Proton magnetic resonance spectroscopy pattern of progressive multifocal leukoencephalopathy in AIDS

Alex Iranzo, Angel Moreno, Jesus Pujol, Joan Martí-Fàbregas, Pere Domingo, Joan Molet, Josep Ris, Josep Cadafalch

Abstract

The objective was to determine whether the use of intermediate echo times (135 ms) in proton magnetic resonance spectroscopy (1H-MRS) detects a homogenous pattern in progressive multifocal leukoencephalopathy (PML) in HIV-1 infected people, and to confirm the results of previous studies.

Six patients infected with HIV-1, with PML established by biopsy, and six healthy age and sex matched volunteers were evaluated to define their spectroscopic pattern. 1H-MRS spectra performed at 1.5 T were obtained with the STEAM sequence; TE/TM/TR, 20 ms/13.7 ms/2000 ms; 2500 Hz, size 2048 points, 256 acquisitions (STEAM-20) and with the PRESS sequence; TE/TR, 135 ms/2000 ms; 2500 Hz, size 2048 points, 256 acquisitions (PRESS-135). A single voxel was placed on the lesions and on the parieto-occipital white matter of controls. The peaks of N-acetylaspartate (NAA), choline (Cho), myoinositol (mI), lactate, and lipids were considered, and the results were expressed using creatine as reference.

Spectra of PML lesions were characterised by significantly reduced NAA, lactate presence, and by significantly increased Cho and lipids compared with control group values.

These results indicate that 1H-MRS detects a homogenous pattern in PML lesions. Recent studies, together with this, suggest that 1H-MRS may help in the diagnostic approach to patients with suspected PML lesions associated with AIDS.

Methods

Patients

Studies were performed in six patients with HIV-1 with pathologically established PML lesions and in six healthy age matched controls. HIV-1 infection was documented by enzyme linked immunosorbent assay (ELISA) and confirmed by western blot analysis. The diagnosis of AIDS was based on the clinical criteria established by the Centers for Disease Control. In all cases, neurological examination, laboratory data, MRI with and without contrast, and 1H-MRS were recorded. The indication for biopsy was determined according to radiologically detectable lesions with no regression tendency in patients having antitoxoplasmic therapy, or white matter focal lesions. All six patients included in this study gave their written consent for brain biopsy, MRI, and 1H-MRS.

Control subjects were healthy volunteers matched by age and sex selected from the hospital staff.
MR STUDIES

Both, MRI and \(^1\)H-MRS, were performed before brain biopsy. Localised \(^1\)H-MRS was conducted immediately after MRI. MRI studies were performed using a Signa System 1.5 T (General Electric Medical Systems, Milwau-kee, WI, USA) and a quadrature head coil as previously described.\(^{13}\) The MRI study was based on coronal, sagittal, and axial projections using spin echo sequences.

\(^1\)H-MRS consisted of a “stimulated echo acquisition method” (STEAM) pulse sequence.
RESULTS

CLINICAL FINDINGS

Two men and four women, with a mean age of 38.6 (SD 7.0) years (range 30–51 years) were studied. Risk factors for HIV-1 infection were intravenous drug misuse (four patients) and heterosexual transmission (two patients). In two patients, PML was the AIDS defining illness. The mean CD4 count was 40.5 (SD 24.1) mm3 (range 8–76 mm3). Two patients presented with Balint’s syndrome, one with cortical blindness, and three with both aphasia and right hemiparesis.

MR FINDINGS

Brain MRI showed a single lesion in two patients and multiple lesions in four patients, all located in the subcortical white matter. Lesions consisted of areas of hypointensity on 1H-MRS examination and pathologically, lesions consisted of areas of hypointensity on Brain MRI showed a single lesion in two patients

MR FINDINGS

Brain MRI showed a single lesion in two patients and multiple lesions in four patients, all located in the subcortical white matter. Lesions consisted of areas of hypointensity on 1H-MRS examination and pathologically, lesions consisted of areas of hypointensity on

PATHOLOGICAL FINDINGS

In all patients image guided biopsies were diagnostic showing areas of demyelination with axonal sparing, inclusions within swollen oligodendrocytes, astrocytosis, and enlarged multinucleated astrocytes with bizarre and mitotic nuclei. In situ hybridisation (ISH) for JCV showed DNA in the nuclei of oligodendrocytes and astrocytes in all the patients.

Discussion

In all PML lesions results showed a homogeneous spectroscopic pattern which was characterised by a decrease of NAA/Cr ratio and an increase of lac/Cr, Cho/Cr, and lipids/Cr ratios compared with healthy control subjects. This pattern, in agreement with the results of Chang et al., could be interpreted as a decrease of NAA, lactate presence, and an increase in Cho and lipids. However, as creatine concentration may be decreased in PML, the other metabolites would seem to be higher than the actual concentration. The findings of Chang et al. and ours suggest that 1H-MRS may support the diagnostic approach in patients with HIV with suspected PML.

We used the 135 ms echo time in the PRESS sequence. This intermediate echo time has the advantage of offering better signal to noise ratio
in resonances of normal brain metabolites, and a higher visibility and unequivocal assignation of lactate due to characteristic phase modulation. Precisely, the use of long echo times produces a strong reduction of resonance intensity that at low concentrations of the metabolites responsible may be indistinguishable from the spectral noise level.

In our study, ¹H-MRS results were obtained from pathologically established PML lesions. Because ¹H-MRS detects abnormalities in asymptomatic patients infected with HIV,⁷⁹ we compared spectra of PML lesions with those in normal brain parenchyma of healthy subjects and not with their contralateral hemisphere.

Our findings are consistent with neuropathological data. As NAA is a neuronal marker, its decrease in PML lesions could be the result of the axonal loss shown by biopsy. Lactate was detected in all PML lesions, both in short and long echo time. The lactate presence is related to cellular hypoxia and decreased mitochondrial ATP synthesis. In PML, the origin of the lactate peak may arise from the presence of large numbers of microglial phagocytes and necrotic oligodendrocytes as described in acute multiple sclerosis plaques.⁷⁸ Increase in Cho resonance (glycerophosphocholine, phosphocholine, choline) and lipids may reflect the accumulation of myelin breakdown products and rapid cell membrane synthesis.⁷ Both processes, myelin breakdown and enlarged bizarre astrocytes (which were seen undergoing mitosis and malignant in aspect), have been found in all our neuropathological analyses of PML biopsies. PML lesions showed raised mI, though not significantly, compared with normal controls. As mI is present within neuroglial cells, its increase may reflect the astrocytic proliferation in all our six patients.

In summary, our results reflect the neuropathological processes and show a homogeneous and uniform spectroscopic pattern in PML lesions established by biopsy. Even though ours is a small series, these data suggest that ¹H-MRS may help as a non-invasive examination to differentiate between PML and other focal brain lesions in HIV infected patients. However, further work will be necessary to evaluate the discriminative ability of our indices in the study of HIV related intracerebral lesions.

This study was supported by a grant from Sant Pau-Citran.