagnosis of epilepsy, who have non-epileptic seizures that closely mimic epileptic seizures and are referred to epileptologists. These seizures often turn out to be of psychogenic origin. Harm can be done when this is not recognised—for example, when treatment consists of increasing doses of antiepileptic drugs. Why not name these seizures what they are—namely, “pseudoepileptic”? The prefix pseudo indicates that things are not what they seem to be. It does not imply that the seizures themselves are not a real experience, or something to be ashamed of. It is our experience that this can be satisfactorily explained to patients. Therefore we prefer the use of “pseudoepileptic” instead of “non-epileptic seizures”.

J KUYK
Instituut voor Epilepsiebestrijding, POB 21, 2100 AA Heemstede, The Netherlands

1 Scull DA. Pseudoseizures or non-epileptic seizures (NES); 15 synonyms. J Neurol Neurosurg Psychiatry 1997;62:200.

Scull replies:

I thank Kuyk and Leijten for their comments. In common English usage “pseudo” is a derogatory term and is taken by some patients to mean that the doctor thinks that their condition is fictitious. Dealing with the anger that patients feel when their diagnosis changes from “epilepsy” to a psychiatric label is always likely to be difficult. “Non-epileptic seizures” may not be an ideal label but aggravating patients with a term that can be misinterpreted is unhelpful.

DAVID A SCULL
Proceedings of the Association of British Neurologists from the joint meeting with the Australian Association of Neurologists, Sydney, Australia, 29 April-2 May 1997

NEUROFILAMENT GENE MUTATIONS AND AMYOTROPHIC LATERAL SCLEROSIS
A Al-Chalabi, J F Powell, C Russ, C E Shaw, P N Leigh, Institute of Psychiatry and King's College School of Dentistry, London, UK.

Background and aims—Amyotrophic lateral sclerosis (ALS) is a progressive neurodegeneration of the motor system with death usually occurring from respiratory failure within 3-5 years of diagnosis. Pathologically neurofilament accumulations are seen in the proximal axon and cell body. Whereas superoxide dismutase (SOD1) mutations have been implicated in 1%-2% of all cases to date, only five patients with neurofilament mutations have been described, all deletions in the heavy neurofilament subunit (NFH) tail. Therefore the NFH tail for mutations in the sporadic ALS population was analysed.

Methods—Clinical data and DNA were collected on patients attending a specialist clinic. Genotyping and mutation detection were performed by polymerase chain reaction (PCR) and single strand conformation polymorphism analysis (SSCP) followed by silver staining according to standard protocols. Samples showing band shifts on SSCP were subcloned and sequenced.

Results and discussion—Two novel mutations in a hypervariable region of the heavy neurofilament subunit gene (NFH) were found in two of 196 patients and none of 188 controls. The mutations are an 18 bp deletion and 24bp deletion from 1965-1988 and 1989-2006 respectively using the numbering of the published sequence. Each results in the loss of a single consensus phosphorylation motif, KSPXX. The clinical features of both patients were entirely typical of ALS. Both had El Escorial probable or definite ALS with blood in all cases. The onset was at 66 and 73 years with survival of 19 and 33 months respectively.

Conclusion—Heavy neurofilament subunit gene mutations account for 1% of apparently sporadic ALS and are indistinguishable clinically from other forms.

INVESTIGATION OF THE POLYMORPHISMS IN THE ECNOS GENE IN PATIENTS WITH AND WITHOUT DIABETIC PERIPHERAL NEUROPATHY
A Al-Memar, B A Millward, A G Demaine, University of Plymouth, Devon, UK.

Nerve ischaemia plays a central part in the pathogenesis of diabetic neuropathy (DN). The constitutive isofrom of nitric oxide synthase (eNOS) generates nitric oxide (NO) which modulates basal vascular tone and regulates nerve blood flow and may be a potential contributor to the pathogenesis of DN. We studied the distribution of the polymorphisms at 5' end of the eNOS gene, the 27 bp repeat in intron 4 (eNOS 4a/b) in 129 normal control subjects, 46 (21m) insulin dependent diabetic patients without complications, 37 (19m) DN patients and 33 (15m) IDDM patients with retinopathy nephropathy with a mean age of onset of diabetes of 16.9, 19.7, and 16 years (range 1-40) respectively and mean duration of diabetes of 24.7, 25.4, and 27.7 (range 11-47) years respectively.

There was an excess of eNOS 4b/a heterozygotes among those patients with DN and other microvascular complications (C2=5.45, P<0.025, C2=4, P<0.05) respectively; also there was an excess of eNOS 4b/a heterozygotes in DN patients with autonomic dysfunction in comparison to those without autonomic disturbances (C2=4.5, P<0.05). There were no significant differences in eNOS genotypes between patients and controls.

In conclusion these data suggest that the eNOS gene may be implicated in the pathogenesis of diabetic peripheral neuropathy.

LYME NEUROBORRELIOISI IN SOMERSET, ENGLAND
N K Banerji, Musgrove Park Hospital, Somerset, England.

Few publications concerning Lyme neuroborreliosis have appeared from the United Kingdom. Six cases seen in Somerset, England are reported here.

Three men and three women between the ages of 29 and 65 who had neuroborreliosis were seen in Somerset over three years. Three had history of rash (erythema chronic migrans) and two had symptoms of radiculitis. Among five patients seen with cranial nerve lesions, facial palsy was the commonest. One had peripheral neuropathy only. Spontaneous resolution of initial symptoms and signs as the condition progressed was a feature of acute cases. Pleocytosis with raised protein in the CSF was seen in all patients except one who already had treatment with penicillin. Lyme serology was positive in CSF and blood in all cases.

It is suggested that fleeting symptoms and signs are good pointers to the diagnosis of Lyme neuroborreliosis. Abnormality of CSF in untreated cases, especially Lyme serology, is essential.

NEUROLOGICAL DEGENERATION IN THE WOLFRAMS SYNDROME
S Bundey, T G Barrett, University of Birmingham, Birmingham, UK.

Forty five patients with this rare autosomal recessive syndrome were ascertained from multiple sources throughout the United Kingdom. The ascertainment criterion was childhood onset of diabetes mellitus and optic atrophy. The patients were aged 5-47 years with a mean of 29.5 years. Most patients also had diabetes insipidus and deafness, in accord with the recognised features of this syndrome. However, a new finding was the frequency of neurological complications which occurred in 20% of those under 20 and in 78% of those over 20. Ataxia was the most common symptom; others included startle myoclonus and central apnoea. Four of 12 deaths were due to central respiratory failure. MRI (n=7) disclosed cerebellar and brain stem atrophy, loss of pituitary bright signal and thinned optic nerves. Muscle biopsies (n=9) showed normal respiratory chain function and analysis of lymphocytic mitochondrial DNA showed no rearrangements (n=32). The clinical and neuroradiological findings indicate that cerebellar and brain stem degeneration are significant and common complications in older patients with the Wolfram syndrome.

INVERSION, ROTATION, OR “TILTING” OF VISION IS AN UNUSUAL PHENOMENON
D A Burrows, H I Ford, M H Johnson, St James's Hospital, Leeds, West Yorkshire, UK.

Inversion, rotation, or “tilting” of vision is an unusual phenomenon. The pathophysiologic mechanisms and anatomical structures involved are not well understood. Five patients are described in whom a history of acute visual inversion or rotation was elicited, associated with vertigo and in some with additional symptoms. In each case this was transient and in one there were a number of episodes. The visual disturbance was not always recorded in the initial history. Each patient underwent CT and/or MRI imaging of the brain. Four patients had unilateral infarction in the territory of the posterior inferior cerebellar artery (PICA). The fifth had bilateral infarctions in superior cerebellar artery (SCA) territories. Visual inversion has been reported hitherto as a rare symptom in association with verteobasilar ischaemia and Wallenberg's syndrome. More recently there have been a few reports demonstrating cerebellar infarction, most involving the PICA territory, in particular that of its medial branch. Infarction of other areas of the cerebellum can be involved. Possible mechanisms for this phenomenon were discussed. On direct questioning this symptom was more common in cerebellar infarction than previously thought.

INTEGRINS AND OLIGODENDROCYTE DIFFERENTIATION
P C Buttery, C Streuli, Cффrench-Constant, Wellcome/CRC Institute, Cambridge, UK.

Aims—Normal myelination of the CNS during development is obtained by the differentiation of migratory precursor cells into mature postmitotic oligodendrocytes. The aim of this study was to examine the role of
the integrin family of cell surface receptors for extracellular matrix (ECM) in this differentiation event.

Methods—In vitro methods, involving purified rodent oligodendrocyte precursors, purified ECM ligands, and blocking antibodies and peptides were used. Repair in patients with RLS was assessed by a blinded observer using the FGR scale from 0 to 10. Apomorphine was also used for (a) low extremity parkinsonism: one patient with severe freezing and falls, wheelchair bound in spite of oral therapy, was now ambulant with apomorphine; (b) off period pain: four patients with severe off period pain and parasthesia (shoulder and leg) were used to detect apomorphine without any neuropsychiatric complications. One remains on apomorphine; (c) malignant parkinsonism: one patient with severe PD in a rigid akinetic mute state after an infection and one with NMS have responded well to subcutaneous high dose apomorphine. Discussion—Apomorphine is highly effective for treating specific disabling refractory nocturnal symptoms and other atypical symptoms of PD. Furthermore, apomorphine seems to be highly effective for treatment of RLS and off period pain when conventional therapy is ineffective.

ATYPICAL PARKINSONISM IN THE AFROCARIBBEAN POPULATION IN THE UK

K R Chaudhuri, M Richards, D J Brooks, King’s Healthcare, London, UK

Aims—Parkinson’s disease (PD) is thought to occur less often in African populations. The incidence of PD in the migrant AfroCaribbean population in the UK and in migrant PD patients in Africa is unknown. In this study the pattern of parkinsonism in this group living in London has been investigated.

Methods—The consecutive case files of over 150 patients attending movement disorders clinics in two areas of London with a high AfroCaribbean population, discharge summaries from medical wards and general practitioner (in the catchment area) records are being reviewed. In addition, 100-500, n=13. Five subjects had low-normal (mean 137 mmol, range 110-150) and 15 controls (10 men, five women, mean age 40 years, range 20-60) were studied using cardiovascular autonomic function tests, ECG, EGG, prolonged (30 min) HUT (60°), blood biochemistry, and 24 hour USE. Results—22 out of 30 subjects (but not controls) had a positive tilt test defined by presyncopal symptoms on HUT. Blood pressure and heart rate (BP, HR) fell in two subjects who had cardiovascular symptoms on subsequent 24 hour Holter monitoring. Mean BP fell with rise in HR >120 beats per minute in three subjects (POT type 2) whereas mean BP was unaffected in others despite symptoms and rise in HR (>120 beats/minute, n = 13). Routine blood biochemistry and haemoglobin were normal in all and 24 hour USE was low normal (mean 137 mmol, range 100-150, n = 13). Five subjects had low use and salt supplementation (120 mmol/day) abolished syncope. EEG was abnormal in one who was negative to HUT.

Discussion—(1) Inexpensive prolonged (30 min) HUT and 24 hour USE could be incorporated as a first line test for investigation of
synthesize and helps in identifying cardiac syncope and POT (2). Those with low 24 hour USE may benefit from salt supplementation (3). Further investigations (EEG, Holter monitoring) are indicated in elderly patients, those with negative HUT or positive HUT with hypotension and bradycardia.

SHIFT FROM T1 TO T2 LYMHPHOCYTE PHENOTYPE INDUCED BY MONOCLONAL ANTIBODY TREATMENT OF MULTIPLE SCLEROSIS PATIENTS A Coles, M G Wing, D A S Compston University of Cambridge Neurology Unit, Cambridge, UK.

In an attempt to suppress the autoimmune inflammatory process in multiple sclerosis, 16 patients were treated with the humanised monoclonal antibodies Campath-IH and anti-CD4. Changes in immunological activity were monitored over time by measuring the cytokines secreted in vitro by each patient's peripheral blood mononuclear cells when stimulated with phytohaemaglutinin. Comparison of the relative IFNγ and IL-4 secretion showed a shift from predominantly Th1 to a Th2 response. This shift had partially reversed by 12 months after treatment. These changes paralleled the clinical response with clinical disease suppression induced for 12 months on average. This response is currently being compared to in vitro lymphocyte depletion by magnetic bead or FACS separation.

This study has demonstrated that monoclonal antibody treatment may modulate the inflammatory activity of multiple sclerosis with beneficial clinical consequences, which are reflected by changes in T lymphocyte phenotype.

MELAS OR MNGIE? AN UNUSUAL PRESENTATION OF A MITOCHONDRIAL RESPIRATORY CHAIN DISORDER R J Davenport, C J Mumford, L A Bindoff, S Jones, University of Edinburgh, Edinburgh, UK.

An 18 year old woman presented in 1996 with status epilepticus; two years previously she had undergone a partial gastrectomy and Roux-en-Y formation for repeated episodes of pseudo-obstruction for which no cause was identified. On admission, she had a lactic acidosi. Subsequent investigations showed 10% ragged red fibres on muscle biopsy, and a 3243 mutation on mitochondrial DNA analysis in blood and muscle. She has since had two further admissions with status, both preceded by a migraine headache, and has developed deafness. Her last admission was complicated by recurrent anorexia and vomiting which eventually settled.

Although our patient had the 3243 mutation usually associated with MELAS, she is phenotypically quite unlike this syndrome; unusual presentations of 3243/MELAS are recognised, but gastrointestinal dysmotility has not been described. Gastrointestinal dysmotility does occur in mitochondrial respiratory chain disease as the MNGIE syndrome (mitochondrial neurogastrointestinal encephalomyopathy). However, these patients commonly have ophthalmoplegia and peripheral neuropathy which our patient does not, and epilepsy and migraine are not described, which are prominent features in this case.

This case emphasises two points; firstly, that patients with mitochondrial disease may initially present to specialists other than neurologists and the diagnosis may be delayed. Secondly, that whereas certain clearly identifiable phenotypic mitochondrial diseases exist, some patients do not fit easily into such categories.

DOES AXONAL LOSS AND DEMYELINATION OCCUR TOGETHER IN THE SAME LESIONS IN MULTIPLE SCLEROSIS? C A Davie, W I McDonald, A J Thompson, D H Miller, Institute of Neurology, Queen Square, London, UK.

It has been proposed that magnetisation transfer (MT) provides information about the integrity of myelin. Similarly, the measurement of N-acetyl aspartate (NAA) is an amino acid localised to neurons and their processes—by magnetic resonance spectroscopy (MRS) has been used as an index of axonal loss and/or dysfunction in multiple sclerosis (MS).

MRI, MT imaging, and MRS were carried out on 18 patients with clinically definite MS. The group comprised patients with a wide range of disability (range 2-25 years, median 7 years). Single voxel MRS localised to a chronic area of high signal from hemispheric white matter which had been present for greater than 12 months was collected. MTR was then calculated from the corresponding volume.

NAA was quantitated using the fully relaxed water signal as an internal standard of reference.

There was a significant correlation between a reduction in the absolute concentration of NAA from a chronic MS lesion (range 3.5 mM-12.8 mM) visible on MRI and reduction in the MT value (range 14.6-28.6, median 25.3) from the same lesion (P<0.002, r=0.71).

These preliminary results support the hypothesis that demyelination and axonal loss occur together in destructive MS lesions and that there may be a common pathological mechanism producing both.

MOLECULAR GENETIC DIAGNOSIS OF FREIDREICH'S ATAXIA WITH APPARENT AUTOSOMAL DOMINANT SPINOCEREBELLAR DEGENERATION R de Silva, C Frew, A Cooke, R Davidson, Southern General Hospital, Glasgow and Yorkhill Hospital, Glasgow, UK.

Freidreich's ataxia (FRDA) is an autosomal recessively inherited disorder in which spinocerebellar degeneration occurs, usually from the second decade of life. Recently, FRDA has been linked with mutations (GAA triplet repeats or point mutations) of the intronic X25 gene on 9q13. Genome analysis of affected members of a pedigree with presumed adult onset, autosomal dominant spinocerebellar degeneration has yielded an unexpected diagnosis of FRDA.

A 26 year old man was seen with a seven year history of progressive dysarthria and limb ataxia. Examination also disclosed pes cavus, myasthenus, hyperactive lower limb reflexes and intact joint position sense. His 22 year old sister had had poor balance for seven years, and is now wheelchair bound and dysarthric. Their 46 year old father (who misuses alcohol) had had ataxia for at least two years. The daughter of the proband has presented with transient incoordination at the age of 18 months. PCR using primers for the GAA repeat at 9q2-31.1, on the proband and his sister has disclosed an expanded allele smears of between 2000 and 3000 bp, making FRDA highly likely.

Symptoms and signs of ataxia in the proband's father and daughter implied a dominant mode of inheritance. It is conceivable that FRDA heterozygotes can develop ataxia, particularly in association with environmental insults.

Background—Some treatments for acute stroke—for example, thrombolysis, may increase the risk of death, but also reduce the proportion of dependent survivors. Therefore, groups of independent and dependent stroke survivors were compared as to how they rated their own quality of life.

Methods—The EuroQol is a generic instrument for the measurement of health related quality of life (HRQoL). It includes a visual analogue scale on which patients rate their own health between 0 (worse than death, best possible), so providing an overall numerical estimate of their HRQoL. HRQoL was assessed by postal follow up with the EuroQol questionnaire in 1125 United Kingdom patients randomly selected from patients enrolled in the International Stroke Trial.

Results—903 patients responded (response rate 80%). Mean overall HRQoL among independent patients was 68 (95% CI 23-100). This was significantly greater than in patients who were dependent at follow up (mean 44, 95% CI 1-87; P<0.01). However, 83% of dependent stroke survivors, reported overall HRQoL within the range of the independent survivors (23 to 100) and 15% rated their overall HRQoL as greater than 68 (the mean of the independent survivors).

Discussion—A high proportion of survivors of stroke who are dependent in ADL rate their HRQoL surprisingly highly, sometimes as high as independent survivors. Stroke free patients may prefer death to death to dependent survival, but patients who have survived a stroke in a dependent state seem to view things differently.

SUPRATENTORIAL WHITE MATTER VOLUMES ON MAGNETIC RESONANCE IMAGES CORRELATE WITH COGNITIVE PERFORMANCE IN MULTIPLE SCLEROSIS (MS) S G M Edwards, N Roberts, L D Blumhardt, University of Nottingham, Nottingham, UK.

Despite the high sensitivity of MRI and the high prevalence of cognitive deficits in MS, correlations between neuropsychological test performance and various MRI parameters have been weak and inconsistent. In the present study the aim was to correlate neuropsychological indices with the volumes of supratentorial structures and the area of the corpus callosum in 40 patients with clinically definite MS, using 3D acquired MPRAGE (Magnetisation Prepared Rapid Acquisition Gradient Echo) and stereology. All subjects underwent a neuropsychological battery, including tests of intellect, memory, recognition, attention, visuospatial skills, and frontal executive functions. A global cognitive index (GCI) was derived from the test scores.

Supratentorial white matter (SWM), grey matter, and ventricles comprised 22.2

J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.63.5.686 on 1 November 1997. Downloaded from

http://jnnp.bmj.com/ on May 11, 2022 by guest. Protected by copyright.
LOW GRADE LEAKAGE ACROSS THE BLOOD-BRAIN BARRIER IN WHITE MATTER CORRELATES WITH DISABILITY IN MULTIPLE SCLEROSIS
C. M. Ellis, M. Hu, A. Al-Chalabi, C. E. Shaw, J. D. Parkes

Aims—The flail arm syndrome was not identified as a subtypeof motor neuron disease, occurring predominantly in males. It is probably associated with a more favourable prognosis, despite early involvement of cervical anterior horn cells.

Methods—MRS was performed (1.5 Tesla GE Signa system, PRESS spectra, TR=2000 ms, TE=136ms, voxel size 1.8 x 2 x 2 cm) centred on bilateral putamen of 9 untreated PD (mean age 60 (11) years, mean disease duration 1.5 years, mean Hoehn and Yahr 1 (0.6), seven levodopa treated PD patients with dyskinesiae (57 (13) years, duration of PD 9.5 years, Hoehn and Yahr 3.6), and 11 healthy controls (age 53 (12) years). Ratios were calculated for a blinded observer using SAGE/IDL software.

Results—Mean NAA:Cr ratios from the putamen contralateral to the most affected side were highly significantly diminished in untreated PD compared with controls (0.97 (0.14) vs 1.26 (0.28), P<0.009). This was not found in the levodopa treated group. NAA:Cr ratios from contralateral putamen were lower in untreated PD compared with treated PD (P=0.06). NAA:Cr+Pcr ratios from the contralateral putamen were lower in untreated and treated PD compared with controls but this was not significant (1.22 (0.35), 1.26 (0.12), 1.4 (0.33) respectively). In untreated PD, NAA:Cr+Pcr ratios were significantly lower in CL compared with ipsilateral putamen (1.10 (0.12) vs 1.32 (0.22), P<0.03).

Discussion—In untreated PD, decreased putamen NAA:Cr ratios may reflect a functional abnormality due to striatal deafferentation. In levodopa treated PD, normal NAA:Cr ratios suggest that NAA:Cr ratios may be affected by levodopa therapy and further longitudinal studies are required.

ADDENDA FOR CHILDHOOD CORRELATES WITH NON-ORGANIC SYMPTOMS
Elrington G, Essex Rivers Healthcare, Colchester, UK.

Aim—To investigate long term memory and depression, in patients with neurological disability or handicap, without impairment or pathology (non-organic neurology).
Method—100 consecutive new neurological out patients were asked their age at first ever memory (Imem) and at onset of continuous memory (Cmem), and about memory blanks; evidence of depression was sought (brief assessment schedule depression cards: BASDEC. Score >6.5 suggests depression).

Results—The table presents the results.

Conclusion—“Non-organic” neurological presentation is commonly associated with a delayed onset of continuous memory.

PERSISTENCE OF MONOSYNAPTIC GROUP IA PROJECTIONS BETWEEN ANTAGONIST MUSCLES IN SUBJECTS WITH PERINATAL BRAIN DAMAGE. M C O’Sullivan, S Miller, J A Eyre, Newcastle upon Tyne University, Newcastle upon Tyne, UK.

Introduction—Cocontraction of antagonist muscles is characteristic of spastic cerebral palsy but not of adult onset spasticity. Mono- synaptic group IA projections from biceps brachii to motoneuronal pools throughout the brachial plexus are present at birth and become restricted during the first two years.

Hypothesis—these projections persist in children with spastic cerebral palsy, but not in adult onset spasticity.

Subjects—(1) Cross sectional study of 372 normal subjects (birth to 55 years), 38 subjects with spasticity of perinatal origin but not in adult onset spasticity.

Results—Heteronymous excitatory reflex responses were frequent at birth and rapidly decreased in frequency by two years. A normal pattern of heteronymous reflexes was found in adults after stroke. In the cross sectional and longitudinal studies all subjects with spasticity from perinatal brain damage showed persistence of monosynaptic heteronymous excitatory responses to triceps, but normal restriction of reflexes to deltoid and pectorals major.

LONG TERM EFFECTS OF NEUROREHABILITATION IN MULTIPLE SCLEROSIS (MS): A LONGITUDINAL STUDY. J A Freeman, D W Langdon, J C Hobart, A J Thompson, Institute of Neurology, Queen Square, London, UK.

The long term effects of neurorehabilitation in MS have not been demonstrated, yet are crucial in determining the duration of benefit and frequency of review.

Fifty consecutive patients (mean age 45 years, 29 female) with progressive MS admitted for neurorehabilitation were assessed on admission (A), discharge (D), and then at three monthly intervals for one year (IY). The measures used were: Kurtzke’s expanded disability status scale (EDSS) and functional system (FS); functional independence measure (FIM); Long handcap scale (LHS); and general health questionnaire (GHQ). Trends in performance levels were plotted.

Twelve month data were collected for 92% of patients. Over this period, neurological status declined (EDSS medians A=6.8, D=6.8, IY=8.0), whereas disability (FIM medians A=61.5, D=74, I Y=63.5). handi- cap (LHS means A=60.3, D=64.4, 1 Y=61.6), and mood (GHQ medians A=9.5, D=1.5, IY=4) maintained some improvement. Although a gradual reduction in disability, handicap was recorded, average scores remained above admission level. This suggests that the benefits gained from neurorehabilitation are sustained, at least in part, over a 12 month period, despite deteriorating neurological status.

The long term effects of neurorehabilitation in MS have not been demonstrated, yet are crucial in determining the duration of benefit and frequency of review. The widely used Barthel Index (BI) is generally viewed as too simplistic, crude, and unresponsive (insensi- tive to clinical change) to evaluate therapeutic effectiveness. The functional independence measure (FIM) was specifically developed to enable reliable, valid, and responsive disability measurement. Despite increasing worldwide use, and being widely regarded as a gold standard measure, evidence in support of the FIM’s superiority is limited.

This multicentre study compares the reliability, validity, and responsiveness of the FIM and BI in 209 patients undergoing inpa- tient neurorehabilitation.

Internal consistency reliability (Cronbach’s u) of both instruments was high; FIM=0.96; BI=0.91. Validity was confirmed by examining correlations between FIM and BI score.
with six other disability measures. Correlations were almost identical with all BI correlations within 1 SE of FIM correlations (<0.07). Responsiveness was determined by calculating an effect size from admission and discharge ratings and was similar (ES=0.56).

Whereas reliability, validity, and responsiveness of both instruments is demonstrated the complex and costly FIM offers little over the simple and cheap BI in terms of measurement properties in this population.

FUNCTIONAL MAGNETIC RESONANCE IMAGING (fMRI) OF A SHORT TERM MEMORY TASK

J Hykin, S Clare, R Bowtell, M Humberstone, P Morris, L D Blumhardt, University of Nottingham, Nottinghamshire, UK.

In this work fMRI is used to identify regions of the brain activated during separate parts of a short term memory task.

Whole brain images were obtained on a 3.0 T GE MRI scanner every two seconds. Four volunteers were studied. A four part short term memory task was used consisting of (1) Reception; viewing three numbers over three seconds. (2) Retention; remembering the numbers for 11 seconds. (3) Recall and match; matching a number with the first 3. (4) 12 seconds rest. 32 tasks were performed. Images taken during rest were compared with images taken during the first three parts of the task. Significant changes in pixel intensities between rest and task were detected using a t test showing a threshold at P=0.01.

fMRI time courses from four regions were shown. The normal FMRI response is delayed and dispersed, however by deconvolving the response the true timing of brain activation can be resolved.

Significant regions seen are: fusiform gyrus (FG); reception, recall, and match. Medial temporal lobes (MTL); recall and match. Left supramarginal gyrus (LSMG); retention, recall, and match; medial frontal gyrus (MFG) all parts. Thus FMRI can be used for short cognitive events.
an extra baseline scan one month before treatment, the samples sizes are 2×20 for RR and 2×30 for SP patients.

This study shows an important difference in the pattern of longitudinal MRI activity in RR and SP groups. The sample sizes required for RR patients are comparable with previous studies. Larger sample sizes are needed for the SP group, and an extra baseline scan results in a reduction in both groups. These data should be considered in planning pilot MRI outcome trials.

C REACTIVE PROTEIN AND OUTCOME AFTER ACUTE STROKE
K W Muir, C J Weir, W Alwan, C Povey, I B Squire, K R Lees, Acute Stroke Unit, Glasgow, Scotland.

Background—Raised C reactive protein (CRP) is a marker of risk in acute coronary syndromes and may represent an inflammatory element of atherosclerotic lesions. The extent of CRP in stroke outcome was studied.

Methods—Consecutive admissions to an acute stroke unit had blood analysed for CRP concentration within 72 hours of admission. Data on risk factors, stroke type, and severity were collected. Patient outcome was determined by record linkage to the Scottish Deaths Register. Survival and cause of death were analysed.

Results—263 of 283 patients had a stroke; 240 had ischaemic stroke, and 23 haemorrhage. Survival was significantly worse in those with CRP above the mean (P=0.0003, log rank test). In a Cox proportional hazards model, systemic CRP concentration predicted survival independently of stroke severity, blood glucose, and age (P=0.05), a more definite relation being demonstrable for those with ischaemic stroke only (P=0.02). The cause of death certified was stroke or myocardial infarction in most patients.

Conclusions—Raised CRP within 72 hours of admission predicts survival after stroke. As deaths were predominantly due to atherosclerotic disease, this is consistent with a hypothesised role of inflammation in the pathogenesis of acute coronary and cerebrovascular syndromes and may be a useful clinical marker for aggressive intervention.

DYSAERTHRIA CAN CONCEAL DYSPHASIA IN MOTOR NEURON DISEASE
W P Rakowicz, J R Hodges, Norfolk and Norwich Hospital, Norwich and Addenbrooke's Hospital, Cambridge, UK.

Cognitive impairment is not usually regarded as part of the core syndrome of motor neuron disease (MND). Nevertheless, a few patients have overt dementia, typically frontal type or progressive aphasia. Speech in MND is often restricted by prominent bulbar symptoms. The question of whether dysphasia may also impair communication was considered.

16 consecutive patients presenting to a district neurology service over three years with a new diagnosis of MND fulfilling research criteria were assessed with a comprehensive battery of standardised neuropsychological tasks. Particular attention was paid to semantic and syntactic aspects of language production and comprehension.

Four of 16 patients (31%) became mute during the course of the study. Of these, three (19% of total, 75% of mute MND) had demonstrable language impairment. Only one reported word finding difficulties at the time of diagnosis. The other two denied language difficulties whereas their relatives ascribed all communication problems to deteriorating articulation. One non-mute patient (1/12) performed outside normal limits on language tests in the context of more generalised changes consistent with a frontal dementia. The other 11/12 patients performed normally.

It is concluded that dysphasia is more common in MND than is generally appreciated, particularly in mute subjects, but can be missed because of prominent bulbar symptoms.

CONJUGAL MULTIPLE SCLEROSIS
N Robertson, J O'Riordan, J Chataway, D Kingsley, D Miller, A S Compston, University Department of Neurology, Cambridge, UK.

There has been no previous systematic study of conjugal MS. The study of conjugal pairs with complete follow up provides a valuable information regarding disease transmissibility and the genetic contribution to disease frequency and clinical course.

Forty five conjugal pairs concordant for MS were studied; clinical features were compared in 33 where neither partner had symptoms before social introduction; 86 offspring were individually assessed for clinical evidence of neurological disease and disease in those over the age of 16 underwent cranial MRI. There was no evidence for clinical concordance, clustering at year of onset, or distortion of the expected pattern of age at onset in the second affected spouse. Five of 86 offspring (5.8%) were concordant for MS, four of 86 (4.7%) reported isolated episodes of neurological dysfunction. Six of 39 (15.4%) offspring had MRI abnormalities which fulfilled criteria for the diagnosis of MS. Three others (7.7%) had lesions consistent with demyelination not meeting these criteria. In total 14% had some evidence of disease.

The recurrence risk in children of conjugal pairs is significantly higher than recurrence risks for offspring of single affected parents (1:200). The risk for developing MS is evidently inherited from both parents and this argues against genetic heterogeneity. There is no evidence for a transmissible agent or for a genetic effect on clinical course or severity.

AUDIT OF AN EMERGENCY CLINIC IN NEUROLOGY
N Robertson, S Shaumak, D A S Compston, Neurology Unit, University of Cambridge, Cambridge, UK.

Effective triage of primary care referrals is an essential part of neurology service management. In a retrospective analysis of selected patients reviewed in a rapid referral clinic the effectiveness of identifying patients with serious abnormalities requiring urgent assessment was analysed. Statistical correlation with symptom groups was presented and the effect of such a clinic on auxiliary services was evaluated.

Twenty five per cent of telephone referrals from primary care physicians led to identification of patients considered suitable for urgent evaluation; 923 patients were assessed over an 18 month period. After neurological review relevant abnormalities were identified in 73% and 35% were considered to have warranted urgent assessment. In addition 74% required radiological evaluation and 14% had a neurophysiological procedure; 17% of patients were admitted on the same day, 13% underwent CSF analysis, and 34% required some form of therapeutic intervention. In retrospect, patients with a clinical history of greater than 11 days rarely warranted urgent referral. Visual failure and diplopia provided highest correlations for patients considered to have required urgent assessment and syncope and headache the lowest. Despite the number of patients reviewed, no effect was demonstrated on waiting times for standard outpatient review.

This work provides effective guidance to those clinicians involved in patient triage and assesses the burden of providing such a service.

IS RUPTURE OF CAROTID ATHEROTHROMBOTIC PLAQUE DETERMINED BY LOCAL OR SYSTEMIC FACTORS?
P Rothwell, R Vilagre, R Donders, C P Warlow, Western General Hospital, Edinburgh, UK.

The risk of ischaemic stroke distal to an atherothrombotic carotid plaque is increased if the plaque surface is irregular. Likewise, acute cardiac ischaemia is almost invariably associated with an irregular or ruptured coronary artery plaque. The risk of major vascular events in the territory of a diseased artery seems to be determined as much by the stability of atherosclerosis as by its extent. Plaque stability is considered to be determined by local factors such as shear stress or intraplaque ischaemia, but may also be influenced by systemic factors. The hypothesis that plaque stability is constitutional, angiograms of 3007 patients with recently symptomatic carotid stenosis in the European Carotid Surgery Trial were studied. Plaque surface morphology in the symptomatic carotid artery was compared with that in the contralateral carotid artery, and related carotid plaque surface morphology to the risk of non-stroke vascular death during follow up. Plaque surface irregularity in the symptomatic carotid artery was highly predictive of irregularity in the contralateral carotid artery (risk ratio 2.57, 95% CI 2.12-3.12, P<0.0001), and was associated with an increased risk of non-stroke (mainly cardiac) death (log rank, P<0.0001). It is suggested that plaque instability is constitutional. Further research is required to determine whether or not it is modifiable.

PATTERNS OF LONG ASCENDING PROPRIOSPINAL REFLEXES IN SHOULDER MUSCLES IN HUMAN SUBJECTS AFTER ELECTRICAL STIMULATION OF LOWER LIMB NERVES
M Sawyer, J A Eyre, S Miller, Newcastle upon Tyne University, Newcastle upon Tyne, UK.

Introduction—In neonatal and adult subjects percutaneous magnetic stimulation of lumbar-sacral nerve roots evokes excitatory and inhibitory responses in surface EMGs of upper limb muscles at latencies sufficiently brief to be compatible with proprio spinal transmission.

Aims—to determine if lower limb nerves contributed differentially and in a functional pattern to these long proprio spinal reflexes.

Subjects—Eleven normal adults. Ethical permission and written, informed consent were obtained. Responses were recorded in the surface EMG of pectoralis
Epilepsy: current views

A study was undertaken to test the personal experience of seizures following video games and after consultation with a joint neurological and psychiatric (n=12), and a questionnaire, suggesting that sodium valproate was particularly effective in photosensitive patients, with an additional comment about lamotrigine, either alone or in combination. These findings might explain the initial impressions.

Molecular pathology of familial ALS with SOD-1 gene mutations

Background — Mutations in the gene coding for Cu/Zn superoxide dismutase (SOD-1) are found in 20% of patients with familial amyotrophic lateral sclerosis (FALS). It is not known how these mutations lead to selective degeneration of upper and lower motor neurons.

Aims — To investigate the molecular pathology of FALS with SOD-1 gene mutations to clarify the mechanisms of neuronal death.

Methods — Brain and spinal cord were removed from two FALS patients with point mutations in the SOD-1 gene at codons 48 and 101. Frozen and paraffin embedded sections were processed for immunohistochemistry, with a range of antibodies, and for electron microscopy.

Results — Neurofilamentous accumulations and ubiquitin-immunoreactive inclusions were found in both cases. In one these were confined to the motor neurons in the brainstem and spinal cord, in the other they were also present in pyramidal cells of the motor cortex. Electron microscopy disclosed bundles of neurofilaments I within anterior horn cells. There was no evidence of accumulation of SOD-1, SOD-2, or tau proteins.

Discussion — The cytoskeletal pathology of familial ALS with SOD-1 mutation falls within the range of all ALS pathology. The toxic accumulation of mutant SOD-1 is unlikely to be directly responsible for motor neuron injury.

Immunologically silent inflammation induced by CNS viruses

P G Stevenson, S Hawke, Charing Cross Hospital, London and John Radcliffe Hospital, Oxford, UK.

Aims — To assess if specific immunity is required for inflammation induced by CNS viruses.

Methods — C57BL/10 mice were inoculated with the non-neurovirulent influenza virus A/NY/60/68 either directly into the caudate nucleus or into the lateral cerebral ventricle. An assessment of local and systemic antiviral immunity was made using proliferative responses, cytotoxic T cell assays, enzyme linked immunosorbent assay (ELISA), flow cytometry, and immunohistochemistry.

Results and discussion — Virus inoculated into the brain parenchyma was immunologically silent in most mice 10 and 90 days after inoculation. By contrast, virus inoculated into the lateral ventricle was highly immunogenic. Although a lymphocytic inflammatory reaction was induced at both sites, only lymphocytes isolated from the brains of mice inoculated with ventricular virus were antigen specific. Activated antiviral CTL were purified from the brains of mice given a simultaneous parenchymal and intranasal challenge, indicating that the environment of the brain parenchyma was not inducing tolerance. Although most immunograft T cells were CD4+ and CD62Lhi and were thus activated or memory cells, a proportion were CD4+ and CD62Llo and were therefore not activated.

These results indicate that inflammation can be induced by virus in the CNS even in the absence of specific antiviral immunity.

Regenerating oligodendrocytes and remyelination in multiple sclerosis

J D Sussman, M P Targett, W F Blakemore, P A S Compston, MRC Cambridge Centre for Brain Repair, Cambridge, UK.

Aims — To determine the possible contribution of mature oligodendrocytes to remyelination in multiple sclerosis (MS) lesions.

Methods — Adult rat glia were studied in vitro, in coculture with neurons, and after transplantation into demyelinated rat CNS lesions.

Results — Adult oligodendrocytes and their progenitors survive and proliferate under the influence of neurons in vitro, an effect enhanced by growth factors, and the presence of allogeneic astrocytes. Despite this, the differentiation of oligodendrocytes and their progenitors is highly inefficient. Lesions created by alkylating agents that destroy oligodendrocytes are able to survive in the lesions. The interactions of regenerating mature oligodendrocytes and neurons are therefore studied. Neurons inhibit mature oligodendrocyte processing, while permitting progenitor derived oligodendrocytes to extend complex processes. Dividing oligodendrocytes can be identified; however, they are derived from differentiating progenitors, rather than regenerating oligodendrocytes.

Discussion — Postmitotic mature oligodendrocytes do not have the attributes necessary for remyelination. It is hypoth-

Familial ALS with SOD-1 mutation falls within the range of all ALS pathology. It is not known how these mutations lead to selective degeneration of upper and lower motor neurons. The toxic accumulation of mutant SOD-1 is unlikely to be directly responsible for motor neuron injury.
encountered forms of dementia was determined by calculating the likelihood ratios of pairwise intergroup comparisons for different patterns of cerebral blood flow (CBF) abnormality. To quantify the clinical value of 99mTc-HMPAO SPECT, average likelihood ratios were calculated weighted according to the prevalence of CBF patterns. 99mTc-HMPAO SPECT was found to provide diagnostic gain for all intergroup comparisons. It was most useful in distinguishing Alzheimer’s disease and Lewy body dementia from frontotemporal dementia, and least useful in differentiating between Alzheimer’s disease and Lewy body dementia, and between vascular dementia and frontotemporal dementia. Study results provide a guide both to the optimal usage of 99mTc-HMPAO SPECT and the interpretation of individual test results.

EFFECT OF LAMBERT-EATON MYASTHENIC SYNDROME (LEMS) ANTIBODIES ON TRANSMISSION FROM POSTGANGLIONIC PARASYMPATHETIC NEURONS IN THE MOUSE BLADDER

S A Waterman, B Lang, J Newsom-Davis, University of Oxford, Oxford, UK.

LEMS patients produce antibodies to P, Q, and sometimes N type voltage gated calcium channels (VGCCs) which have been implicated in the impaired skeletal neuromuscular transmission. The cause of the autonomic symptoms in LEMS has not been investigated. The aim of this study was to investigate a possible antibody mediated mechanism for the autonomic symptoms by studying transmission from parasympathetic neurons innervating the bladder of mice passively immunised with LEMS IgG. Mice were injected with IgGs (coded) from pooled controls (PC; n=10), a healthy subject (HC; n=10), a patient with myasthenia gravis (MG; n=8), and four LEMS patients: LE1-4 (n=8 of each). Strips of bladder dome were mounted in organ baths and electrically evoked contractions recorded in the absence and presence of conotoxin GVIA, agatoxin IVA, and conotoxin MVIIC (N, P, and Q type VGCC blockers respectively). Contraction amplitudes were significantly less in LE3 and LE4 than in controls. Transmitter release from PC, HC, and MG bladders involved N, P, and Q type VGCCs. Transmitter release coupled to P and Q type VGCCs was decreased in all mice treated with LEMS antibodies. This suggests that LEMS IgG reduces parasympathetic transmission through down regulation of VGCCs and this may underlie the autonomic symptoms of the disease.

PERIPHERAL AND CENTRAL RESPONSES TO HIGH FREQUENCY NERVE STIMULATION USING A DECONVOLUTION TECHNIQUE

Using standard averaging techniques, the maximum rates of stimulation at which sensory action potentials (SAPs) and cortical somatosensory evoked potentials (SSEPs) can be obtained are limited by the fact that successive responses overlap at rates of $>1/t$ stimuli/s, where t is the total duration of the response in seconds. In practice, this limit may be up to 300 stimuli/s for SAPs and 20 stimuli/s for SSEPs. The investigation of rate dependent conduction block in peripheral and central lesions might be facilitated if this effect could be overcome. Faster stimulus rates would also allow SSEPs to be derived more rapidly, which may be of practical benefit in operative monitoring.

Various fast stimulation protocols for brainstem evoked potentials and SSEPs have been described. Median SAPs and SSEPs at stimulus rates of at least 1280 and 160 stimuli/s respectively in normal subjects have recently been obtained using quasirandom binary stimulus trains known as maximum length sequences. The overlapped records are deconvolved to obtain the response that would have been obtained using conventional slow averaging.

Patients with focal and generalised peripheral neuropathies and multiple sclerosis are currently being studied to determine whether this rapid simulation technique can detect conduction abnormalities covert to those methods currently employed.
BOOK REVIEWS

This book’s reputation proceeded its arrival on my desk with the news that Boston Spa already had a six month waiting list before it was on general release. What did one expect? My dictionary says a primer is an elementary reading book for children, a short introductory book. This hardly prepared one for the 6lb 2oz, 822 page encyclopaedia boasting 195 chapters written by 275 authors. Its philosophy is admirable offering basic science for the clinician, and a clinical account for the basic scientist. The editorial guidelines should perhaps have been more rigorous, as some contributions have offered brief albeit expert overviews whilst others have produced a manuscript that would have graced a plenary lecture at a specialist conference. Section editors should have offered brief orienting introductions. The same topic appears in more than one “chapter” a duplication that somehow does not illuminate the subject in the way that it does when a debate is formally set up. There are gEMS, however, and nowhere else can one read about blood flow, the blood brain barrier, acidosis, excitotoxins, calcium, free radicals, and nitric oxide, etc, alongside cardiac embolism, aneurysm surgery, thrombolysis, the dose of aspirin, and rehabilitation etc. The list of contributors is a who’s who of mostly North American experts. Some will claim that there are better texts in which to look up evidence based advice on management of the latest animal model experiments, but the insistence that the two aspects of cerebrovascular disease belong together deserves to make this volume a success despite its cost. This whole area is at last moving rapidly so read it soon or wait for the next edition!

MICHAEL HARRISON

Major books on neuroimaging have been published during the past few years, the earlier ones focusing on basic sciences and the more recent on neurology and neuropsychology. There have not been many on psychiatry. Furthermore, most have come from across the waters. This has been put right by this major multiauthored book, put together by Shôn Lewis, a Professor of Psychiatry and distinguished neuropsychiatrist himself, and Higgins, a neuroradiologist. As far as this reviewer knows, it is the first of its nature to be produced in the United Kingdom. The first nine chapters are dedicated to the principles and basic sciences of the main techniques including EEG topographical mapping and magnetoencephalography. Particularly detailed are the chapters on structural MRI and MRI neuroanatomy that occupy about 25% of the book! The chapter on functional brain imaging by Professor Lewis is rather short but about the only one explaining SPECT and PET scanning. The remaining seven chapters are on clinical applications and their content is bound to reflect ongoing interest in, and preference for, some diseases. Thus, there are two chapters on schizophrenia: one on structural imaging (including bits on the affective psychosis) and the other on functional imaging. The chapter on the affective disorders includes a useful discussion of what does it mean to “map the emotions” 6? 7. The section “structural brain imaging in neuropsychiatry” returns to basic principles and then deals with Alzheimer’s disease, vascular dementias and Huntington’s disease. Then follows a useful chapter on the functional neuroimaging of the aging brain and dementia. The last two chapters cover functional neuroimaging in the neuroses and in child psychiatry.

All books have shortcomings and the one under review is no exception. Contributors may not deliver on time or cover well their commissioned topic, and this causes the unavoidable lack of balance, repetitiveness and sense of inconclusiveness characteristic of most multi-authored books. Then there is the rate of progress, which in the case of neuroimaging is high, and tends to render books out of date even before their publication. More serious, however, are two omissions which I am sure can be put right in the second edition.

One concerns the need to include a chapter dealing with the conceptual demands that neuroimaging is imposing on psychiatry. Central to this challenge is the fact that most mental symptoms are described at a level of resolution which is incommensurate with the quantitative requirements of functional neuroimaging. It is often forgotten that current psychopathological descriptions were constructed to meet the needs of 19th century gross anatomy and microscopy and hence are categorical and with fussy spatiotemporal boundaries. Because of the high cost involved in neuroimaging and non-sensical research (as occasionally published in the literature) can only be avoided by pre-empting mental symptoms for their new corre- lational duties. Such correlation should include rethinking their boundaries in time and space, developing multidimensional models, and creating criteria that can separate symptoms whose ontology is likely to depend on biological signals from those which are patently interactional, social, and whose definition depends upon pragmatics and communication. For reasons which escape me, psychopathologists do not yet seem to have cottoned on to this need. A second omission concerns the need for a chapter on neuropsychological paradigms and task-related functional neuroimaging, and the relevance of this approach to the study of mental illness.

In spite of the above, this book deserves a wide readership. It is very good at explaining what these techniques are about and their limitations, and has brought together well known researchers to summarise what is currently credible and safe knowledge; some have even looked at their crystal ball to tell what is to come. Whether trainee or consultant, this reviewer recommends that one consult this book as it is becoming difficult meaning- fully to talk about mental disorders or their treatment without knowing something about neuroimaging.

GERMAN BERRIOS

There are great changes taking place in the field of movement disorders and this book which represents the proceedings from the fifth Triennial Meeting of the International Basal Ganglia Society held in May 1995 comes at an appropriate time. The ground covered in this book is more for the scientist than the neurological practitioner, but as one negotiates the seven sections and 61 chapters a number of important points are raised which are relevant both for the current and future management of basal ganglia related disorders. However these points will be lost to most neurologists and neurosurgeons because the format of the book is rather daunting with every chapter detailing the experimental design and results with usually one concluding fact per chapter. Thus the book is inefficient in its presentation of data for those not directly working in the area which is important as most investigators who work in this field have contributed to this book and so are almost certainly in receipt of a complimentary copy. However collections of work such as are represented in this book often herald changes in clinical practice, and so it is crucial that some of these points are brought out, perhaps by the use of introductory summaries at the start of each section. The book opens with a reappraisal of the anatomical connections of the basal ganglia, and makes a number of important observations. Firstly it provides a framework for the modern management of basal ganglia disorders, by providing the anatomical, physiological and pharmacological organisation of these structures. After all it was only through experimental work that the scientific basis and rationale for useful new approaches was defined—for example, posteroventral pallidotomy and subthalamic stimulators in Parkinson’s disease. Of importance to these fields function are chapters which make the point that the segregated input from the cortex to the striatal complex, necessary for the parallel pathway hypothesis of basal ganglia function, is at best a gross simplification, not least because it reduces many basal ganglia structures to the level of simple relay stations. Furthermore the current models of basal ganglia dysfunction in movement disorders often omit a number of important connections including the input to the subthalamic nucleus (STN) from the primary and supplementary motor cortical areas; the amygdalostriatal projection; a possible thalamic projection to the STN and globus pallidomotor pathway. This latter projection to the tegmentum, especially the pedunculopontine nucleus (PPN), is significant and consists of axon collaterals from the pallido (and nigro)-thalamic projection and maybe as important as the cortical projection of the basal ganglia in the control of movement, especially locomotion.

Whilst this first section of the book provides much anatomical data on the
shortcomings of our current models of basal ganglia function in health and disease there is a useful discussion in the second section on the pharmacology of the pathways within the basal ganglia. Two major points come out of this section. Firstly the nigral dopaminergic projection activating the striatal dopamine receptors is important not only in synaptic transmission but the long term gene expression of other neurotransmitters. Furthermore the loss of this pathway as occurs in Parkinson's disease may also lead to the loss of corticostriate and thalamostriate synapses which has implications in the therapy of this condition. Secondly a number of different neurotransmitter receptors have been isolated in the basal ganglia which may also be important in the future as targets for anti-Parkinson's disease treatment, and includes the A2a adenosine receptor, the metabotropic glutamate receptor, and cannabinoid receptors.

The advent of surgical interventions clinically in Parkinson's disease has led to some neuropysiological studies, which form the basis for the third section of the book. These studies, coupled to previous experimental observations have revealed that neurons in the striatum respond maximally to movements directed at targets of interest, or at the beginning of a complex movement. This indicates that the basal ganglia are involved in the interface of sensory processing (including verbal commands), motor programing, and the desire to move, and in addition may be specifically involved in learning sequence motor tasks and attention. In contrast the PPN which has always been thought to be critical in locomotion has so far only shown changes in neuronal activity relating to voluntary arm movement, at least in nonhuman primates.

The fourth section of this book deals more with the clinical disorders of the basal ganglia, especially the anatomical and physiological substrates of the tremor, rigidity and akinesia which characterize Parkinson's disease. No answers are apparent but PET data suggest the tremor is at least mediated by the pallido-thalamic (VIM nucleus) cortical pathway. It is on the other hand associated with increased activity in the internal segment of the globus pallidus (GPi) and underactivity in motor frontal areas, and there is some correlation between the degree of clinical akinesia and GPi hyperactivity. Furthermore the eye movement abnormalities of basal ganglia disease are coded for in the STN projection to the superior colliculus.

The last three sections of the book concentrate on models of basal ganglia disorders and raise a number of questions on the mode of cell death in Parkinson's disease, including discussions on apoptosis; iron-ferritin accumulation (which may be secondary to nigral cell death) and new environmental toxins (for example, tetrahydro-B-carboline TaClo). In addition there is increasing interest in the cognitive aspects of Parkinson's disease which may precede any motor manifestations, and thus be useful in studies designed to look at very early Parkinson's disease.

Overall the book is interesting if somewhat repetitive with a large number of printing errors. The figures are adequate, but not of a very high quality. It is a tome for the student of neuroscience with an interest in basal ganglia related movement disorders, rather than the clinician wanting to catch up on some background neuroscience. This book is therefore more likely to find a home in libraries than the clinician's bookshelf.

ROGER BARKER

The editor prefaces this third edition with reference to the continued cost effectiveness of clinical evoked potential investigations and to the impact of structural and functional imaging. The latter has served to focus the clinical application of evoked potentials, which still provide a temporal resolution greater than modern imaging techniques. In combination with medicolegal pressures, the use of intraoperative monitoring has also grown. These changes, in addition to paediatric applications and central motor conduction studies, are well described.

The book covers a broad range, with contributors from the United States and from Australia. The usual subjects are covered and each chapter is well referenced. Special attention is given to monitoring of the spinal cord and to carotid endarterectomies. There are also chapters on advanced techniques for analysis and on statistics.

I would recommend this book for its methodological approach to each subject, describing the practical background followed by the process of interpretation with respect to clinical questions. I only have one minor objection, that is the use of the term motor evoked potential. It describes the compound muscle action potential produced by transcranial stimulation, which has never seemed right to me!

SIMON BONIFACE

This book is in the neurosurgical topics series and represents perhaps the final recognition of the potential role of endovascular treatment in the management of vascular lesions of the nervous system. It is a multiauthor work with a wide range of authorship of American neuroradiologists and neurosurgeons active in the field. Inevitable in work such as this, it represents differing views and approaches but provides a useful overview of the subject and the principles underlying the various management techniques.

The book highlights the rapid progress and change that has occurred in the subject, in particular the rapid development of devices which have enabled endovascular interventions to extend to almost all parts of the nervous system and the contribution of technical advances in angiographic equipment and the sort of requirements that are necessary to carry out these techniques safely. Throughout the chapters the emphasis on cooperation of a neurovascular team comes through and in two final chapters John Pile-Spellman, William Young, and Lotfi Hacine-Bey present excellent perspectives on the changes that have taken place and are likely to take place in the future in the management of intracranial vascular malformation. Robert Tarr's final chapter provides some interesting personal reflections on possible innovative treatments that may be, in future, applied to the nervous system. The difficulties of the introduction of new technology in an intensely regulated environment, the move from the laboratory, and the experimental animal into clinical work, will increasingly present organisational challenges, particularly regulatory issues and training.

This book provides a useful overview for clinicians in the neurosciences who wish to update themselves on the current and future prospects of neurological endovascular intervention.

ANDREW MOLYNEUX

Readers might also be interested in:

