Axonal phenotype of Charcot-Marie-Tooth disease associated with a mutation in the myelin protein zero gene

F Chapon, P Latour, P Diraison, S Schaeffer, A Vandenberghe

Abstract
A French family had Charcot-Marie-Tooth disease type 2 (CMT2) which was characterised by late onset of peripheral neuropathy involvement, Argyll Robertson-like pupils, dysphagia, and deafness. Electrophysiological studies and nerve biopsy defined the neuropathy as axonal type. Genetic analysis of myelin protein zero (MPZ) found a mutation in codon 124 resulting in substitution of threonine by methionine. One of the patients, presently 30 years old, showed only Argyll Robertson-like pupils as an objective sign but no clinical or electrophysiological signs of peripheral neuropathy.

Keywords: Charcot-Marie-Tooth; myelin protein zero; axonal neuropathy; Argyll-Robertson syndrome

Charcot-Marie-Tooth disease (CMT) is a group of clinical, paraclinical and genetic heterogeneous disorders affecting the peripheral nervous system. CMT type 1 (or CMT1) is the “demyelinating” form of the disease with onion bulb formation due to demyelination and remyelination, and severely reduced nerve conduction velocities (NCVs) in the motor and sensory nerves. CMT2 is the “axonal” form with no segmental demyelination on nerve biopsies and normal or subnormal NCVs. CMT1 and CMT2 can be differentiated on the basis of motor median NCVs of 38 m/s.1 Mutations in the myelin protein zero (MPZ) gene have been associated with CMT1.2 Different phenotypes have been associated with different MPZ mutations1 including CMT1B with onset within the first two decades of life, Dejerine-Sottas syndrome with onset in early childhood, and congenital hypomyelination. For CMT2, three candidate gene loci are known:1 1p36, 3q13-q22, and 7p14.

We here report the occurrence of a CMT2 family with a mutation in the MPZ gene hitherto involved in CMT1. Moreover, the family we describe shows very peculiar clinical features.

Materials and methods
CLINICAL AND PATHOLOGICAL EVALUATION
The family reported herein originates from Normandy (western France) and includes three generations (fig 1). Based on family history, the mother and maternal grandfather of the first generation were known to be affected by a peripheral neuropathy. Clinical data were obtained in all patients and relatives. Electrophysiological investigation was performed on six living subjects (I.7, II.2, II.5, II.7, III.1, and III.2) as well as in one subject now deceased (I.1). Furthermore, two subjects also underwent a sural nerve biopsy (I.1 and II.2). Light microscopic and ultrastructural examination were done according to standard procedures. Study of teased fibres was performed on case II.2, according to the classification proposed by Dyck et al.4

GENETIC STUDIES
DNA from all living family members was analysed. Exon sequences of MPZ were subjected to single strand conformational polymorphism analysis. Primer sequences, PCR amplification, and sequencing were performed as described before.5 PCR fragments were digested with

368 bp
189 bp
179 bp

Figure 1 (Top) Pedigree of family Ly135 with a mutation in MPZ. Carriers of mutation are represented by a filled symbol, unaffected subjects by an open symbol. (Bottom) Polymerase chain reaction (PCR) analysis: the mutation creates a restriction site cleaved by the enzyme Hsp92II. The sample on the right is a control sample of a healthy unrelated person. The normal PCR product is 368 nucleotides in length. Digested fragments are 189 and 179 bp long.
restriction enzyme Hsp92II according to the manufacturer’s protocol (Promega Corp, Madison, WI, USA).

Results

CLINICAL, ELECTROPHYSIOLOGICAL, AND PATHOLOGICAL INVESTIGATIONS

Data from the seven affected subjects (four out of six in the first generation, two out of six in the second generation, and one out of the third generation) are reported in the table. Although three of them (I.1, I.2, I.4) were deceased at the time of the present study, they could none the less be identified as being affected by a peripheral neuropathy, according to their medical history. One of them with an association of CMT and Argyll-Robertson-like pupils was reported earlier.

The pedigree is consistent with the transmission of an autosomal dominant trait.

Limbs

Onset of peripheral neuropathic symptoms was between the fourth and the sixth decades of life in five out of the seven patients investigated; the two remaining patients (II.2 and III.1) showed an earlier onset, with lightning pains as first symptom. All the patients, except case III.1, who is presently only 30 years old, gradually developed atrophy and weakness of the distal muscles, firstly in the legs, secondly, in the upper limbs. Major disability in walking was noted around the 50s or later. Patient II.2 is more severely disabled, using a wheelchair since the age of 49. Sensation was altered with unsteady gait and frequent complaints of pain early in the evolution. Trophic changes, as purplish discoloration of the skin, oedema, coolness, and more rarely plantar ulcers, were sometimes seen. Six patients were deaf.

Argyll-Robertson-like pupils were present in all the affected patients except patient I.7 in whom this sign, not noticed in youth, could not be detected as the patient showed glaucoma and cataract at the time of examination. It should be noted that Argyll-Robertson-like syndrome was the only objective symptom in patient III.1.

Difficulty in swallowing occurred in four of the patients and in patient I.2 it resulted in choking with aspiration pneumonia and subsequent death.

Electrodiagnostic studies showed normal or moderately slowed motor nerve conduction velocities (MNCVs) but very low motor compound muscle action potential (CMAP) amplitudes and also decreased sensory potential amplitudes (measured in patient II.2). These findings, consistent with the diagnosis of axonal neuropathy, were found in all patients investigated except in patient III.1; in this patient, both amplitudes and velocities were normal as well as recruitment.

Nerve biopsy, performed in patients I.1 and II.2 only, did not disclose any sign of demyelination and remyelination (onion bulbs) but showed depopulation and rare clusters of small myelinated fibres (fig 2A, C). Examination of teased fibres, performed in patient II.2, disclosed some specimens of type E fibres (fig 2 B), typical for axonal degeneration.

GENETIC ANALYSIS

Screening the MPZ gene for the presence of SSCP’s showed an aberrant electrophoretic migration profile of exon 3. Sequencing disclosed a mutation in codon 124, resulting in substitution of threonine by methionine (ACG→ATG). This mutation creates a Hsp92II and abolishes a MaeII restriction enzyme site and study of transmission in the family showed concordance with Argyll-Robertson-like pupils and CMT in all patients except patient III.1 (fig 1). In this patient, who also had the mutation, Argyll-Robertson-like pupils was the only objective sign of the disease.

Discussion

We studied a CMT2 family in which a mutation in MPZ was found. The complete clinical presentation was a sensorimotor neuropathy with trophic changes, but several points have to be emphasised: a late onset was found in most of the patients. However, the recorded age of onset may be delayed in relation to exact onset due to the lack of objective signs of neuropathy; indeed, walking disability caused by weakness in the limbs only started around the age of 50. When the disease was found earlier (patients II.2 and III.1), diagnosis was based only on subjective signs—for example, pains, possibly with Argyll-Robertson-like pupils. Indeed, these were the only abnormalities shown by patient III.1, presently 30 years old.

Argyll-Robertson-like pupils associated with CMT has been previously documented. One of the cases reported by these authors belongs to the family described here, (patient I.1), and diagnosed as a patient with neural type CMT with Argyll-Robertson-like pupils. In another
family, with association of neural CMT and Argyll-Robertson-like pupils, absence of linkage to a candidate region for CMT2 in 1p35–36 was reported. It would be of interest to re-examine such families for the presence of mutations in the MPZ gene.

Another peculiar clinical sign, characteristic of this family, is the occurrence of deafness, a
characteristics are consistent with axonal lesions.9

amplitudes. These electrophysiological charac-

teristic of the disease; it could be severe in

some patients and even lead to death due to

disability in swallowing is another

 characteristic of the disease; it could cause

several deaths and choking in cases of

several patients.

According to electrophysiological and histo-

logical studies, this type of hereditary neu-

ropathy was classified as axonal. Electrophysi-

ological measurement of median MNCVs has

been a valuable tool in differentiating between

CMT1 and CMT2 forms. A discriminatory

value of 38 m/s has been postulated with the

lowered velocities for the CMT1 form.1

Because two members of the family had

median MNCVs above this value, they were
classified as CMT2; one of them is paucisymp-
tomatic (pains only), but the other one has
classic clinical features of CMT. In the patient
with median MNCVs <38 m/s (II.2), CMAPs
were very low as well as the sensory potential
amplitudes. These electrophysiological charac-
teristics are consistent with axonal lesions.8

Although mutations in MPZ have been pre-
viously associated with CMT1, with very low
MNCVs, usually <25 m/s, mutations in MPZ
cover a large range of phenotypes including
severe congenital hypomyelination, Dejerine-
Sottas syndrome, CMT1B with lowered
MNCVs, and CMT2 with normal or subnor-
mal MNCVs. Recently, Marrous et al.10 re-
ported another mutation in the MPZ gene also
resulting in axonal CMT as shown by median
MNCV. The patients in their studied family
present a typical CMT clinical phenotype, but
without the very particular signs we report here
(deafness, Argyll-Robertson-like pupils, and
dysphagia).

In an earlier report,11 we described a mutation of
codon 122, close to codon 124. According to a
molecular model for the extramembraneous
part of the protein, amino acid 122 should be
located at the base of the molecule close to the
Schwann cell membrane.12 The phenotype
associated with this mutation was mild with late
onset with NCVs between 20 and 40 m/s. No
sign of deafness or abnormal pupillary response
was found. To date, the same mutation in codon
124 has been described in two other reports12,13
in which the patients are poorly documented
and classified as mild, late onset CMT1 types.

It is highly probable that the occurrence of this
mutation has so far been underestimated due
either to an inaccurate diagnosis of mild cases or
to the fact that the MPZ gene is not routinely
screened for mutations in patients with CMT2.

It is possible that the mutation of codon 124
affects a structure specific for the ciliar nerves1
together causing Argyll-Robertson-like pupils.
However, Argyll-Robertson-like pupils are not
specific for phenotypes associated with MPZ
mutations.

We thank Professor Lapresle and Professor Cambier who
provided clinical data from their patients, and S Gamon and
personnel of the Biochemistry laboratory, Hôpital de l’Antiquaille, Lyon for their technical assistance. This study was
supported by the Association Française contre les Myopathies and the Hospices Civils de Lyon. Our laboratories are members
of the European CMT Consortium sponsored by the EU
Biomed 2 grants No CT961614 and No CT960055.

1 Harding AE, Thomas PK. The clinical features of hereditary
2 De Jonghe P, Timmerman V, Nelis E, et al. Charcot-Marie-
Tooth disease and related peripheral neuropathies. Journal
1B, Dejerine-Sottas, and congenital hypomyelination. Neuron
4 Dyck PJ, Giannini C, Lass A. Pathologic alterations of nerves.
In: Dyck PJ, Thomas PK, Griffin GW, et al. eds. Peripheral
of myelin genes in CMT1 patients by SSCP analysis: ident-
ification of new mutations and polymorphisms in the P0
6 Salisachs P, Lapresle J. Argyll-Robertson-Like pupils in the
neutral type of Charcot-Marie-Tooth disease. Eur Neurol
7 Andrè-Van Leeuwen M. De la valeur des troubles pupilaires
en dehors de la syphilis comme signe précoce ou forme
fruste d’une affection héréditaire dégénérative. III. Une
souche d’amyotrophie de Charcot-Marie-Tooth présentant
des troubles pupillaires chez un grand nombre de ses mem-
bres et, chez l’un d’entre eux, des lésions typiques de
décrites par le professeur l’Antiquaille, Lyon for their
technical assistance. This study was
supported by the Association Française contre les Myopathies
and the Hospices Civils de Lyon. Our laboratories are members
of the European CMT Consortium sponsored by the EU
Biomed 2 grants No CT961614 and No CT960055.

We thank Professor Lapresle and Professor Cambier who
provided clinical data from their patients, and S Gamon and
personnel of the Biochemistry laboratory, Hôpital de l’Antiquaille, Lyon for their technical assistance. This study was
supported by the Association Française contre les Myopathies and the Hospices Civils de Lyon. Our laboratories are members
of the European CMT Consortium sponsored by the EU
Biomed 2 grants No CT961614 and No CT960055.

1 Harding AE, Thomas PK. The clinical features of hereditary
2 De Jonghe P, Timmerman V, Nelis E, et al. Charcot-Marie-
Tooth disease and related peripheral neuropathies. Journal
1B, Dejerine-Sottas, and congenital hypomyelination. Neuron
4 Dyck PJ, Giannini C, Lass A. Pathologic alterations of nerves.
In: Dyck PJ, Thomas PK, Griffin GW, et al. eds. Peripheral
of myelin genes in CMT1 patients by SSCP analysis: ident-
ification of new mutations and polymorphisms in the P0
6 Salisachs P, Lapresle J. Argyll-Robertson-Like pupils in the
neutral type of Charcot-Marie-Tooth disease. Eur Neurol
7 André-Van Leeuwen M. De la valeur des troubles pupilaires
en dehors de la syphilis comme signe précoce ou forme
fruste d’une affection héréditaire dégénérative. III. Une
souche d’amyotrophie de Charcot-Marie-Tooth présentant
des troubles pupillaires chez un grand nombre de ses mem-
bres et, chez l’un d’entre eux, des lésions typiques de
névrite hypertrophique. La famille Smits. Monatsschrift für
Psychiatrie und Neurologie 1943;108:89.
8 Timmerman V, De Jonghe P, Spoelders P, et al. Linkage and
mutation analysis of Charcot-Marie-Tooth neuropathy
in families with chromosomes 1p33–36 and Xq13.
Neurology 1996;46:1311–8 Monatsschrift für Psychiatrie und
Neurologie.
9 Research criteria for diagnosis of chronic inflammatory
demyelinating polyneuropathy (CIDP). Report from an Ad
Hoc Sub Committee of the American Academy of Neuro-
10 Marrous MG, Vaccargiu S, Marrous G, et al. Charcot-
Marie-Tooth disease type 2 associated with mutation of the
11 Blandinet-Grossard F, Pham-Dinh D, Dauguet A, et al. Charcot-
Marie-Tooth type 1B neuropathy: a mutation at the single
glycosylation site in the major peripheral myelin
12 Kirschner DA, Sznolmowski K, Gabreels-Festen AAWM, et
al. Inherited demyelinating peripheral neuropathies: rela-
ting myelin packing abnormalities to P0 molecular defects. J
13 Wolf C, Arnold H, Reichenbach H, et al. Screening of
myelin gene in CMT 1 patient without duplication in chro-
mosomal region 1p11.2-p12. Journal of the Peripheral
14 Schiavon F, Rampazzo A, Merlini L, et al. Mutations of the
same sequence of the myelin P0 gene causing two different
phenotypes. Hum Mutation 1997; Mutation in brief No 86
Online.
15 Gurin R, Gruner J, Man HK. Étude pathologique du signe
d’Argyll-Robertson dans la névrite hypertrophique de
Dejerine-Sottas. Document anatomo-clinique. Presse Méd