LETTERS TO THE EDITOR

Subacute autonomic and sensory ganglionopathy: a postmortem case

Acute autonomic and sensory neuropathy (AASN) is characterised by severe autonomic dysfunction, sensory deficit, and relatively well or fully preserved motor nerve function. The disease sometimes has a chronic course. Detailed information is limited because there have been so few reports of the postmortem examination of AASN. The pathological evidence for autonomic and sensory ganglionopathy in AASN.

A 30 year old Japanese man had abdominal pain and a rise in body temperature to 40°C on 1 January 1990. On 23 January, he felt pricking and paraesthesia in all his limbs. On 14 February he could no longer walk due to severe pricking of the entire body. On 2 March, he became bedridden because of orthostatic hypotension. He experienced mild weakness in the all limbs, dysarthria, and dysphagia. On 13 March, he was transferred to our hospital. Physical examination on admission showed anhidrosis, urinary retention, hyposalivation, and paralytic ileus. There was no history of intoxication by drugs or food preceding the illness. His blood pressure was 122/70 mm Hg when supine and 80/46 mm Hg when sitting with no increase in heart rate. His skin was dry. Neurologically, the right pupil was round and 5.5 mm in diameter, whereas the left was oval shaped and 6.0 mm in diameter. The right facial sweat glands were sluggish, and the corneal reflex absent bilaterally. Muscle power was mildly weak in his limbs, and there was moderate ataxia. Deep tendon reflexes were decreased. Sensation was lost to all modalities over his entire body, including the face. Complete blood cell and serum biochemistry findings were normal. Epstein-Barr virus antibody titres were not raised in the serum. His CSF was normal. Motor conduction velocities (MCVs) and compound motor action potentials were normal in the right median nerve and the right tibial nerve. No sensory nerve action potentials (SNAPs) were evoked in the bilateral sural nerves. The coefficient of variation of the R-R interval on his ECG was reduced (1.9%). In October, dysarthria, dysphagia, and muscle weakness gradually lessened. Despite the improvement in muscle power, severe sensory impairment and paraesthesia of the entire body, as well as orthostatic hypotension persisted. His response to plasmapheresis and high dose corticosteroids was very poor. Two years later, at the age of 33, he died of heart failure.

No tumour was found on general pathological postmortem examination. The dorsal fasciculus, posterior columns, spinal cord, and the ventral root of L3 appeared normal.

This case seemed to be compatible with AASN. Parasympathetic failure was reflected in the loss of salivation, decreased intestinal peristalsis, and bladder atony. Absence of sweating, orthostasis, and slowness of pupillary dilatation indicated sympathetic failure. Sensory neuropathy was confirmed by an electrophysiological study. The absence of SNAPs at the normal MCVs was best explained by selective involvement of the A-δ and C fiber systems. Examination of the dorsal root showed severe loss of myelinated fibres, whereas the ventral root of L3 appeared normal.

The disease sometimes has a chronic course. Detailed information is limited because there have been so few reports of the postmortem examination of AASN. The pathological evidence for autonomic and sensory ganglionopathy in AASN.

The disease sometimes has a chronic course. Detailed information is limited because there have been so few reports of the postmortem examination of AASN. The pathological evidence for autonomic and sensory ganglionopathy in AASN.

The disease sometimes has a chronic course. Detailed information is limited because there have been so few reports of the postmortem examination of AASN. The pathological evidence for autonomic and sensory ganglionopathy in AASN.

The disease sometimes has a chronic course. Detailed information is limited because there have been so few reports of the postmortem examination of AASN. The pathological evidence for autonomic and sensory ganglionopathy in AASN.

The disease sometimes has a chronic course. Detailed information is limited because there have been so few reports of the postmortem examination of AASN. The pathological evidence for autonomic and sensory ganglionopathy in AASN.

The disease sometimes has a chronic course. Detailed information is limited because there have been so few reports of the postmortem examination of AASN. The pathological evidence for autonomic and sensory ganglionopathy in AASN.

The disease sometimes has a chronic course. Detailed information is limited because there have been so few reports of the postmortem examination of AASN. The pathological evidence for autonomic and sensory ganglionopathy in AASN.

The disease sometimes has a chronic course. Detailed information is limited because there have been so few reports of the postmortem examination of AASN. The pathological evidence for autonomic and sensory ganglionopathy in AASN.

The disease sometimes has a chronic course. Detailed information is limited because there have been so few reports of the postmortem examination of AASN. The pathological evidence for autonomic and sensory ganglionopathy in AASN.

The disease sometimes has a chronic course. Detailed information is limited because there have been so few reports of the postmortem examination of AASN. The pathological evidence for autonomic and sensory ganglionopathy in AASN.

The disease sometimes has a chronic course. Detailed information is limited because there have been so few reports of the postmortem examination of AASN. The pathological evidence for autonomic and sensory ganglionopathy in AASN.

The disease sometimes has a chronic course. Detailed information is limited because there have been so few reports of the postmortem examination of AASN. The pathological evidence for autonomic and sensory ganglionopathy in AASN.

The disease sometimes has a chronic course. Detailed information is limited because there have been so few reports of the postmortem examination of AASN. The pathological evidence for autonomic and sensory ganglionopathy in AASN.

The disease sometimes has a chronic course. Detailed information is limited because there have been so few reports of the postmortem examination of AASN. The pathological evidence for autonomic and sensory ganglionopathy in AASN.

The disease sometimes has a chronic course. Detailed information is limited because there have been so few reports of the postmortem examination of AASN. The pathological evidence for autonomic and sensory ganglionopathy in AASN.

The disease sometimes has a chronic course. Detailed information is limited because there have been so few reports of the postmortem examination of AASN. The pathological evidence for autonomic and sensory ganglionopathy in AASN.

The disease sometimes has a chronic course. Detailed information is limited because there have been so few reports of the postmortem examination of AASN. The pathological evidence for autonomic and sensory ganglionopathy in AASN.

The disease sometimes has a chronic course. Detailed information is limited because there have been so few reports of the postmortem examination of AASN. The pathological evidence for autonomic and sensory ganglionopathy in AASN.

The disease sometimes has a chronic course. Detailed information is limited because there have been so few reports of the postmortem examination of AASN. The pathological evidence for autonomic and sensory ganglionopathy in AASN.

The disease sometimes has a chronic course. Detailed information is limited because there have been so few reports of the postmortem examination of AASN. The pathological evidence for autonomic and sensory ganglionopathy in AASN.

The disease sometimes has a chronic course. Detailed information is limited because there have been so few reports of the postmortem examination of AASN. The pathological evidence for autonomic and sensory ganglionopathy in AASN.

The disease sometimes has a chronic course. Detailed information is limited because there have been so few reports of the postmortem examination of AASN. The pathological evidence for autonomic and sensory ganglionopathy in AASN.

The disease sometimes has a chronic course. Detailed information is limited because there have been so few reports of the postmortem examination of AASN. The pathological evidence for autonomic and sensory ganglionopathy in AASN.

The disease sometimes has a chronic course. Detailed information is limited because there have been so few reports of the postmortem examination of AASN. The pathological evidence for autonomic and sensory ganglionopathy in AASN.

The disease sometimes has a chronic course. Detailed information is limited because there have been so few reports of the postmortem examination of AASN. The pathological evidence for autonomic and sensory ganglionopathy in AASN.

The disease sometimes has a chronic course. Detailed information is limited because there have been so few reports of the postmortem examination of AASN. The pathological evidence for autonomic and sensory ganglionopathy in AASN.

The disease sometimes has a chronic course. Detailed information is limited because there have been so few reports of the postmortem examination of AASN. The pathological evidence for autonomic and sensory ganglionopathy in AASN.

The disease sometimes has a chronic course. Detailed information is limited because there have been so few reports of the postmortem examination of AASN. The pathological evidence for autonomic and sensory ganglionopathy in AASN.

The disease sometimes has a chronic course. Detailed information is limited because there have been so few reports of the postmortem examination of AASN. The pathological evidence for autonomic and sensory ganglionopathy in AASN.

The disease sometimes has a chronic course. Detailed information is limited because there have been so few reports of the postmortem examination of AASN. The pathological evidence for autonomic and sensory ganglionopathy in AASN.

The disease sometimes has a chronic course. Detailed information is limited because there have been so few reports of the postmortem examination of AASN. The pathological evidence for autonomic and sensory ganglionopathy in AASN.

Intracranial calcification with IgG M-proteinemia: a case report

Recently Kosaka reviewed 16 cases of slowly progressive presenile cortical dementia thought to be a clinicopathological entity with pathological features characterised by circumscript lobar atrophy, diffuse neurofilibrillary tangles, and calcification of the Fahr type and named diffuse neurofilibrillary tangles with...
calcification. However, the pathogenesis and biochemical findings of this new entity are not known in detail. Herein, we report on a patient with presenile dementia, intracranial calcification, and M-proteinemia, which may play some part in the development of intracranial calcification with dementia.

A 66 year old man was admitted with dementia, which had been apparent since about 60 years of age. At the age of 62 he started to lose spontaneity and at the age of 66 gait disturbance occurred. In addition he showed slurred dysarthria, mild muscle rigidity, bilateral pyramidal signs, and mild truncal ataxia. Dementia slowly progressed and his dementia scales were as follows. Hasegawa’s dementia rating scale revised was 16/30 points, mini mental state examination was 20/30 points, the Japanese Wechsler adult intelligence scale revised showed verbal IQ 83, performance IQ 67, and total IQ 74. His routine laboratory investigations were normal. In particular, serum calcium and phosphorus were within the normal range. Twenty four hour urinary calcium and phosphorus were also within the normal range. Serum pyruvate, lactate, vitamins, including 1.25-(OH)2-vitamin D, and analysis of amino acids were within normal limits. Wasserman’s test, rheumatoid arthritis test, antinuclear antibodies, and DNA limits. Wasserman’s test, rheumatoid arthritis test, antinuclear antibodies, and DNA

... and its clinical characteristics are ... use neurofibrillary tangles with calcification of the bilateral globus pallidus and dentate nucleus, (d) atrophy of the frontotemporal lobes on CT or MRI, (e) calcification of the bilateral globus pallidus and dentate nucleus, (f) hypoperfusion in the frontotemporal lobes on SPECT or PET, (g) normal serum calcium and phosphorus concentrations.

Our present case showed presenile slowly progressive cortical dementia and loss of spontaneity. Brain CT and MRI disclosed symmetric non-arteriosclerotic, intracranial severe calcification. Although parathyroid hormone was slightly low, other hormones measured and serum calcium and phosphorus were within normal limits, suggesting that intracranial calcification was idiopathic. The CSF study of Aβ and tau protein is considered a biological diagnostic marker for Alzheimer’s disease.1,2 Decreased Aβ1–42 and increased tau protein are specific for diagnosis of Alzheimer’s disease. The CSF concentration of Aβ1–42 was within the normal range and the CSF concentration of tau protein was high which may indicate the absence of deficits in Aβ metabolism but the presence of neurofibrillary tangles. Besides, our patient had IgG λ M-proteinemia without Aβ1–42 protein. The study of bone marrow indicated no malignancy. The gammopathy was considered to be monoclonal gammopathy with undetermined significance. Previously Nishiyama et al3 reported a 41 year old woman with idiopathic intracranial calcification associated with M-proteinemia, followed by multiple myeloma. Her symptoms were dystonia, gait and speech disturbance, and dementia. This case suggested an association between M-proteinemia and dementia with intracranial calcification. Tentolouris et al4 reported three cases of familial calcification of the aorta and calcific aortic valve disease associated with a monoclonal λ-chain gammopathy. They indicated that immunological abnormalities were associated with calcifications, but they did not assess the CNS.

Without the pathological evidence, clinically this case appeared to be consistent with the criteria for diffuse neurofibrillary tangles with calcification and CSF studies may indicated the presence of neurofibrillary tangles. At present, little is known about the biological and pathogenetic findings in diffuse neurofibrillary tangles with calcification. The present case suggests that M-proteinemia may play a part in the development of dementia with intracranial calcification such as diffuse neurofibrillary tangles with calcification. Further biochemical studies are necessary in patients with dementia and intracranial calcifications.

KENJI ISOE
KATSUYA URARAMI
Division of Neurology, Institute of Neurological Sciences, Faculty of Medicine, Tottori University, Japan

MIKIO SHOJJ
Department of Neurology, Gunma University, School of Medicine, Japan

KENJI NAKASHIMA
Division of Neurology, Institute of Neurological Sciences, Faculty of Medicine, Tottori University, Japan

Correspondence to: Dr Kenji Isoe, Division of Neurology, Institute of Neurological Sciences, Faculty of Medicine, Tottori University, 683-0826 Nishimachi 36-1,Yonago, Japan. Telephone 0801 859 34 8032: fax 0801 859 34 8083.


Plain brain CT and 123I-IMPSPECT. Brain CT showed severe calcification in the basal ganglia, floor of the cerebral cortices, subcortical white matter, and cerebellum. 123I-IMPSPECT showed hypoperfusion in the frontotemporal lobes.

859348032: fax 0081859348083.

Nishimachi 36–1Yonago, Japan. Telephone 0081 859 34 8032: fax 0081 859 34 8083.

Subacute combined degeneration of the spinal cord after nitrous oxide anaesthesia: role of magnetic resonance imaging

Among all the possible causes of myelopathy, subacute combined degeneration of the spinal cord, neurological complication of vitamin B12 (cobalamin) deficiency, is one of the less often seen.

We report a case of subacute combined degeneration of the spinal cord occurring postoperatively after nitrous oxide anaesthesia in a patient previously undiagnosed to be vitamin B12 deficient.

A 73 year old woman underwent surgery for knee prosthesis; forty days later she suffered a femoral fracture due to an accidental fall. Two weeks after surgical stabilisation performed under general anaesthesia with nitrous oxide, the patient complained of gradual onset of loss of gait and weakness of the upper limbs associated with hypoesthesia of her hands and feet. Neurological deficits progressively worsened so that the patient was admitted to the hospital with severe tetraparesis with bowel and bladder dysfunction. Neurological examination disclosed paraplegia with pronounced loss of strength of the arms, generalised hyperreflexia, and loss of vibration sense; cranial nerves were normal, mental signs were not evident. Magnetic resonance imaging (1.0 T) of the cervicothoracic spine disclosed considerable cord swelling; no abnormalities of signal intensity in T1 weighted sagittal images were evident, whereas abnormally increased signal intensity lesions were detected in T2 weighted images in the posterior cord (figure, A) involving, to a lesser degree, also the lateral columns (figure, C). Brain MRI was unremarkable. Laboratory studies showed macrocytic (mean corpuscular volume 110 fl, normal 82 to 96 fl; packed cell volume 38%) anaemia (12 g/dl), low concentrations of iron (16 µg/dl, normal 37–145 µg/dl), and vitamin B12 (53 pg/ml, normal>200 pg/ml); folate was within normal concentrations of iron (16 µg/dl, normal 37–145 µg/dl), and vitamin B12 (53 pg/ml, normal>200 pg/ml); folate was within normal

The progression of pathological changes in the spinal cord is reflected in the course of the disease; this results in a clinical picture consisting of the association of myelopathy and polyneuropathy.

Mental signs are frequent, ranging from irritability, apathy, somnolence, suspiciousness, and emotional instability to a pronounced confusional or depressive psychosis with intellectual deterioration. Replacement therapy with cobalamin is usually followed by almost complete resolution of symptoms.

Demyelination is disclosed at MRI as high signal intensity lesions on T2 weighted images, explained by increased water content. A slight degree of expansion was seldom noted. Pronounced, multifocal contrast enhancement of the cervical and thoracic sections of the spinal cord after administration of gadolinium DTPA, indicating blood-CNS barrier disruption, was recently reported. Even if involvement of posterior columns is the origin of a characteristic MRI pattern, it is important to notice that similar findings can be found also in cases of purely spinal forms of multiple sclerosis, combined system disease of non-pernicious anaemia type, peripheral neuropathy (as in POEMS syndrome), and other rare pathological conditions.

Our patient, not known as vitamin B12 deficient, developed subacute combined degeneration of the spinal cord as the result of nitrous oxide anaesthesia.
Acute polyneuropathy with chronic lymphocytic leukaemia and paraproteinaemia: response to chlorambucil and prednisolone

Paraproteinaemic polyneuropathies are usually chronic and respond poorly to treatment. 1,2 This is not seen in the POEMS syndrome (polyneuropathy, organomegaly, endocrinopathy, monoclonal gammopathy, and skin changes), 3 in which polyneuropathy may improve after treatment for the osteosclerotic myeloma with which it is often associated. Progressive paraproteinaemic neuropathies may also be associated with multiple myeloma, Waldenström’s macroglobulinaemia, monoclonal gammopathy of undetermined significance, amyloidosis, and Castleman’s disease. 4 Monoclonal gammopathy is often detected in patients with chronic lymphocytic leukaemia, but the association between paraproteinaemic polyneuropathy and chronic lymphocytic leukaemia has not previously been reported. A 73 year old woman with diet controlled diabetes developed, over three days, progressive, bilateral leg weakness without sensory disturbance or sphincter symptoms. Examination disclosed a profound flaccid leg weakness with areflexia and flexor plantar responses. There was a partial right third cranial nerve palsy and poor adduction of the left eye, which improved, spontaneously within two weeks of admission. The spleen tip was palpable, but there was no hepatomegaly or lymphenadenopathy. Investigations included a white blood cell count of 105 x 10^9/l, platelets 90 x 10^9/l with normal haemoglobin, electrolytes, and liver function. An IgG-κ-paraprotein band (33 g/l) was detected on protein electrophoresis. Morphology and immunophenotyping of the white blood cells, PCR and protein electrophoresis showed no evidence of a monoclonal population. The serum albumin was 34 g/l (plasma 40 g/l). No atypical lymphocytes were seen on a centrifuged specimen. Nerve conduction studies performed 10 days after admission showed absent sural nerve sensory action potential and distal slow sensory motor conduction in both upper and lower limbs (ulnar nerve distal motor latency 4.7 ms and conduction velocity 64 ms; common peroneal nerve distal motor latency 8.5 ms and conduction velocity 34 ms). Ulnar nerve F response was 33.6 ms and no F responses were detected from common peroneal nerve stimulation. No antibodies against myelin associated glycoprotein were detected in the serum. A diagnosis of postinfectious acute inflammatory demyelinating polyradiculopathy (AIDP) prompted treatment with intravenous immunoglobulin. After six weeks without improvement, a combination of 60 mg prednisolone daily was started. A sural nerve biopsy showed severe loss of large and small myelinated fibres, but no malignant infiltration or deposition of amyloid light chains or cryoglobulin. Although there was no clinical improvement and still wheelchair bound, treatment with 10 mg chlorambucil daily was started. Within a week of this treatment she could lift her legs off the bed. After six cycles of combined treatment (two weeks 10 mg chlorambucil, 40 mg prednisolone daily, followed by two weeks off treatment) she was able to walk with a stick. Her white cell count had fallen to 8 x 10^9/l (46% lymphocytes) and her paraprotein to 8 g/l.

Chronic lymphocytic leukaemia is the most common human leukaemia but infrequently causes neurological symptoms. The predominant neurological complications of chronic lymphocytic leukaemia are due to meningal or peripheral nerve infiltration, both of which were excluded in our patient. Although rare cases of axonal peripheral neuropathy have been described in patients with chronic lymphocytic leukaemia, 5 we think that this is the first report of a paraproteinaemic demyelinating polyneuropathy associated with chronic lymphocytic leukaemia. This case is not typical of the POEMS syndrome in that the neuropathy was of relatively acute onset, there was no endocrinopathy, and, in POEMS, the underlying haematological disorder is usually osteosclerotic myeloma. An autoimmune aetiology of the polyneuropathy seems likely as quantitative deficits of the immunoglobulin M component and peripheral neuropathy. The prognosis for neuropathies associated with paraproteinaemia is generally poor, but this case suggests that chronic lymphocytic leukaemia, in addition to POEMS syndrome, is an example of one of the underlying disorders which may modify the natural history of the neuropathy.

4 Stacy CB, Di Rocco A, Gould RJ. Methionine in the treatment of neuropathy associated with vitamin B12, necessary for DNA synthesis and for the maintenance of myelin sheaths. The neurological effects of long term nitrous oxide exposure were first reported in 1939 in several people who used nitrous oxide for recreational purposes. 6 A neurological syndrome identical to that of vitamin B12 deficiency was noted. 7 Whereas short term nitrous oxide exposure in healthy people seems to have no appreciable sequelae, the administration of nitrous oxide anaesthesia in patients with unsuspected vitamin B12 deficiency can induce neurological changes, highlighting a previous subclinical condition.

Preoperative vitamin B12 concentrations should be obtained in patients with increased mean corpuscular volume indexes, or affected with gastric mucosa atrophy or previous gastro-intestinal resections. In these ways vitamin B12 deficiency would be easily corrected before and after anaesthesia and surgery to avoid possible neurological complications.

Alberto Beltramello
Institute of Radiology
MICHELA MANFREDI
Institute of Neurological Sciences, University of Verona, Italy
GIOVANNI PUFFINI
Institute of Neurological Sciences, University of Verona, Italy
DOMENICO IDONE
Division of Neurology, Policlinico Borgo Roma, Strada Le Grazie, 37100 Verona, Italy. Telephone 0039 45 8074779; Fax 0039 45 582445; email: abeltram@univr.it

References
4 Stacy CB, Di Rocco A, Gould RJ. Methionine in the treatment of neuropathy associated with vitamin B12, necessary for DNA synthesis and for the maintenance of myelin sheaths.

Letters, Correspondence, Book reviews

546

Neurology Psychiatry: first published as 10.1136/jnnp.64.4.561 on 1 April 1998. Downloaded from http://jnnp.bmj.com/ on December 6, 2021 by guest. Protected by copyright.
Endovascular electroencephalography during an intracarotid amobarbital test with simultaneous recordings from 16 electrodes

Recently, Boniface and Antoun reported endovascular EEG during intra-arterial amobarbital tests using an endovascular guide wire as the different electrode for bipolar recordings against an extracranial surface electrode (T3) or an average reference. They concluded that their technique was feasible to identify intracranial epileptiform discharges and was less invasive than other intracranial EEG methods with the advantage that it was possible to move the guide wire between different intracranial sides. They also mentioned “the potential to achieve more in a bipolar format when the electrical characteristics of the electrodes are optimised”.

Our experience with this technique prompted us to use a multilead catheter developed for cardiological examinations (Pathfinder-TM, Cardima, 47201 Lakeview Boulevard, Fremont, CA 94538, USA) with eight pairs of electrodes (electrode length 0.5 mm, interelectrode spacing 2 mm; electrode pair spacing 6 mm). This allows bipolar recording simultaneously from each electrode to an extracranial surface electrode (FZ) (figure). Our endovascular EEG shows pulse artefacts in some leads, which are a common problem of this technique,1,2 but they were less pronounced than other recordings.3 Using the tip of the guide wire as the different electrode, as done by previous groups,1,3 has the disadvantage that recordings are achieved from a single area at one time only and that the guide wire has to be moved to record from other parts of the temporal lobe. The catheter we used, however, provides simultaneous recordings from 16 different points over a length of 72 mm of the temporal lobe. Such a technique may be of interest during pharmacological activation of epileptogenic foci with short acting barbiturates,4 and especially during the intracarotid amobarbital test, as this test is routinely performed during presurgical evaluation of patients with medically intractable temporal lobe epilepsy and is known to activate the epileptic focus in more than half of the patients.5 The clinical use of this technique awaits further evaluation in an appropriate number of patients.

FRANK THÖMKE
Department of Neurology
PETER STOETER
Department of Neuroradiology
DAGMAR STADER
Department of Neurology, University of Mainz, Germany

Endovascular EEG using a catheter with 16 electrodes. Bipolar recording between every single electrode and an extracranial surface electrode at EZ. (The electrodes were placed one after another over a length of 72 mm, Cat1 refers to the distal electrode at the tip of the catheter and Cat16 to the proximal electrode at the end of the line of electrodes.)


Standardising care and clinical trials

In his editorial on the Brain Trauma Foundation guidelines for the management of severe head injury, Kirkpatrick argues that standardisation of care is a prerequisite for the conduct of multicentre randomised trials.1 A similar concern seems to have motivated the European Brain Injury Consortium to develop its “expert opinion” based guidelines.2 This is not the case. Providing that a trial is large enough, randomisation will ensure that interventions, even in aggregate, have in- sufficicnt power to detect reliably moderate but clinically important treatment effects. Even though thousands of patients each year are treated with hyperventilation, barbiturates, mannitol, and steroids, clinical trials of these interventions, even in aggregate, have involved less than a few thousand patients, and for hyperventilation, mannitol, and barbiturates, existing trials comprise less than a few hundred patients. It is not surprising that the Brain Trauma Foundation was unable to define evidence based standards of care.

IAN ROBERTS
Cochrane Brain and Spinal Cord Injury Group, Department of Epidemiology, Institute of Child Health, University of London, UK

Correspondence(432,829),(994,858)
Kirkpatrick and Pickard reply:

We are grateful for the letter from Roberts which highlights the concept that randomised controlled trials can detect small treatment benefits provided such trials are large enough. Although correct in theory, this concept still assumes that the pathology treated shows some degree of homogeneity. It is now becoming clear that the number of known and unknown confounding variables with acute brain injury dramatically increases the number of patients required to prove efficacy. At some point this number exceeds that which is practicable and affordable, especially as the regulatory authorities demand that pharmaceutical phase III trials collect vast and expensive data sets. The randomised controlled trials which have shown treatment efficacy (for example, streptokinase for acute myocardial infarction, aspirin and dipyrميدole for the prevention of stroke and myocardial infarction, nimodipine for subarachnoid haemorrhage, and carotid endarterectomy [for the prevention]) have considered conditions with well defined end points sharing common pathological mechanisms. Head injury does not fall into this stereotype in view of the multiple interacting and overlapping pathophysiological mechanisms and the range of possible outcomes which are difficult to quantify.

Confounding variables influence outcome in particular conditions to different degrees. Attention to blood pressure, fluid balance, and systemic oxygenation may have only a modest influence on outcome after myocardial infarction, but are known to have a profound influence on the victim of brain injury. A variety of confounders may have variable effects on different pathophysiological events operating within the same condition. Thus hyperventilating a patient with head injury with associated cerebral oligaemia is likely to be harmful, whereas this approach for raised intracranial pressure due to hyperaemia is more appropriate. By contrast the use of mannitol (which increases cerebral blood flow) may be beneficial for the former, but potentially harmful for the second. Hence the effect of a given intervention is not a simple one. Such a simple and straightforward way of thinking is not always appropriate. The suggestion that head injury subgroups be identified and a more stable physiological baseline and a cellular pathophysiological mechanism be aimed at may reduce the “noise” in the system. The purpose of publishing standards of care in the head injury environment is largely educational, highlighting the lack of definative evidence and the difficulty in obtaining it. None the less, ironing out key important variables will help to generate a substrate for testing intervention on defined subpopulations which share common pathology. Even if the standard proves to be harmful, delivery to the test population will provide a more stable pathophysiological baseline and a greater chance of showing individual therapeutically efficacy.

P J KIRKPATRICK
D PICKARD

BOOK REVIEWS


For neurosurgeons, head injuries are always with us. The melodies of bagpipe tunes, unchanging in the background while the music goes on elsewhere. This new book is a welcome addition to the American Academy of Neurology on gait disorders in elderly people, and the contributors represent some of the participants, including neurologists, geriatricians, physiotherapists, and physiologists. Its stated aim is to be of use to those in clinical practice but also to those planning research.

The book is well structured. It commences with overviews on the physiology of static balance and gait, the effects of aging on them, and clinical research methodology. These are mostly excellent, apart from an over detailed exposition of the neurophysiology of in cats, the relevance of which to two legged humans is difficult to grasp. All the authors are keen to stress the importance of detailed assessment, which is undoubtedly true but becomes rather repetitive.

The book usefully brings together a wide and multidisciplinary literature on a complex and fascinating problem. The mistaken assumption that old age itself is a cause of poor balance and falls is still widely held and as a result many professionals display a depressingly defeatist attitude to their management. This book confirms that impaired gait and balance in an older person constitutes a syndrome with a rich differential diagnosis, and that even when a treatable cause cannot be found, much can be done to reduce disability.

NICKI COLLEDGE

The book is a welcome addition to the neurosurgical literature. It is well produced and beautifully presented. Although rather expensive it will no doubt become an indispensable companion for those of us who still have to care for these distressing and still too frequent cases.

DAVID G HARDY


Community studies show that around 30% of people aged over 65 each year. Only 10% to 15% of falls result in serious injury but 92% of hip fractures and 96% of wrist fractures in older women are caused by falling. There are important consequences even when no serious physical injury results. The anxiety caused by falling can result in loss of confidence and self imposed restrictions on activities, eventually resulting in admission to institutional care.

This book is based on an annual course held at the American Academy of Neurology on gait disorders in elderly people, and the contributors represent some of the participants, including neurologists, geriatricians, physiotherapists, and physiologists. Its stated aim is to be of use to those in clinical practice but also to those planning research.

The book is well structured. It commences with overviews on the physiology of static balance and gait, the effects of aging on them, and clinical research methodology. These are mostly excellent, apart from an over detailed exposition of the neurophysiology of in cats, the relevance of which to two legged humans is difficult to grasp. All the authors are keen to stress the importance of detailed assessment, which is undoubtedly true but becomes rather repetitive.

The book usefully brings together a wide and multidisciplinary literature on a complex and fascinating problem. The mistaken assumption that old age itself is a cause of poor balance and falls is still widely held and as a result many professionals display a depressingly defeatist attitude to their management. This book confirms that impaired gait and balance in an older person constitutes a syndrome with a rich differential diagnosis, and that even when a treatable cause cannot be found, much can be done to reduce disability.

NICKI COLLEDGE
Epilepsy and pregnancy. Edited by T. TOMLIN, L. GRAH, M. BILANDJA, and J. S. JOHANNESSEN. (Pp 215; £38.00.) Published by Wrightson biomedical publishing, Petersfield. 1997. ISBN 1 871816 36 X.

The use of antiepileptic drugs in women of childbearing age is one of the most thorny issues facing neurologists. The stakes are high but there is no universally agreed approach to management. This book explores various aspects of the problem, including teratogenicity, epilepsy control in pregnancy, and the consequences of seizures to mother and child in pregnancy and at delivery. There are valuable chapters describing increasing knowledge of the mechanisms of teratogenicity of antiepileptic drugs and the minor developmental consequences of anticonvulsant exposure in utero; an area of increasing concern. Breast feeding is also covered. I suspect that most readers would expect to discover a detailed review of current evidence in relation to teratogenicity. This section is really the nub of the book but it lacks sufficiently detailed statistics for a text devoted to this subject and I think that it is just a gateway to the source literature. There are also several key issues in relation to new drugs: how and when they should be used in women of child bearing age; how to manage their pregnancies; and how to coordinate postmarketing surveillance. These matters are not considered; nor is there any information on the most recent antiepileptic drugs, even though some data are available from postmarketing surveillance and animal studies. This book covers a broad range of issues competently in a series of brief chapters with good literature citations but lacks a sufficiently detailed analysis of teratogenicity of antiepileptic drugs to be of real help to the clinician in making decisions in this potential minefield.

MARK MANFORD


Pregnancy is a condition encountered infrequently in neurological practice and yet it complicates many facets of patient management, including investigation, drug therapy, anaesthesia, and surgery. As such, clinicians may be unfamiliar with the most appropriate way to manage the condition, nor able to counsel the patient fully as to the precise risk both to the foetus and herself. Although this information is available in the literature it is not readily available, particularly to an emergency setting. This book is designed to fill that void by distilling the necessary information into a single slim volume.

This text has been produced by the American Association of Neurological Surgeons as part of its Neurological Topics series. It follows the familiar pattern of a review of the literature which is concluded by a short series of multiple choice questions intended as revision for trainees. The book is divided into three parts. The first is a general section which is equally applicable to various disciplines, not just to neurosurgery. It includes the potential metal toxicity of commonly used drugs, the risks associated with diagnostic imaging and with anaesthesia, haemostatic and thrombotic considerations, and the physiological changes to cardiovascular and cerebrovascular function that occur during pregnancy. The second section covers specific neurological disorders such as back pain, carpal tunnel syndrome, psychiatric tumours, subarachnoid haemorrhage, venous thrombosis, benign intracranial hypertension, hydrocephalus, and ventriculoperitoneal shunt management. The final part discusses patient positioning and foetal monitoring for surgery, the intrathecal management of developmental disorders, the current status of intrathecal surgery, and ethical issues surrounding the management of brainstem death and the permanent vegetative state.

This is a truly excellent volume. All that could be reasonably expected to be covered in a book on this subject is here. The chapters are clear, concise, and have been referenced extensively for further reading. Every practising neurosurgeon should have ready access to this work.

ROBERT MACFARLANE


I approach handbooks with a mixture of eagerness and dread. Some are what they purport to be, fit into the palm and are easy to use in the clinical setting. Others, however, require no little effort to lift and are clearly written for the whitecoat pocket of the junior doctor and is comprehensive in its summary of the assessment and treatment of patients presenting with stroke—the authors clearly dislike the overused term “cerebrovascular accident” which they point out contributes nothing to the idea that this is a complex disorder requiring comprehensive appraisal and therapy.

The early chapters provide an extensive guide to the assessment and treatment of the “neurological patient”. Smaller sections follow on less obvious subjects such as the telephone assessment of subjects and more detailed differential diagnosis. Opinions as to the appropriate treatment of cerebral infarction presenting early are evolving rapidly and this text takes an active line, suggesting thrombolytic therapy in line with the certain recent trials and the licensing of tPA for treatment of stroke in the United States. Rehabilitation becomes the priority in the long term management of the stroke patient and this section is short in comparison with others. By contrast, the appendices provide detailed illustrations, disability scales, risk scales, and algorithms, although colour diagrams could have lifted the illustrations somewhat and some of the assessment forms did not copy well.

Overall, this is an extremely useful tool for the admitting doctor in the assessment and care of the patient with suspected cerebrovascular disease. It should be noted, however, that treatment options suggested are slanted towards practice in the United States making this portion of the book less helpful in the United Kingdom where practice tends to be more conservative.

Despite this, the publication clearly and concisely fulfills its role as a handbook and should stimulate the physician into further examination of this important subject.

ALASTAIR LANSBURY


I was a little bemused when first presented with this book, Neurologic Disorders in Women. Like many things in life, I suppose I had always accepted that it would be male to be male. After all, are we not always telling men with vascular disease that whereas they can reduce some of their risk factors they can’t change being male, or being aware of postmenopausal linked prevalence in young women with what has been labelled aggressive multiple sclerosis and then there are the x linked muscular dystrophies. So where is the neurological problem in being female? Migraines and epilepsy with the menstrual cycle, pregnancy alters the course of multiple sclerosis and the connective tissue diseases, and then there are the potential complications of hormone treatment. Yet it in the shape of the oral contraceptive pill or hormone replacement therapy. And maybe we do have more headaches. But is that really enough on which to base a book? So with these preconceptions I opened the book.

Cudkowicz and Irizarry (one woman, one man: an important balance in having such a book accepted) and colleagues from the Massachusetts General Hospital, have divided neurology into nine broad categories including, epilepsy, stroke, headache, and multiple sclerosis. In each chapter a brief overview is provided with particular reference to the incidence and prevalence in females and noting any sex specific features of the disease. Emphasis is then placed on the interaction of the disease with the female functions of menstruation, menopause, and reproduction including both the hormonal and other aspects of pregnancy, oral contraception and hormone replacement. Much of what is discussed is small print that would be emblazoned in larger textbooks—for example, that whereas issues surrounding a young woman with multiple sclerosis or a connective tissue related vasculitis who wishes to get pregnant are generally known, what if she had Parkinson’s disease or chronic inflammatory demyelinating polyneuropathy or if that same woman wished to breast feed? Such issues are considered. Important pharmacological areas are discussed in detail: the interaction of antiepileptic drugs with other medications, in particular the oral contraceptive pill, the teratogenicity of certain medications, and the role of the oral contraceptive pill and hormone replacement therapy in cerebrovascular disease. The neurological complications, both direct and paraneoplastic, of predominantly female malignancies are also described; a female presenting with a Lambert-Eaton myasthenic syndrome might well have a small cell carcinoma of the lung but could also have a similar carcinoma of the uterus or breast carcinoma and then there is the rare stiff man syndrome described in women with breast carcinoma.
So, despite my starting position that there was not such a specific gap in the neurological literature, I have been converted. Perhaps the book should have been named The Hazards of being a Female with a Neurological Disease as the strengths of this book lie in describing the role that the menstrual cycle, reproductive functions, and associated factors have in altering the course of a disease or how they alter the therapeutic options. The other great strength of this book is its thorough and up to date referencing. Small and concise, this book will provide an excellent reference source for all physicians treating neurological disorders in women.

GILLIAN HALL


As the title suggests, this edited book is a tribute to the late Norman Geschwind written by 30 or so of his former colleagues and pupils. The first quarter is extremely engaging and consists of series of short essays dealing with Geschwind as “educator”, “advisor”, “role model”, “teacher”, “mentor”, etc. The most enduring impression left by this section is what a truly remarkable person he was. I finished many chapters wishing that my exposure had not been limited to hearing a single lecture.

Subsequent sections of the book are more conventional and cover Geschwind’s contributions in the areas of language disorders, apraxia, disconnection syndromes, frontal lobe disorders, epilepsy, and aspects of cerebral dominance. Most of the chapters are very well written, although there could perhaps have been a greater editorial input to avoid repetition. For those who have trained more it is salutary to be reminded of the monumental contributions made by this founding father in such a wide range of topics. The book is fitting tribute to a great man. It should be bought by anyone with an interest in the origins and development of behavioural neurology and neuropsychology but the high price is likely to deter a wider readership.

JOHN HODGES

Readers might be interested in the following:


