LETTERS TO THE EDITOR

Complex partial seizures provoked by photic stimulation

In patients with known or suspected epileptic seizures, non-specific activation methods such as hyperventilation or intermittent photic stimulation (IPS) are used to provoke epileptic potentials, which may prove the epileptic nature and specify epileptic syndromes. A photoconvulsive reaction with generalised spike wave activity may be provoked by IPS and is almost confined to patients with generalised epilepsy. There are, however, some reports on patients with partial epilepsy and is almost confined to patients with generalised epilepsy. There are, however, some reports on patients with partial epilepsy and is almost confined to patients with generalised epilepsy.

We report on two patients with known photoconvulsive reaction, who developed these with focal epileptic discharges consequent to IPS and discuss possible mechanisms.

Patient 1, a 44 year old woman presented with a 33 year history of complex partial seizures starting with behavioural arrest followed by oroalimentary automatisms, which may have been adjacent to the visual cortex in patient 2, but was distinctly apart from the primary visual cortex in patient 1. Complex partial seizure symptomatology in the first patient included oroalimentary automatisms, indicating a seizure origin in the amygdalo-hippocampal complex. Visual hallucinations, which are likely with epileptic discharges in the visual cortex or visual association areas, however, were missed. This indicates that provoked complex partial seizures during IPS in our patients occurred without epileptic activity in the visual cortex. Temporal epileptic activity as a consequence of IPS was probably mediated via occipitotemporal connections such as the fasciculus longitudinalis inferior.

Provocation of sharp waves with phase inversion over F7, and the occurrence of a photoconvulsive reaction in patient 2 raises the question whether both phenomena were independent of photoconvulsive reaction, 8 seconds later on single sharp-wave activity with phase inversion over T6, which corresponded to decreased perfusion of the right midtemporal and parietotemporal regions established by HMPAO-SPECT.

Intermittent photic stimulation (12/s) evoked a photoconvulsive reaction with bifrontal accentuated generalised spike-wave activity associated with myoclonic eyelid jerks. Independent of photoconvulsive reaction, 8 seconds later on single sharp-wave activity with phase inversion over T6, which corresponded to decreased perfusion of the right midtemporal and parietotemporal regions established by HMPAO-SPECT.

Intermittent photic stimulation (12/s) evoked a photoconvulsive reaction with bifrontal accentuated generalised spike-wave activity associated with myoclonic eyelid jerks. Independent of photoconvulsive reaction, 8 seconds later on single sharp-wave activity with phase inversion over T6, which corresponded to decreased perfusion of the right midtemporal and parietotemporal regions established by HMPAO-SPECT.

Intermittent photic stimulation (12/s) evoked a photoconvulsive reaction with bifrontal accentuated generalised spike-wave activity associated with myoclonic eyelid jerks. Independent of photoconvulsive reaction, 8 seconds later on single sharp-wave activity with phase inversion over T6, which corresponded to decreased perfusion of the right midtemporal and parietotemporal regions established by HMPAO-SPECT.
assessed, Madpar* = levodopa/benserazide. Lithium, SL = serum lithium concentration; PD = periodic discharge. The EEG on 4, 7, 10, and 19 June. It shows PSD on 7 June. The amplitude of the PSD is 150–200 µV and the frequency is 1.5–2 Hz.

Creutzfeldt-Jakob-like syndrome induced by lithium, levomepromazine, and phenobarbitaline

Creutzfeldt-Jakob-like syndrome was first reported by Smith and Kocen in 1988. Its symptoms resemble Creutzfeldt-Jakob disease but it is induced by drugs, particularly lithium, and most patients recover without sequel after discontinuation of drugs. It also displays a characteristic EEG similar to Creutzfeldt-Jakob disease, but this returns to normal when the patient recovers.

There have been some case reports of Creutzfeldt-Jakob-like syndrome after that of Smith et al (table), but no paper seems to have described the detailed course of EEG changes. This paper presents a case of Creutzfeldt-Jakob-like syndrome possibly induced by lithium, levomepromazine, and phenobarbitaline, in which we succeeded in recording the course of EEG changes. A 65-year-old woman was admitted to a hospital with coma and myoclonus. She had a history of manic and depressive disease for 8 years and had been treated with 200 mg lithium carbonate, 25 mg chlorpromazine, and 10 mg levomepromazine daily. Her first symptom was forgetfulness from 20 May, then she complained of appetite loss from 27 May, diarrhea from 1 June, myoclonus from 3 June, and gait disturbance from 4 June. At the same time she complained of visual disturbance. Gradually her consciousness level declined. When she was admitted to the hospital on 4 June, she had convulsions. At that time, she was injected with 200 mg phenobarbital intramuscularly and this was continued for 2 more days at the same dose. Physical examination disclosed no abnormality. Neurologically there was normal hypo- tonus and hyporeflexia without Babinski’s sign. Serum glutamic oxaloacetic transaminase, glutamic pyruvic transaminase alkaline phosphatase, and creatine kinase was increased slightly, and serum ammonia was 64 µmol/l (normal range 30–59 µmol/l). Plasma sodium and potassium concentrations were normal. Her creatinine clearance was 46 ml/min and thyroid function was normal. Examination of CSF gave normal results. Chest radiography, brain CT, and brain MRI showed no abnormality. ECG showed T wave inversion from V1 to V3. The EEG showed slow basic activity but no periodic discharge on 4 June, but showed PSD on 7 June (figure).

Its periodicity decreased on 10 June and had returned to her previous EEG on 19 June. Her EEG had also returned to normal by 14 June. Her myoclonus disappeared on 6 June, and her conscious level gradually improved from 9 June; she could open her eyes on 10 June, then could answer our questions regarding place and time and could walk without help from 13 June. She was discharged on 25 June fully recovered.

She was diagnosed as having Creutzfeldt-Jakob-like syndrome induced by lithium, levomepromazine, and phenobarbitaline. A regional sensitivity of the photoconvulsive reaction was eliminated by drugs, particularly phenobarbital, in which we succeeded in recording the course of EEG changes. A 65-year-old woman was admitted to a hospital with coma and myoclonus. She had a history of manic and depressive disease for 8 years and had been treated with 200 mg lithium carbonate, 25 mg chlorpromazine, and 10 mg levomepromazine daily. Her first symptom was forgetfulness from 20 May, then she complained of appetite loss from 27 May, diarrhea from 1 June, myoclonus from 3 June, and gait disturbance from 4 June. At the same time she complained of visual disturbance. Gradually her consciousness level declined. When she was admitted to the hospital on 4 June, she had convulsions. At that time, she was injected with 200 mg phenobarbital intramuscularly and this was continued for 2 more days at the same dose. Physical examination disclosed no abnormality. Neurologically there was normal hypotonia and hyporeflexia without Babinski’s sign. Serum glutamic oxaloacetic transaminase, glutamic pyruvic transaminase alkaline phosphatase, and creatine kinase was increased slightly, and serum ammonia was 64 µmol/l (normal range 30–59 µmol/l). Plasma sodium and potassium concentrations were normal. Her creatinine clearance was 46 ml/min and thyroid function was normal. Examination of CSF gave normal results. Chest radiography, brain CT, and brain MRI showed no abnormality. ECG showed T wave inversion from V1 to V3. The EEG showed slow basic activity but no periodic discharge on 4 June, but showed PSD on 7 June (figure).

Its periodicity decreased on 10 June and had returned to her previous EEG on 19 June. Her EEG had also returned to normal by 14 June. Her myoclonus disappeared on 6 June, and her conscious level gradually improved from 9 June; she could open her eyes on 10 June, then could answer our questions regarding place and time and could walk without help from 13 June. She was discharged on 25 June fully recovered.

She was diagnosed as having Creutzfeldt-Jakob-like syndrome induced by lithium, levomepromazine, and phenobarbitaline. A regional sensitivity of the photoconvulsive reaction was eliminated by drugs, particularly phenobarbital, in which we succeeded in recording the course of EEG changes. A 65-year-old woman was admitted to a hospital with coma and myoclonus. She had a history of manic and depressive disease for 8 years and had been treated with 200 mg lithium carbonate, 25 mg chlorpromazine, and 10 mg levomepromazine daily. Her first symptom was forgetfulness from 20 May, then she complained of appetite loss from 27 May, diarrhea from 1 June, myoclonus from 3 June, and gait disturbance from 4 June. At the same time she complained of visual disturbance. Gradually her consciousness level declined. When she was admitted to the hospital on 4 June, she had convulsions. At that time, she was injected with 200 mg phenobarbital intramuscularly and this was continued for 2 more days at the same dose. Physical examination disclosed no abnormality. Neurologically there was normal hypotonia and hyporeflexia without Babinski’s sign. Serum glutamic oxaloacetic transaminase, glutamic pyruvic transaminase alkaline phosphatase, and creatine kinase was increased slightly, and serum ammonia was 64 µmol/l (normal range 30–59 µmol/l). Plasma sodium and potassium concentrations were normal. Her creatinine clearance was 46 ml/min and thyroid function was normal. Examination of CSF gave normal results. Chest radiography, brain CT, and brain MRI showed no abnormality. ECG showed T wave inversion from V1 to V3. The EEG showed slow basic activity but no periodic discharge on 4 June, but showed PSD on 7 June (figure).

Its periodicity decreased on 10 June and had returned to her previous EEG on 19 June. Her EEG had also returned to normal by 14 June. Her myoclonus disappeared on 6 June, and her conscious level gradually improved from 9 June; she could open her eyes on 10 June, then could answer our questions regarding place and time and could walk without help from 13 June. She was discharged on 25 June fully recovered.

She was diagnosed as having Creutzfeldt-Jakob-like syndrome induced by lithium, levomepromazine, and phenobarbitaline. A regional sensitivity of the photoconvulsive reaction was eliminated by drugs, particularly phenobarbital, in which we succeeded in recording the course of EEG changes. A 65-year-old woman was admitted to a hospital with coma and myoclonus. She had a history of manic and depressive disease for 8 years and had been treated with 200 mg lithium carbonate, 25 mg chlorpromazine, and 10 mg levomepromazine daily. Her first symptom was forgetfulness from 20 May, then she complained of appetite loss from 27 May, diarrhea from 1 June, myoclonus from 3 June, and gait disturbance from 4 June. At the same time she complained of visual disturbance. Gradually her consciousness level declined. When she was admitted to the hospital on 4 June, she had convulsions. At that time, she was injected with 200 mg phenobarbital intramuscularly and this was continued for 2 more days at the same dose. Physical examination disclosed no abnormality. Neurologically there was normal hypotonia and hyporeflexia without Babinski’s sign. Serum glutamic oxaloacetic transaminase, glutamic pyruvic transaminase alkaline phosphatase, and creatine kinase was increased slightly, and serum ammonia was 64 µmol/l (normal range 30–59 µmol/l). Plasma sodium and potassium concentrations were normal. Her creatinine clearance was 46 ml/min and thyroid function was normal. Examination of CSF gave normal results. Chest radiography, brain CT, and brain MRI showed no abnormality. ECG showed T wave inversion from V1 to V3. The EEG showed slow basic activity but no periodic discharge on 4 June, but showed PSD on 7 June (figure).
Central nervous system involvement in a novel connexin 32 mutation affecting identical twins

Connexin 32 (Cx32) is a gap junction protein expressed in the peripheral nervous system (PNS), central nervous system (CNS), and in many other tissues. Mutations in the Cx32 gene are associated with X-linked Charcot-Marie-Tooth disease (CMTX), and account for about 10% of the patients with hereditary motor and sensory neuropathy (HMSN).

At least 130 different mutations have been reported in the Cx32 gene causing peripheral neuropathy. Classically, distal weakness and atrophy initially involving the lower limbs, as well as sensory abnormalities, depressed tendon reflexes, and pes cavus are usually found in males by the second decade, whereas carrier females clinical manifestations, if present, are in most instances milder than in affected males. Nerve conduction studies in affected males are usually, but not always, suggestive of a demyelinating process, although they are not quite as slow as in patients with CMT1A. In females, conduction velocities (CVs) may be in the normal range or only mildly reduced, as seen in axonal neurogenic neuropathy. We describe a new Cx32 point mutation (Ala\(^ {\ast} \) to Val) in genetically established identical twins with similar CMT phenotype and extensor plantar reflexes. The probands were first seen at the age of 20. Their principal complaint was cramps in the legs, “going over” on the ankles, and mild weakness in the hands. On examination, Twin 1 could not stand on his heels and had a mild intrinsic hand muscle weakness. There was a mild distal atrophy in both upper and lower limbs. Pinprick and tactile sensations were diminished up to the knees and vibration was impaired distally in the lower limbs. Tendon reflexes were normal, but both plantar responses were extensor. His median, ulnar, and peroneal motor CVs were 33.0 m/s, 33.0 m/s, and 31.0 m/s, respectively, and the distal amplitudes were 0.7 mV, 5.0 mV, and 3.3 mV. The sensory potentials were all absent. Twin 2 had identical clinical manifestations, except that the left plantar reflex was flexor whereas the right was clearly extensor. His motor CVs and amplitudes of the same nerves described above were 32.0 m/s and 1.7 mV, 34.0 m/s and 6.0 mV, and 33.0 m/s and 4.0 mV, respectively. No sensory response was obtained. Their mother had milind neuropathic features and both plantar reflexes were extensor. Her median and peroneal motor CVs were 43.0 m/s and 37.0 m/s, and the median sensory CV was 40.0 m/s. Their sister and the mother’s brother were clinically and electrophysiologically normal. The maternal genealogy was not examined, but had a long history of a slowly progressive neuropathy. The presence of the 17p11.2-p12 duplication was excluded by microsatellite marker analysis. The probands were first seen at the age of 13 and 14 years, respectively.

References

have already been described to occur with some mutations. There are two previous reports relating to three pairs of identical twins with CMT and known genetic defects. In the two pairs with the 17p11.2 duplication there was remarkable clinical variability. We have also seen a pair of identical twins with a P0 mutation in whom there was marked variability in early ages (unpublished data). Apart from the asymmetry of toe responses in one of the probands, the genetically identical twins described here are phenotypically very similar, suggesting that the expression of this mutation was not influenced by other non-genetic factors.

Codon 39 seems to be of particular importance to Cx32 protein function as changing of the wild type amino acid has caused CNS dysfunction in addition to the peripheral neuropathy. Moreover its expression does not seem to depend on non-genetic factors, as might be expected in a hemizygous condition.

WM Jr was supported by grants from CAPES, FAPESP, and FAEPB (Brazil).

Isolated ischaemia of the spinal cord due to bilateral vertebral artery dissection

Clinical features in vertebral artery dissection are rarely associated with an ischaemic lesion of the spinal cord. The few cases related and studied with MRI strictly involve the cervical cord. We add another patient with spontaneous bilateral vertebral artery dissection in whom the particularity was an isolated extensive ischaemia of the spinal cord from C4 to T5 vertebral levels. A previously healthy 45 year old woman had parasthesiae of the right ankle lasting a few days. Ten days later, she had a right sided scapulohumoral pain and suddenly developed a remarkably bilateral vertebral artery dissection in T5 vertebral levels. This was treated with oral anticoagulants. One year later, the patient was examined with an ischaemic lesion (figure). On corresponding axial cuts, this was shown to involve the region of the anterior horns at cervical level and to prevail on the right half of the spinal cord at dorsal level. MRI of the brain stem was normal. Cerebral angiography showed an irregular stenosis of the right and left cervical vertebral artery typical of a dissection. The patient was treated with oral anticoagulants. One year later, the sequelae were a spastic paraparesis with right sided central pain and mild urinary retention. MRI and MRA showed the resolution of the cord signal and normal right and left vertebral artery.

The cervical cord is mainly supplied by radicular arteries rising from the vertebral artery. Thus, vertebral artery dissection can lead to an ischaemia limited to the cervical cord. Extensive ischaemia to the dorsal cord (T5) is uncommon. Our results suggest that this area is sometimes supplied from the vertebral artery. Some authors state that this region could be a critical zone and its vascularity could be provided from the arterial cervical cord region. The bilateral ischaemic lesions extending through several cervical and dorsal segments are in favour of water-sheds infarcts caused by hypoperfusion due to bilateral vertebral artery dissection.

Correspondence to: Dr. M. Michel, Service de Neuroradiologie, Hôpital de Bellevue, 42055 Saint-Etienne, Cedex 2, France.

Autonomic dysfunction and orthostatic hypotension caused by vitamin B12 deficiency

Orthostatic hypotension sometimes is a reversible neurological complication of vitamin B12 deficiency. Eisenhofer detected deficient sympathetic catecholamine release in insulin tolerance testing, but the mechanism of orthostatic hypotension in vitamin B12 deficiency remains unclear. We reported a patient with vitamin B12 deficiency and reversible orthostatic hypotension and discussed the mechanism of this symptom. A 77 year old man admitted to our hospital had had unstable gait and urinary urgency for 6 months, clumsiness of the hands and tingling sensations in the legs for 3 months, and, for a month, occasional dizziness on standing. The dizziness was mild without any attack of syncope. He had no other symptoms or signs of autonomic dysfunction but impotence and erectile failure were noted 10 years before the onset of neurological symptoms. He had not taken any medicine which would affect the autonomic nervous system. He did not have a habit of drinking.

Physical examination on admission detected no signs of anaemia, heart failure, or dehydration. Neurological examination showed dysaesthesia and decreased sensation of all modalities in the legs for 3 months. Deep tendon reflex was absent in the lower limbs, and Babinski’s sign was positive bilaterally. Mild limb ataxia was seen in the four limbs, and Romberg’s sign was positive.

Haematological studies disclosed mild macrocytic hyperchromic anaemia (haemoglobin 14.0 g/dl, mean corpuscular volume 104 fl, mean corpuscular haemoglobin concentration 35.2 pg), with a few (3%) hypersegmented polymorphonuclear cells. His serum vitamin B12 concentration was markedly decreased (38 pg/ml; normal 249–938 pg/ml). Intracerebral and peripheral cell antibodies were positive in the serum. Echo cardiography showed no evidence of heart failure. In a study of peripheral nerve conduction, amplitudes of sensory nerve action potentials were slightly decreased in the lower limbs. The sympathetic evoked potential on median nerve stimulation showed a moderately prolonged central conduction time. Urodynamics studies disclosed uninhibited urgenic bladder with detrusor sphincter dysynergia.

Results of the autonomic nervous system tests before and 6 months after treatment are given in the table. When the patient was tilted up to 60 degrees, he experienced dizziness and a significant fall in systolic blood pressure.
Results of autonomic nervous system tests before and after vitamin B12 treatment

<table>
<thead>
<tr>
<th>Test</th>
<th>Before Treatment</th>
<th>After Treatment</th>
<th>Age Matched Normal Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head-up tilting test</td>
<td>Systolic blood pressure (mm Hg)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Supine 104</td>
<td>106</td>
<td>112 - 135</td>
</tr>
<tr>
<td></td>
<td>5 min after tilting 71</td>
<td>93</td>
<td>118 - 140</td>
</tr>
<tr>
<td></td>
<td>15 min after tilting 76</td>
<td>106</td>
<td>120 - 135</td>
</tr>
<tr>
<td>Heart rate (bpm)</td>
<td>Supine 58</td>
<td>66</td>
<td>59 - 83</td>
</tr>
<tr>
<td></td>
<td>5 min after tilting 70</td>
<td>73</td>
<td>65 - 95</td>
</tr>
<tr>
<td></td>
<td>15 min after tilting 73</td>
<td>76</td>
<td>65 - 95</td>
</tr>
<tr>
<td>Noradrenaline (ng/ml)</td>
<td>Supine 94</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 min after tilting 129</td>
<td>286</td>
<td>258 - 752</td>
</tr>
<tr>
<td>Sympathetic skin response</td>
<td>Amplitude (mV)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L palm 0.33</td>
<td>0.9</td>
<td>1.2 - 15.3</td>
</tr>
<tr>
<td></td>
<td>R palm 0.39</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L Sole 0.67</td>
<td>1.9</td>
<td>0.71 - 8.8</td>
</tr>
<tr>
<td></td>
<td>R Sole 0.61</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>Local sweat response to acetylcholine</td>
<td>Number of sweat droplets (cm²)</td>
<td>24</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>Total area of sweat droplets (mm²/cm²)</td>
<td>0.27</td>
<td>2.86</td>
</tr>
</tbody>
</table>

Before treatment

Over 30 mm Hg with normal heart rate response. His serum noradrenalin concentration was reduced at rest, and its increase after tilting up was minimal. SUDOMOTOR function was evaluated by sympathetic skin response (SSR) and local sweat response to acetylcholine (Ach). Before treatment, the SSR amplitude was decreased, and the number and area of sweat droplets were decreased in responses to incidental Ach injection.

The myelinated fibre density of biopsied sural nerve was 5927/mm². Some thin myelinated fibres were present, as were a few myelin ovoids. Examination of the teased fibres showed evidence of demyelination (about 20%) and axonal degeneration (about 10%). Electron microscopy showed a normal unmyelinated fibre density (30 945/mm²); normal 3700–6500/mm²).

Daily intramuscularly administered 1 mg vitamin B12 for a week then 1 mg once a month increased its serum concentration rapidly to normal, resulting in the gradual amelioration of orthostatic dizziness, and his neurological symptoms except for erectile failure, after a month.

The abnormalities seen in the autonomic nervous system tests also disappeared when vitamin B12 was given for 6 months (table).

The lesion of the baroreflex responsible for the hyperventilation syndrome was reported in the Brachman-de Vries syndrome. These findings may simply reflect the high prevalence of gastro-oesophageal reflux disease among brain damaged children rather than a primary feature of these disorders.

Early recognition and treatment of gastro-oesophageal reflux disease in patients with Sandifer’s syndrome enhances the success of medical management, is curative for patients with no other disorders, and contributes to improved quality of life for patients with brain damage or metabolic disorders and is often interpreted as a feature of their basic disorder.

Is inherited thrombophilia a risk factor for arterial stroke?

The paper of Ganesan et al adds the factor V Leiden (FVa) to the list of inherited thrombophilias which has not been shown to be significantly increased in consecutive series of children and young adults with arterial stroke.1–3 In their commentary on this paper, Brown and Bevan1 admit ignorance as to whether the finding of inherited thrombophilia in a patient with stroke indicates an increased risk of recurrent stroke but nevertheless recommend consideration of lifelong anticoagulation. No evidence in support of this recommendation is cited.

Brown and Bevan recommend repeating measurements of protein C, protein S, and antithrombin III for at least 3 months after the index event but depressed concentrations returning to normal between 12 and 24 months after childhood stroke have previously been reported.4–6 It would therefore seem prudent to follow concentrations of protein C and protein S for at least this time period before concluding that they can be attributed to an inherited thrombophilia, particularly if the presence of such a disorder is to be managed by “lifelong anticoagulation”.

C R KENNEDY
Department of Paediatric Neurology, Southampton General Hospital, Southampton, UK

References

Lyme borreliosis and intracranial aneurysm

We read the article by Oksi et al describing three patients with Borrelia burgdorferi infection and intracranial aneurysms with great interest. We encountered a patient with neuroborreliosis and an aneurysm of the basal artery, whom we describe.

A previously healthy 33 year old man presented with headache and progressive right hemiparesis. On neurological examination there was right facial weakness, moderate weakness of the right arm and leg (3/5), and brisk deep tendon reflexes. A right Babinski’s sign was present. Cerebral CT and MRI showed left anterior infarction, without enhancement with contrast. Examination of CSF disclosed 300 leukocytes/mm³; the protein content was 3.49 g/l. The IgG index was raised to 1.35. The CSF was xanthochromic, because of bilirubin. IgG antibodies against Borrelia burgdorferi in CSF were detected. A cerebral angiogram showed narrowing of the left anterior cerebral artery and an aneurysm of the basilar artery. Serum IgG antibodies against Borrelia burgdorferi, the presence of IgG antibodies against Borrelia burgdorferi in the CSF, and the antibodies to the antibiotic treatment. Based on the article by Oksi et al, it is very appealing to explain what happened in our patient by using their concept. Our patient had an aneurysm of the basilar artery.

If vasculitis is one of the primary pathological mechanisms in neuroborreliosis, it can also lead to formation of aneurysms or vascular infarction. However, we postulate that the presence of the aneurysm in our patient was a coincidence. There are two other explanations: the xanthochromia through bilirubin in his CSF. The first is the raised protein content of the CSF (in a patient with cerebral vasculitis due to neuroborreliosis). Or, our patient had a vasculitis (supported by the pleocytosis of the CSF and by the narrowing of the left anterior cerebral artery on angiogram) which can lead to subarachnoid haemorrhage with the presence of an aneurysm, as was shown by Chehrenama et al.2

A causal relation between neuroborreliosis and the aneurysm is only based on circumstantial evidence. We do not agree that the reported cases of Oksi et al support this relation. Firstly, we think that only one of the three patients had neuroborreliosis. In the other two patients there were pleocytosis or raised protein content in the CSF, a finding that is considered to be a necessity for the diagnosis of neuroborreliosis.3–5 Also, antibodies against Borrelia burgdorferi were not detected. Besides this, no evidence exists that in the patient with neuroborreliosis and subarachnoid haemorrhage there is a causal relation with the aneurysm. He could indeed be one of those patients who happen to have an aneurysm.

For now, the answer to the question: “Intracranial aneurysms in three patients with disseminated Lyme borreliosis: cause or chance association?” should be chance association.

JOSÉ D POLET
HENRI C WEINSTEIN
Department of Neurology, Saint Lucas Andreas Hospital, Amsterdam, The Netherlands

samples using adequate techniques—for example, the polymerase chain reaction.

JARMO OKSI
Department of Internal Medicine, Turku University Central Hospital and Department of Medical Microbiology, Turku University, Finland

HANNU KALIMO
Reijo J Marttila
Merja Marjamaki
Pirkko Sonnninen
Jukka Nikoskelainen
Matti K Viljanen
Turku University, Turku University Central Hospital, and National Public Health Institute, Department in Turku, Finland

A video is an excellent addition to any book on movement disorders. Unfortunately, the video refused to run on our modern video recorder at home (which never refuses offerings from the Disney corporation) and ran poorly on the state of the art equipment at Addenbrooke’s Hospital. Some of the clips were of poor quality—perfectly acceptable for very rare diseases but not for common conditions. The video covered the basics well and had some particularly florid examples of tics. More cross referencing between the book and video would have helped.

Despite its limitations I would recommend this book/video combination for the groups at whom it is aimed—namely, primary care physicians and doctors in training. However, I thought that it might have been better written by a far smaller team, leaving the multidisciplinary/multi-author approach for more advanced textbooks, which aim to become the definitive works on a subject.

JERRY BROWN

BOOK REVIEWS

First impressions count, so it is important for a publisher to choose the right time to send a book to be reviewed. Unfortunately Butterworth Heinemann’s timing for this book was awry. This volume arrived on my desk at the same time as I was struggling to improve a patient’s primary orthostatic tremor in time for her daughter’s wedding in Australia. I was therefore disconcerted when I could find no reference to this disease in the index under primary, orthostatic, or tremor. I turned to the chapter on tremor and eventually found a reference to this disease in the index under orthostatic or dystonia would find an abundance of use—less information. However there are unfortunately lacunae—for example, there is no mention of the recent controversies over the use of selegiline.

A video is an excellent addition to any book on movement disorders. Unfortunately, the video refused to run on our modern video recorder at home (which never refuses offerings from the Disney corporation) and ran poorly on the state of the art equipment at Addenbrooke’s Hospital. Some of the clips were of poor quality—perfectly acceptable for very rare diseases but not for common conditions. The video covered the basics well and had some particularly florid examples of tics. More cross referencing between the book and video would have helped.

Despite its limitations I would recommend this book/video combination for the groups at whom it is aimed—namely, primary care physicians and doctors in training. However, I thought that it might have been better written by a far smaller team, leaving the multidisciplinary/multi-author approach for more advanced textbooks, which aim to become the definitive works on a subject.

JERRY BROWN

These three books and CD-ROM form part of a six book series for the Open University course on Biology: Brain and Behaviour. Book 2, Neurobiology, covers the biophysical properties of the neuron, before dealing with neural networks and the functioning of the CNS to the immune system and behaviour. Book 3 runs through the senses, with the discussion concentrating on the audition, vision, and somatosensory system. Book 4 and book in the series deals with disease processes of the brain and mind. The books not reviewed comprise the first book in the series entitled Behaviour and Evolution and books 4 and 5 on Development and Flexibility and Control of Behaviour. The six books are therefore written for a specific audience, which is clearly reflected in the format of the text and figures. However, this having been said, these books are easily accessible to other students who are interested in neuroscience, although the way the book is packaged and presented would put most people off purchasing them, which is a shame.

Each chapter is clearly presented with high quality figures, which are often superior to those found in most medical neurobiology books. Furthermore, they often summarise key experimental results in a clear and concise fashion, and coupled to the well written prose, makes the book easy to understand and follow, if somewhat verbose. Questions are thrown in throughout the text and each chapter concludes with a summary, an objectives list, and a series of questions with a few key references cited. In addition, these books were impressive in their breadth of discussion within individual topics. For example, the pain section not only covers the conventional anatomical and pharmacological aspects of nociception but also discusses a range of antidepressive treatments and strategies. As a result the reader is left with a much more balanced view than that which is traditionally presented in preclinical medical training and which is often at variance with that which is seen in clinical practice. It is this aspect of the books that is perhaps of most value and which could be applied to the new style of medical training currently being developed in this country. However constraints on time make it hard to commend all the details raised in these books, although the accompanying CD-ROM is a helpful innovation in this respect. Overall these books and CD-ROM make an attractive package which is lost to most students and teachers as a result of it being used for a specific Open University course. However, there is much of value in this series for those interested in the education of medical students.

ROGER BARKER

This is a book of 172 pages dedicated to the memory of Frank Morrell. It is a multiauthor text, originating largely from North America (with a notable United Kingdom contribution from the Maudsley Hospital). After a historical review including hints on recording techniques, novel approaches to using electrocorticography to predict surgical outcome after temporal lobe resection are presented convincingly and then followed by another chapter showing how parallel approaches can be applied in tailored resections. Electrocorticography findings in extratemporal epilepsy are then dealt with, confirming that restricted frontal lobe abnormality predicts a favourable outcome, particularly when combined with a well defined structural lesion. The technique of chronic electrocorticography is also reviewed, including demonstration of how stimulation and recording techniques, novel approaches to using electrocorticography to predict surgical outcome after temporal lobe resection are presented convincingly and then followed by another chapter showing how parallel approaches can be applied in tailored resections. Electrocorticography findings in extratemporal epilepsy are then dealt with, confirming that restricted frontal lobe abnormality predicts a favourable outcome, particularly when combined with a well defined structural lesion. The technique of chronic electrocorticography is also reviewed, including demonstration of how stimulation and recording techniques, novel approaches to using electrocorticography to predict surgical outcome after temporal lobe resection are presented convincingly and then followed by another chapter showing how parallel approaches can be applied in tailored resections. Electrocorticography findings in extratemporal epilepsy are then dealt with, confirming that restricted frontal lobe abnormality predicts a favourable outcome, particularly when combined with a well defined structural lesion. The technique of chronic electrocorticography is also reviewed, including demonstration of how stimulation and recording techniques, novel approaches to using electrocorticography to predict surgical outcome after temporal lobe resection are presented convincingly and then followed by another chapter showing how parallel approaches can be applied in tailored resections. Electrocorticography findings in extratemporal epilepsy are then dealt with, confirming that restricted frontal lobe abnormality predicts a favourable outcome, particularly when combined with a well defined structural lesion. The technique of chronic electrocorticography is also reviewed, including demonstration of how stimulation and recording techniques, novel approaches to using electrocorticography to predict surgical outcome after temporal lobe resection are presented convincingly and then followed by another chapter showing how parallel approaches can be applied in tailored resections. Electro
Intraoperative electrophysiology, which is probably one of the most spicy contributions, confirming that a multimodal approach to the application of these investigations will probably be the most fruitful approach in the medium term. Those units contemplating similar work will find this book very useful in terms of selecting some of the techniques that they intend to include or exclude, with natural effects on their resources and clientele. Specialised units which already perform similar work will also find this a useful review. Inevitably this book will be of interest to a relatively selective readership, to whom it is thoroughly recommended.

SIMON BONIFACE

The complex relations between intracranial and inner ear fluids are fascinating for both the scientist and the clinician. This volume represents the Proceedings of the Second International Conference on Intracranial and Inner Ear Fluids, which was held in Bath, UK in June 1997, and accurately reflects the sense of enthusiasm and collaboration at that meeting. The contributors include neurosurgeons, audiologists, otologists, neurologists, epidemiologists and basic scientists, and the scope of the material is very impressive.

The book comprises four sections. The first, intracranial physiology, contains four chapters including a very clear review of the anatomy and physiology of intracranial fluids by Segal, and then three examples of experimental work on cats, guinea pigs, and humans. The second section, intracranial pathophysiology, opens with a review of “Pathophysiology of the cerebrospinal and cerebrovascular circulations” by Pickard et al, and then eight chapters considering related topics. The tympanic membrane displacement (TMD) test procedure is discussed, representing a non-invasive method of assessing intracranial fluid pressure, and particularly useful in the assessment of shunt malfunction. The third section, inner ear physiology, contains 10 chapters, and considers the inner ear fluids, perilymph, and endolymph in very considerable detail. The final section, inner ear pathophysiology, is perhaps the least consistent in the volume and at times strays from the fluid remit of the book. It does, however, contain a very useful chapter considering the Tullio phenomenon (by O’Mahoney and Luxon) that deserves careful study.

For anyone interested in the areas described above this book will be interesting and useful. Collaboration and indeed communication between those interested in the intracranial fluids and inner ear fluid is in its infancy, and whereas this book does contain exciting material there is little that is of clinical relevance yet, although some of the techniques and concepts described hold great promise. Many departmental libraries would benefit from the inclusion of this volume, although only those directly involved in this area would be able to justify a private purchase.

DAVID BAGULEY

No one can doubt the increasing importance, to affected families and the healthcare system, of Alzheimer’s disease, Parkinson’s disease, and the other degenerative conditions of the nervous system. Furthermore, study of the degenerating brain can provide fundamental insights into brain function. Although there are authoritative books on memory, on disorders of memory, and on the neurological diseases covered in this book, the strength of the book is in the accounts of different views of memory in neurodegenerative disease. These differing perspectives mean that this book will be of interest to neurologists, neuropsychologists, psychiatrists, and researchers in the neurosciences.

The book is divided into three broad sections with summary chapters at the end of each. The first section deals with the biological aspects of neurodegenerative disease, with reviews on neuropathology, animal models, neurochemistry, and neuroimaging.

The two chapters on neuroimaging are particularly valuable, being clear and well referenced. Although the genetic advances in this area are mentioned in several chapters, it is not a major topic in this work.

The second section reviews the different cognitive aspects and explores the role of neurodegenerative conditions in the understanding of organisation of memory. Executive functions in both subcortical and cortical dementia syndromes, episodic and semantic memory, and non-declarative memory are systematically covered. The discussion of disintegration of distinct memory systems in different degenerative conditions will be of interest to psychologists and doctors alike, although this section will be of special interest to neuropsychologists.

The last section of this book will be particularly useful for clinicians, as there are admirable summaries of the assessment of memory, including very interesting accounts of cross cultural issues in neuropsychological assessment and the reliability of psychometric instruments. The important clinical issues of early detection and of differentiating dementia and memory disorders are well presented. This section ends with an exploration of drug and surgical treatments for neurodegenerative disease.

There is particular consideration of the possible cognitive sequelae of neurosurgery for akitic-rigid syndromes and tremor. I would recommend this book to anyone who wants a clear and authoritative account of the role of neuropsychology, experimental psychology, and theories of memory structure and organisation in relation to the neuropsychology of the dementias and other neurodegenerative conditions.

CLARE GALTON