Cerebral metabolism during vegetative state and after recovery to consciousness

One way to approach the study of consciousness is to explore lesion cases in which impairment of consciousness is the prominent clinical sign. Vegetative state is such a condition wherein awareness is abolished whereas arousal persists. It can be diagnosed clinically soon after a brain injury and may be reversible (as in the following case report) or progress to a persistent vegetative state or death. The distinction between vegetative state and persistent vegetative state is that the second is defined as a vegetative state that has continued or endured for at least 1 month. We present a patient who developed a vegetative state after carbon monoxide poisoning and in whom we had the opportunity to measure brain glucose metabolism distribution during the vegetative state and after recovery to consciousness. Using $[^18F]$fluoro-deoxyglucose (FDG) PET and statistical parametric mapping (SPM) we compared both patient’s sets to a normal control population. Our findings offer an insight into the neural correlates of “awareness”, pointing to a critical role for posterior associative cortices in consciousness.

A 40 year old right handed woman attempted suicide through CO intoxication and was found unconscious. She was treated with hyperbaric oxygen but evolved to a vegetative state diagnosed according to the following criteria: (1) spontaneous eye opening without evidence of awareness of the environment; (2) no evidence of reproducible voluntary behavioural responses to any stimuli; (3) no evidence of language comprehension or expression; (4) intermittent wakening and behaviourally assessed sleep-wake cycles; (5) normal cardiorespiratory function and blood pressure control; (6) preserved pupillary, oculocephalic, corneal, and vestibulo-ocular reflexes. Brain MRI performed 14 days after admission was normal. Electroencephalography showed a 6 Hz basal activity with more pronounced slowing on the left parietal regions. Auditory evoked potentials were normal. Somaesthetic evoked potentials of the median nerve showed normal latency and amplitude of P14 and N20 potentials without any late cortical components. After remaining in a vegetative state for 19 days the patient regained consciousness. Her sequence consisted of a bilateral spastic paresis of upper and lower limbs. Neuropsychological evaluation 1 month after admission showed an attention deficit with moderate impairment of short term memory. One year after the accident she showed a spastic gait with altered fine motor function, most prominent on the right, a slurred speech, and minor short term memory disturbances. FDG-PET was performed during the vegetative state (day 15 after admission) and after recovery to consciousness (day 57).

The control population consisted of 48 drug free, healthy volunteers, aged from 18 to 76 years (mean: 42 SD 21 years). The study was approved by the ethics committee of the University of Liège. Informed consent was obtained by the husband of the patient and for all control subjects. Five to 10 mCi FDG was injected intravenously; PET data were obtained on a Siemens CTI 951 R 16/31 scanner in bidimensional mode. Arterial blood samples were drawn during the whole procedure and cerebral metabolic glucose rates (CMRGlu) were calculated for all subjects. PET data were analysed using SPM software (SPM96 version; Welcome Department of Cognitive Neurology, Institute of Neurology, London, UK). The use of SPM to assess between subject (rather than within subject) variability is unlikely to alter the relevance of our results given their high degree of significance. Data from each subject were normalised to a standard stereotactic space and then smoothed with a 16 mm full width half maximum isotropic kernel. The analysis identified brain regions where glucose metabolism was significantly lower in each patient scan compared with the control group. The resulting foci were characterised in terms of peak height over the entire volume analysed at a threshold of corrected p<0.05.

During the vegetative state, average grey matter glucose metabolism was 38% lower than in controls (4.5 ± 7.3 (SD 1.4) mg/100 g/min). No substantial change in mean CMRGlu was found after recovery (4.7 ± 100 g/min). During the vegetative state, significant regional CMRGlu decreases were found in the left and right superior parietal lobule; the left inferior parietal lobule; the precuneus; the left superior occipital, superior and middle temporal gyri; and the premotor and postcentral and precentral cortex (figure, yellow colour). After recovery, metabolic impairment was confined to the left and right precentral and postcentral gyri and premotor cortices (figure, blue colour).

This case report offers an insight into the neural correlates of human consciousness (at least, external awareness as it can be assessed at the patient’s bedside). Given that global glucose utilisation levels remained essentially the same, the recovery of consciousness seems related to a modification of the regional distribution of brain function rather than to the global resumption of cerebral metabolism. The main decreases in metabolism seen during the vegetative state but not after recovery were found in parietal areas, including the precuneus. This is in agreement with postmortem findings in persistent vegetative state, in which involvement of the association cortices is reported as a critical neuroanatomical substrate and with PET studies in postanoxic syndrome, in which the parieto-occipital cortex showed the most consistent impairment.

The functions of these areas are manifold: lateral parietal areas are involved in spatial perception and attention, working memory, mental imagery, and language, whereas the precuneus is activated in episodic memory retrieval, modulation of visual perception by mental imagery, and attention. Our data point to a critical role for these posterior associative cortices in the emergence of conscious experience.

STEVEN LAUREYS
CHRISTIAN LEMAIRE
PIERRE MAQUIET
Cyrolithon Research Centre, University of Liège, Sart Tilman, 4000 Liège, Belgium

CHRISTOPHE PHILLIPS
Institute of Cognitive Neurology, University College London, Alexandra House, 17 Queen Square, London WC1N 3AR, England, UK

GEORGE FRANCK
Department of Neurology, CHU Liège Sart Tilman B13, 4000 Liège, Belgium

Correspondence to: Dr Pierre Maquet, Cyclotron Research Centre (B30), University of Liège, Sart Tilman, 4000 Liège, Belgium Telephone 0032 43 66 36 86; fax 0032 43 66 29 46; email maquet@pet.crc.ac.be

Electrical inexcitability of nerves and muscles in severe infantile spinal muscular atrophy

Spinal muscular atrophy (SMA) is one of the most common fatal autosomal recessive disorders, characterised by progressive degeneration of motor neurons. Before the advent of genetic testing, the diagnosis of SMA was based on clinical, histopathological, and electrophysiological features. In 1992, the International SMA Consortium defined diagnostic criteria of proximal SMA based on clinical findings.1 In SMA type I (severe; Werdnig-Hoffmann disease), affected persons have onset of symptoms before 6 months of age and are never able to sit without support. Electromyography demonstrates denervation features. In early 1995, the candidate gene, the survival motor neuron (SMN) gene, was identified, making the confirmation of SMA by DNA analysis possible.

With the availability of a genetic test for SMA, many investigators are refining the diagnostic criteria published by the Consortium. Studies involving hundreds of patients with SMA have disclosed a subset of patients who fulfil at least one exclusion criterion defined by the Consortium.2 We identified an infant with severe SMA who fulfilled two exclusion criteria and also showed inexcitability of all nerves as well as muscles. This report will further delineate the wide range of phenotypes for this particular gene mutation.

A 3-week-old male infant was born at term. First fetal movements were noted at 13 weeks of gestation. Chorionic villus sampling at 10 weeks of gestation disclosed normal chromosomal decreases. Decreased fetal movement and polyhydramnios were noted at about 34 weeks of gestation. At delivery, the infant was cyanotic with no respiratory effort and was subsequently intubated. On physical examination, the infant had no spontaneous movements. He opened his eyes with brief fixation but no following. Tongue fasciculations were present. Other cranial nerves seemed intact. Mild flexion contractures of both elbows, knees, and ankles were noted. Tone was flaccid in biceps, Brunnstrom stage I, and lower limbs, and there was no movement response to painful stimulus. Deep tendon reflexes were absent.

Brain MRI disclosed mild diffuse cortical atrophy. His EMG was severely abnormal, with widespread fibrillations and absent voluntary motor units except in the genioglossus, where mildly neurogenic motor units with decreased recruitment were seen. Stimulation of the median, ulnar, tibial, and genioglossus, where mildly neurogenic motor units with decreased recruitment were seen.

The International SMA consortium and the multicopy region that includes all alleles of the SMN gene. This phenomenon is known to occur in a few other neuromuscular conditions such as periodic paralysis and critical illness polynuropathy. Fibrillations, as seen in the infant in our report, are commonly seen in acute denervation and are thought to be caused by perturbation of the sarcocellmembrane, rendering it unstable. One possibility may be that acute neuromuscular denervation in SMA type I can result in abnormal function of the membrane to make it electrically inexcitable. Further electrophysiological studies at the cellular level are required to delineate this interesting finding.

ALEC A KUO
Department of Pediatrics

STEFAN-M PULST
DAWN S ELLIASHIV
CAMERON R ADAMS
Division of Neuropathology, Cedars-Sinai Medical Center, Los Angeles, CA, USA

Correspondence to: Dr Cameron R Adams, Department of Neuropathology, Cedars-Sinai Medical Center, 8631 West Third Street, Room 1145, East Tower, Los Angeles, CA 90048, USA.
Distribution into muscles rather then metabolism may largely determine the plasma half life of levodopa and explain why this was only slightly altered with overdose. The measured peak concentration of 66 763 ng/ml is about 30 times higher than the peak concentration to be expected after taking over 50 mg of carbidopa/levodopa (50 mg/200 mg). It is apparent that the 30 tablets did not interfere with absorption or lead to a gastrointestinal paralysis due to the high dose of levodopa; the relation between amount ingested and plasma concentration seems to be linear, at least in this dose range.

We conclude from these findings that in cases of suspected ingestion, let alone intoxication some hours previously, it could be important to measure the concentration of 3-O-methyldopa, so as not to overlook an overdosage with levodopa, which may be due to a suicide attempt. In addition to the diagnostic uncertainty in relation to the immediate treatment in relation to the immediately treatable cause, this would also have an effect on further psychiatric and psychological therapy.

H J STUERENBURG
Institute for Pharmacology, Medical School, Hannover, Germany

Correspondence to: Dr Hans Joerg Stuerenburg, Neurological Department, University Hospital Hamburg-Eppendorf, Hamburg, Germany

The use of olanzapine for movement disorder in Huntington's disease: a first case report

Movement disorder is a prominent feature of Huntington's disease and consists of involuntary and voluntary components as well as associated bradykinesia. Pharmacological treatment is problematic because of the side effects of the drugs used, which may further compromise cognitive functioning and mobility. Patients are often not subjectively aware of their movements but can be considerably disabled by them and carers are often distressed and enquire about treatment options. If drug treatment is considered it is important to achieve the maximum improvement in movements with the minimum of negative side effects. This paper describes the effect of olanzapine on movements when other treatment options had been ineffective or limited by side effects.

Huntington's disease is a hereditary progressive neurodegenerative disorder. It consists of a triad of symptoms comprising motor, psychological, and cognitive abnormalities. The motor component consists of involuntary choreiform movements and increasing difficulties with voluntary movement. The degree of the involuntary movements is variable but in some patients can be very marked. Progression over time of the movement disorder in Huntington's disease can be monitored using the quantitative neurological examination (QNE). This measure has three subscales, an eye movement scale, a motor impairment scale (MIS) quantifying voluntary movements, and a scale measuring involuntary movement.

Pharmacological control of the symptoms has been shown to be effective with dopamine antagonists, but their use is limited because of the side effects. Clinically the most problematic of these are sedation, cognitive slowing, increased mobility problems, and hypotension. The inability of traditional dopamine antagonists to improve functional capacity, despite amelioration possibly due to suppression of voluntary motor activity, has occasionally been reported in patients with Huntington's disease treated with these drugs. The atypical antipsychotic clozapine has been shown to be effective in improving the movement disorder. However, in a double blind randomised trial of clozapine which included patients who were already receiving traditional antipsychotic medication, a group who had not received drug treatments for their movement disorder, chorea was reduced in those who were antipsychotic naive only and the authors concluded that clozapine was of little additional benefit in Huntington's disease. Olanzapine is a new atypical antipsychotic drug. It is a thienobenzodiazepine structurally very similar to clozapine. Unlike clozapine it is not associated with the potentially serious side effect of agranulocytosis and therefore frequent blood monitoring is not necessary.

This report describes the progress of a man who has Huntington's disease. He developed a marked movement disorder and was unable to tolerate both sulpiride and risperidone but had symptomatic improvement when treated with olanzapine.

He is a man in his early 50s who had a confirmatory genetic test for Huntington's disease in 1994, after the development of obviously motor symptoms. It is likely that the onset of symptoms had occurred a few years previously as he had experienced difficulties in concentration and work, attributed at the time to stress, leading to the loss of employment. In addition his family, watching family videos of a few years earlier, thought that there had been early signs of his movement disorder. However there was no known family history of Huntington's disease which might have led to an earlier diagnosis. By May 1995 his involuntary movements were becoming more noticeable, although control of voluntary movement was good. A trial of sulpiride commencing at 200 mg twice daily and increasing over 1 week to 800 mg daily was undertaken with a subsequent decrease in the frequency and extent of involuntary movement recorded in case notes; unfortunately the QNE was not repeated at this time. However, the patient experienced a subjective slowing of his cognitive processes, concurrently became depressed, and decided to stop the treatment within 3 weeks. Paroxetine, a selective serotonin reuptake inhibitor antidepressant, was started at a dose of 20 mg a day, which led to an improvement in his low mood. His involuntary movements continued to cause difficulties in his daily living. He was unable to sit comfortably in a chair and when out he felt that he was knocking into them. He agreed to a trial of...
risperidone. This was started at a dose of 1mg twice daily, increasing to a dose of 1mg four times a day over a period of 2 weeks, stopped after a brief period. He developed hypotension (blood pressure 100/60 mg Hg), complaining of dizziness after the initial dose. His blood pressure remained stable, although low, after this and as there was improvement in his movements the drug was continued. However, he decided to stop the risperidone after 4 months because of his subjective experience of slowed thinking and occasional dizziness. A repeated trial of sulpiride was carried out in March 1997. Sulpiride was started at a dose of 200 mg twice a day and increased to a total daily dose of 1000 mg over 2 weeks. He was on sulpiride for 4 weeks with no improvement in his movements, so it was discontinued. The patient continued to experience low mood and after the discontinuation of sulpiride, his antidepresant drug was changed to lofepramine commencing at 70 mg once a day and increasing after a few days to 140 mg daily. There were no changes noted in his movements during this change.

Although the patient was subjectively unaware of the extent of his movements his everyday life continued to be affected. The social venues he felt able to attend were becoming increasingly problematic. A trial of olanzapine was then instituted. He was started on 5 mg a day in the morning. There was a marked improvement in his involuntary movements is main-tained. Serial quantitative neurological examination scores are illustrated in figure 1.

In the absence of a cure for Huntington’s disease, it is very important that any interven-utions considered enhance the quality of life of the patient and improve overall functioning. It may not always be in the best interests of the patient to use drug treatments for the movement disorder. In those patients who have severe movements, however, a trial of treatment may be appropriate and continued if a clear benefit has been achieved. Neurological monitoring and the patient’s own perception of the effect of the drug must be taken into account.

The mechanism by which olanzapine might have beneficial effects is unclear. Olanzapine has been shown to have high affinity for a large number of receptors including D1, D2, 5HT2A, 5HT2C, 5 HT3, α1-adrenergic, histamine H1, and 5 muscarinic receptors. This binding profile is similar to clozapine, another atypical antipsychotic drug, but substantially different to the conventional antipsychotic haloperidol.1 Preferential loss of D2 projection neurons which are involved in a feedback loop normally active in the suppression of involuntary movements is thought to be the pathophysiological basis of chorea in patients with Huntington’s disease.2 The D2 antagonist properties of olanzapine may explain its possible benefits in the improvement of chorea. However, the effect at other receptors such as D4 may also be important, as D4 receptor density has been shown to be raised in Huntington’s disease, therefore the D4/D2 ratio of activity may also be relevant. Differences in binding profile across a range of receptors may explain clinical differences in outcome when comparing different antipsychotic drugs.

This case report indicates that olanzapine may be a useful addition to the treatments for movement disorder, for some patients, and controlled trials of its use in Huntington’s disease would be welcome.

Patient characteristics

<table>
<thead>
<tr>
<th>Patient</th>
<th>Age at surgery</th>
<th>Sex</th>
<th>Years with PD</th>
<th>H and Y staging</th>
<th>UPDRS off</th>
<th>Pallidotomy side</th>
<th>Transient side effects</th>
<th>Medication additional to levodopa</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>66</td>
<td>M</td>
<td>8</td>
<td>2/5</td>
<td>57/NP</td>
<td>R</td>
<td>Slitg facial paresis, swallowing problems, drooling</td>
<td>Trpytizol, temazepam, alprazolam, apomorphine</td>
</tr>
<tr>
<td>2</td>
<td>43</td>
<td>F</td>
<td>7</td>
<td>2/2.5</td>
<td>22/NP</td>
<td>L</td>
<td>Slitg dystarhia</td>
<td>Trihexifenidyl</td>
</tr>
<tr>
<td>3</td>
<td>48</td>
<td>M</td>
<td>15</td>
<td>2/3</td>
<td>55/15</td>
<td>L</td>
<td>Facial paresis</td>
<td>Pergolide, amantadine</td>
</tr>
<tr>
<td>4</td>
<td>50</td>
<td>M</td>
<td>12</td>
<td>2/2</td>
<td>45/22</td>
<td>L</td>
<td>Slitg dystarhia</td>
<td>Selegeline, biperideen</td>
</tr>
<tr>
<td>5</td>
<td>53</td>
<td>M</td>
<td>14</td>
<td>2/3</td>
<td>69/56</td>
<td>L</td>
<td>Facial paresis, hypophonia</td>
<td>Pergolide, selegeline</td>
</tr>
<tr>
<td>6</td>
<td>58</td>
<td>M</td>
<td>13</td>
<td>2/3</td>
<td>48/27</td>
<td>L</td>
<td>Facial paresis, aphasis</td>
<td>Selegeline, biperideen</td>
</tr>
<tr>
<td>7</td>
<td>61</td>
<td>F</td>
<td>15</td>
<td>2/3</td>
<td>55/NP</td>
<td>R</td>
<td></td>
<td>Clozapine, temazepam, cisapride</td>
</tr>
</tbody>
</table>

Transient hiccups after posteroventral pallidotomy for Parkinson’s disease

Hiccup is defined as an abrupt intermittent, involuntary, contraction of the diaphragmatic and external (inspiratory) intercostal muscles, with inhibition of expiratory intercostal activity. This results in a sudden inspiration, abruptly opposed by closure of the glottis. Hiccup may result from various structural or functional disorders of the medulla, the afferent or efferent nerves to the respiratory muscles, and the gastrointestinal tract.1 Newson Davis performed a study of hiccup with electrophysiological techniques and concluded that hiccup is served by a supraspinal mechanism distinct from that generating rhythmic breathing.2 The principal site of interaction of the hiccup discharge with other descending drives to the respiratory motoneuron is at the spinal level. Neurogenic hiccup is particularly associated with structural lesions of the medulla oblongata.

Since 1994 we have performed 66 pallidotomies for Parkinson’s disease in 60 patients. So far, we have seen transient hiccups in seven patients after the operation (table). Our target coordinates for the postero-ventral globus pallidus at the border of the medial and lateral segments are 2–3 mm anterior to the midcommissural point, 5 mm below the intercommissural line and 22 mm lateral to the midline of the third ventricle. Ventriculography was performed for target
localisation. Patients started with a short schedule of corticosteroids (5 days) the night before surgery.

The hiccups started immediately after the operation or the next day, were intermittent, and the bouts of hiccup of six patients, with a duration of hours, resolved within 3 days after the procedure. One patient complained of yawning more often and frequent bouts of hiccup for 6 months.

Five patients were men. All patients were right handed. The mean age at surgery was 54 years and the mean duration of Parkinson’s disease was 12 years. All patients were taking levodopa. In four patients the hiccups appeared after a left sided pallidotomy. Patient 2 had a right sided thalamotomy 4 years before the pallidotomy. Patient 5 underwent a left sided pallidotomy 10 months before the right sided pallidotomy which caused the hiccups. The pallidotomies improved parkinsonism in the “off” state (table), contralateral dyskinesias, and pain accompanying Parkinson’s disease. Six patients had transient adverse events: four patients had a transient facial paresis postoperatively and two a slight transient dysarthria (table). Two patients had choreatic movements after the pallidotomy at the contralateral side which resolved spontaneously within 2 hours and is associated with a favourable surgical outcome.³

Postoperative MR scans were obtained in the first six patients, and showed that in five patients the lesions were located in the posterior part of the globus pallidus pars externa (GPe) and interna (figure). In patient 5 the lesion was situated slightly more anterior in the GPe and putamen. In patient 3 there was a small separate lesion more dorsal, probably an infarct.

We never encountered hiccups in 150 other stereotactic procedures for Parkinson’s disease, such as thalamotomies or deep brain stimulation electrode implantation in the thalamus and therefore it is unlikely that medication or positive contrast medium ven-triculography with Iohexol evoked the hiccup.

A possible cause for the transient hiccups could be the lesion in the ventral medial segment of the globus pallidus or pressure, due to oedema, on an adjacent structure like the internal capsule or putamen. We could not find other reports of hiccups as an adverse event after functional stereotactic surgical interventions, nor after lesions of other aetiology involving the striatum.³ Based on our experience we hypothesise that the globus pallidus or a neighbouring structure may be involved in a supramedullary system involved in triggering hiccups.

B M A DE BIE J D SPEELMAN
Department of Neurology
P R SCHUURMAN D A BOSCH
Department of Neurosurgery, Academic Medical Center, University of Amsterdam, The Netherlands

Correspondence to: Dr R M A De Bie, Department of Neurology, Academic Medical Center, PO Box 22700, 1100 DE Amsterdam, The Netherlands. Telephone 0031 20 566 3856; fax 0031 20 679 1438; email R.M.debie@amc.uva.nl

5 Buthia KP, Marsden CD. The behavioral and motor consequences of local lesion of the basal ganglia in man. Brain 1994;117:859–76.

Psychological adjustment and self reported coping in stroke survivors with and without emotionalism

Emotionalism after stroke is common, occurring in 10%–20% of a community sample.¹ Psychological factors in its cause or maintenance have not been studied; research has tended to concentrate instead on location of the stroke lesion. We suspect that one reason for this neglect of psychological aspects of emotionalism is that most people do not make a distinction between emotionalism, and pathological crying and laughing. As a result all disorders of emotionality after stroke are stereotyped as being related to brain damage and therefore psychologically meaningless.

None the less, many patients with emotionalism describe their crying as provoked by emotionally congruent experiences, which makes the tearfulness seem understandable.¹ In two previous studies, ³ we have shown that stroke patients with emotionalism have more symptoms of psychological disorder than do patients without emotionalism. In the present study, we explored further the psychological characteristics of stroke patients with emotionalism. Our aim was to determine whether they differed from patients without emotionalism in their psychological reactions to stroke, or in the coping strategies they reported.

Post-traumatic stress disorder is also characterised by recurrent episodes of intrusive and uncontrollable emotion, and we were therefore interested in whether patients with emotionalism also experienced thoughts typical of post-traumatic stress disorder. Because emotionalism is often described as uncontrollable, we were interested in the possibility that patients were more generally helpless, passive, or emotionally detached in their responses to stroke. Again, because of the reported uncontrollability of emotionalism, we postulated that patients with emotionalism would report a more external locus of control than those without emotionalism.

Participants were adults admitted to local general hospitals after stroke, and were interviewed within 1 month of admission. Exclusions were due to poor physical health, cognitive impairment, communication difficulties, or lack of consent. Approval for the study was obtained from the local research ethics committees.

All participants completed a standardised measure of distress—the general health questionnaire, GHQ-12;² a widely used measure of intrusive thoughts of the sort encountered in post-traumatic stress disorder—the impact of events rating scale;³ a measure of cognitive coping—the mental adjustment to stroke scale (O’Rourke S, Dennis M, MacHale S, Slattery J. The development of the mental adjustment to stroke scale: reliability, patient outcome and associations with mood and social activity, manuscript in preparation); and a measure of beliefs about responsibility for recovery from illness—the recovery locus of control scale.⁵ All the measures are self report questionnaires.

A total of 177 stroke patients were screened, of whom 112 were excluded. The 65 participants (29 men, 36 women) had a mean age of 71.8 years (range 43 to 88 years). Nineteen (29.2%) patients met our criterion for emotionalism,³ a rate similar to that found in other studies. Their scores on the study measures are compared with the scores of patients without emotionalism in the table. It might be that these associations with emotionalism were accounted for by the greater general levels of distress experienced by those with emotionalism. We therefore undertook analysis of covariance with GHQ-12 and presence of emotionalism as the covariates, and each of the other test items in turn as the independent variable. The results showed an association, after adjustment for GHQ-12 score, between emotionalism and the impact of events subscales intrusion

Five months after left sided pallidotomy, MRI of patient 6: (A) transversal slice at the level of the anterior commissure and (B) 6 mm more ventral.
Comparison of stroke survivors with and without emotionalism, assessed in hospital 1 month after stroke

<table>
<thead>
<tr>
<th>No emotionalism (n=45)</th>
<th>Emotionalism (n=19)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MASS = Mental adjustment to stroke scale.</td>
<td></td>
</tr>
<tr>
<td>Recovery from control scale</td>
<td>Impact of events scale intrusion subscale**</td>
</tr>
<tr>
<td>Impact of events scale avoidance subscale*</td>
<td>Impact of events scale avoidance subscale*</td>
</tr>
<tr>
<td>MASS Fighting subscale</td>
<td>MASS Anxious preoccupation subscale**</td>
</tr>
<tr>
<td>MASS Fighting subscale</td>
<td>MASS Fatalism subscale*</td>
</tr>
<tr>
<td>MASS Avoidance subscale</td>
<td>MASS Avoidance subscale</td>
</tr>
<tr>
<td>MASS Helplessness/hopelessness subscale**</td>
<td>MASS Helplessness/hopelessness subscale**</td>
</tr>
<tr>
<td>(F=15.33, p<0.001), and avoidance (F=11.84, p<0.001); the mental adjustment to stroke scale subscales helplessness/hopelessness (F=11.7 1, p=0.001) and anxious preoccupation (F=8.05, p=0.006). The associations with fatalism (F=14.79, p=0.052) and avoidance (F=0.06, p=0.80) on the mental adjustment to stroke were no longer significant after adjustment for GHQ-12 score.</td>
<td></td>
</tr>
</tbody>
</table>

This study confirms earlier work by showing that stroke survivors with emotionalism have more such mood symptoms (here rated by the GHQ-12) than do those without emotionalism. It goes further however, in showing that they also have intrusive thoughts about their condition, rather similar to those reported by people with post-traumatic stress disorder. This unpleasant remembering is probably used in post-traumatic stress disorder. It may not be that memories of the sort encountered in post-traumatic stress disorder occur after stroke: a comparison of stroke survivors with and without emotionalism, assessed in hospital 1 month after stroke showed increased feelings of helplessness and hopelessness, coupled with avoidance—at least as a cognitive coping strategy reported on one of our measures. Avoidant coping may perpetuate the symptom of emotionalism, by preventing habituation to the social stimuli which provoke it. Alternatively it may lead to a reduction in social support, exacerbating coexistent mood disturbance. Thus, it may be that avoidant coping is not an integral part of emotionalism, but rather that it is an important maintaining factor.

We predicted that patients with emotionalism would have more "external" scores on the locus of control measure, reflecting their sense of lack of personal control over crying. They did not, perhaps because the emotional expression, although not apparently controlled by external resources, is none the less perceived as having psychological meaning, so that responsibility for it cannot readily be devolved to others.

Our study used a relatively weak between-group designs, the number of patients was not large, and we cannot be sure that all co-

Paraneoplastic stiff limb syndrome

Stiff man syndrome (SMS) is a rare, severe progressive motor disorder characterised by painful spasms, symmetric axial muscle rigidity, and uncontrollable contractions leading to distorted posturing. The disorder has been associated with the autoantigens, glutamic acid decarboxylase (GAD), and amphiphysin, which are cytoplasmic proteins in neurons of the CNS. A large series of patients with SMS found that most had autoantibodies against GAD, whereas amphiphysin is presumably the predominant autoantigen in paraneoplastic SMS. Recently, Barnet et al presented four patients with a stiff leg syndrome marked by progressive rigidity and spasms of the lower extremities. This group of patients tested negative for anti-GAD antibody by immunoprecipitation and demonstrated distinct electrophysiologi-

"stiff limb syndrome" refers to the focal form of SMS when one or more distal limbs are involved; two of their patients were also anti-GAD antibody positive, but none were tested for antibodies to amphiphysin or identified as having an underlying neoplasm. We present a patient clinically consistent with the stiff limb syndrome who was found to have autoanti-

Letters, Correspondence, Book reviews, Correction
with the "diffuse" axial and subsequent proximal muscle distribution of the classic disorder.' Our patient differs from those reported with stiff leg syndrome in that an occult malignancy was present. Unfortunately, we were unable to obtain electrophysiological studies for comparison. The search for a paraneoplastic process was based on the findings of axillary lymphadenopathy and an abnormal CSF. Our patient is only the second reported with paraneoplastic SMS associated with anti-GAD antibody; the other had upper limb rigidity in the setting of breast cancer and additionally mounted an immune response to amphiphysin.

Paraneoplastic processes can affect any component of the nervous system and, occasionally, multiple levels, as in the syndrome of sensory neuronopathy-encephalomyelitis. Our patient's findings were not entirely consistent with criteria for classic SMS in that an apparent encephalopathy and a small fibre neuropathy were identified—for example, her dysautonomia (tachycardia and relative hypertension) during spasms may have been a manifestation of involvement of small fibres. The role of autoantibodies in the pathogenesis of SMS and cancer is unclear. Via its probable function in endocytosis, amphiphysin has been postulated to play a part in the regulation of growth factor internalisation; however, the absence of an autoimmune response to this autoantigen in our patient suggests that other mechanisms of oncogenesis in SMS exist. Given anecdotal evidence of improvement in paraneoplastic SMS after treating the underlying malignancy, we suggest that all patients with SMS, diffuse or focal, be screened for occult cancer.

ISAAC E SILVERMAN
Department of Neurology, Johns Hopkins University, Baltimore, USA

Correspondence to: Dr I E Silverman, Johns Hopkins Hospital, Pathology 509, 600 North Wolfe Street, Baltimore, MD 21287, USA. Telephone 001 410 955 6626; fax 001 410 614 1008; email isilver@jhmi.edu

Tetradotoxin intoxication in a uraemic patient

Tetradotoxin intoxication results from ingest- ing puffer fish or other animals containing the toxin. Clinical presentation is mainly acute motor weakness and respiratory paralysis. Death is common in the worst affected victims. Although the severity of the symp- toms generally depends on the amount of toxin ingested, it may be influenced by the victim's medical condition, as described in this report. The patient was a 52 year old uraemic man. The uraemia was of undefi ned aetiology. Over the past 3 years she has received regular haemodialysis. One day both she and her husband, a healthy 55 year old man, ate a fish soup. About 3 hours after the meal she developed a headache and a lingual and circumoral tingling sensation and numb- ness at the distal parts of all four limbs. She was dizzy and unsteady, had difficulty in swallowing, and became very weak. She was taken to the emergency service and was placed on machine assisted ventilation as respir- atory distress and cyanosis developed. Her husband remained asymptomatic throughout this time.

The patient's condition kept on deteriorat- ing, developing eventually into a comatous- like state with no spontaneous or reflexive eye opening or limb movement within 30 min- utes of intubation. On neurological examina- tion, the pupillary light reflex was absent and oculocephalic manoeuvre elicited no ocular movements. All four limbs were areflexic and Babinski's signs were absent. Brain CT and laboratory studies of arterial blood gas (under assisted ventilation), electrolytes, liver func- tion, blood glucose, and CSF study were unremarkable. An examination of renal func- tion indicated chronic renal insufficiency with mild azotaemia (urea nitrogen 70 mg/dl, creati- nine 9.1 mg/dl). An EEG, recorded 18 hours after the onset of symptoms when the neurological condition was unchanged, showed posterior dominant alpha waves intermixing with trains of short duration, diffuse theta waves. When brief noxious stimuli were applied to the sternum, they were replaced transiently by beta activities. The findings suggested that the profound neuro- logical dysfunction might be peripheral in origin. The patient was given a course of haemodialysis according to the set schedule for uraemia at 21 hours after onset of the symptoms. Her condition improved dramati-
The clinical entity critical illness polyneuropathy occurs almost exclusively in patients in critical care units and has been characterised as a complication of sepsis and multiple organ failure. Critical illness polyneuropathy may be a common cause of the difficulty in weaning patients from the ventilator, particularly those who show intractable ventilator dependence. All the measures used to prevent sepsis and multiple organ failure are the main methods now used to deal with critical illness polyneuropathy. The knowledge of this type of polyneuropathy is of help in making appropriate respiratory techniques, nursing care, prognosis, and overall management. Moreover, recognition of critical illness polyneuropathy indicates the need for physiotherapy, rehabilitation, and other supportive measures as the patient recovers. Bolton et al. have made an important positive contribution to the care of patients with critical illness polyneuropathy. The actual aetiology, however, has yet to be determined. The pathogenesis needs to be clarified to treat patients more effectively.

Critical illness polyneuropathy invariably occurs at the peak of critical illness and sepsis, but in Guillain-Barré syndrome there is a brief period of recovery after a relatively minor illness or inoculation. Except for differences in the predisposing causes, as Bolton et al. reported, it is difficult to distinguish critical illness polyneuropathy from Guillain-Barré syndrome on purely clinical grounds. In both, polyneuropathy runs a monophasic course, the onset being relatively acute but with subsequent improvement in most instances. The clinical features also are similar; evidence of muscle weakness in all four limbs, occasional involvement of facial muscles and frequent involvement of the muscles of respiration, the depression or absence of deep tendon reflexes, and some evidence of distal sensory loss.

The first step by Bolton et al. in determining exact aetiology was to differentiate critical illness polyneuropathy from Guillain-Barré syndrome. In reviewing the patients with critical illness polyneuropathy and Guillain-Barré syndrome who were studied in their EMG laboratory, they found marked differences between the two types of polyneuropathy. Patients with Guillain-Barré syndrome had greater slowing of the speed of impulse conduction, and, in the initial stages, abnormal spontaneous activity in the muscle was absent, indicative of a predominantly demyelinating polyneuropathy. The CSF was only mildly increased in patients with critical illness polyneuropathy, but it was much increased in patients with Guillain-Barré syndrome. Comprehensive studies done at necropsy and nerve biopsy of patients with critical illness polyneuropathy showed the presence of primary axonal degeneration of the motor and sensory fibres, mainly distally, with no evidence of inflammation. Zochodne et al. (excluding Bolton) therefore concluded that the two types of polyneuropathies most probably are separate entities.

Guillin and colleagues enumerated the clinical and spinal fluid features of presumptively patients with acute flaccid paralysis without regard for the underlying pathology of the disease. Classic pathological studies of Guillain-Barré syndrome, however, have identified prominent demyelination and inflammatory infiltrates in the spinal roots and nerves. Guillain-Barré syndrome often has been considered to be synonymous with the pathological designation of acute inflammatory demyelinating polyneuropathy, and pathological abnormalities consistent with demyelination have been taken as supportive evidence for the diagnosis of Guillain-Barré syndrome. Feasby et al. (excluding Bolton) called attention to patients who were clinically considered as having Guillain-Barré syndrome, but who were characterised electrophysiologically as having early axonal degeneration of the motor and sensory fibres. The evidence included a rapid fall in compound muscle action potentials and sensory nerve action potentials, and no evidence of demyelination. Such patients often had severe paralysis and made a slow recovery, probably reflecting the need to regenerate axons rather than remyelination. Pathological findings are consistent with axonal degeneration without demyelination. Feasby et al. termed this pattern axonal Guillain-Barré syndrome and suggested that there is a fundamental difference in the underlying pathophysiology, resulting in primary axonal damage rather than demyelination. Griffin et al. confirmed the existence of the acute motor-sensory axonal neuropathy (AMSAN) pattern of Guillain-Barré syndrome described by Feasby et al.
of acute diarrhoea, commonly precedes the development of Guillain-Barré syndrome. There is a close association between axonal Guillain-Barré syndrome and antecedent C jejuni infection. The antecedent infectious symptom was diarrhoea in three of five patients with axonal Guillain-Barré syndrome described by Feasby et al. Observations by Griffin et al confirmed that AMSAN follows C jejuni infection. Serum samples from patients with axonal Guillain-Barré syndrome subsequent to C jejuni enteritis often have in common class autoantibodies to gangliosides GM1, GM1b, GD1a, or GaINAc-GD1a in the acute phase of the illness, and there is molecular mimicry between these gangliosides and the lipopolysaccharides of C jejuni isolates from patients with Guillain-Barré syndrome. This ganglioside mimicry may trigger high production of the IgG anti-ganglioside antibodies, and these autoantibodies may cause motor nerve dysfunction in patients with GBS.

Interestingly, Hagensee et al reported a case of “C jejuni bacteremia and subsequent Guillain-Barré syndrome” that occurred in a patient with chronic graft versus host disease after allogenic bone marrow transplantation. Because there was acute flaccid paralysis associated with sepsis, some physicians might have diagnosed critical illness polyneuropathy. Conversely, the existence of this case strongly suggests that some diagnosis of critical illness polyneuropathy should actually be axonal Guillain-Barré syndrome or AMSAN. Our hypothesis of the nosological relation between critical illness polyneuropathy and Guillain-Barré syndrome is shown in the figure. Serum IgG antibodies against GM1, GM1b, GD1a, or GaINAc-GD1a could be used as immunological markers for axonal Guillain-Barré syndrome. To examine the aetiology of critical illness polyneuropathy and its nosological relation to axonal Guillain-Barré syndrome, it is necessary to investigate whether patients with critical illness polyneuropathy have anti-ganglioside antibodies during the acute phase of the illness.

Nobuhiro Yuki
Koichi Hirata
Department of Neurology,
Dokkyo University School of Medicine,
Japan
Correspondence to: Dr Nobuhiro Yuki, Department of Neurology, Dokkyo University School of Medicine, Kitakobayashi 880, Mibu, Shimotsuga, Tochigi 321-0293, Japan

Repetitive transcranial magnetic stimulation in the treatment of chronic negative schizophrenia: a pilot study

Recently, a new technology known as repetitive transcranial magnetic stimulation (RTMS) has been developed. In 1994, the use of magnetic stimulation in clinical psychiatry was suggested. Since then, it has been used in the study or treatment of obsessive-compulsive disorder, conversion disorder, schizophrenia, and particularly, depression.

Our pilot study aimed to assess the possible adverse effects of this treatment in chronic schizophrenic patients with severe negative symptoms; to evaluate if direct RTMS of the prefrontal cortex might improve negative symptoms or cognitively impaired patients with chronic schizophrenia; and thirdly, to note if RTMS might modify the deficit in prefrontal cortical activity, often referred to as an established change in schizophrenia, especially under conditions of task activation.

Six right-handed patients with chronic schizophrenia were identified at the outpatient psychiatric service of the Hospital Clinic of Barcelona. There were two men and four women (mean age 39).

Exclusion criteria included alcohol or substance abuse disorder, chronic mental disability, and focal neurological illness. Informed consent was obtained from all patients by the attending psychiatrist, and written informed consent was obtained from every patient following a detailed explanation of attention, specifically of the maintenance of attention, which allows the correct function of the working memory. The absence of harmful effects and methodological limitations regarding the power of our conclusions, it is certain that there has been an improvement in the attentional capability. We found that all patients (except one, who was always within the normal range) diminished their number of perseverative answers and had less perseverative answers in WCST (items characteristically altered in schizophrenia) after the RTMS. However, significance was not achieved on any WCST scores.

Two patients who initially did not perform any categories on WCST, after the treatment, achieved one category, a possible indication of improvement of the working memory. This change leads us to consider a research strategy previously reported, in which the WCST is used as a screening test for selecting schizophrenic patients. Those initially achieving low category scores would be compared to higher category scorers in an effort to identify a subgroup most likely to benefit from RTMS.

Taking into account these mild improvements together, and the lack of changes in...
hypofrontality after treatment, we are considering extending the treatment course to 20 sessions, each at 30 Hz for 1 second, at 90% of motor threshold. It was also suggested that other positions of the coil and other kinds of coils might give better results.

The clinical change in our cohort after the RTMS could be attributed to both the treatment and the supportive environment of the psychiatric ward, and even to enhance compliance to medication during hospital admission. We are aware that this small sample size and lack of controls compels a very careful interpretation of the results. Nevertheless, in the light of these, we suggest further controlled studies of the efficacy of RTMS in negative symptoms of schizophrenia, not only as an add on technique but also as a sole therapeutic procedure. Research on RTMS also requires some controlled studies aimed to the complexity of the methodology (dosage, duration, and localisation), as this form of intervention may prove to be an economical and convenient therapy in treating several psychiatric disorders.

The case report by Ay et al. discussed the patient seems to be terrified of the limb which is responsible for our belief that we are in charge of our bodies. In other words, while the brain is the seat of all our actions and experiences, there is also a part of our nervous system which is responsible for our belief that we have free will over our behaviour. Patients with alien hand syndrome think that they are no longer in control of a limb because the part of the brain that gives us the sensation of control over our bodies has been damaged. When that happens, our limbs seem to act independently of us.

Research conducted in the 1980s has found that the same electrical brain wave changes that characteristically precede all limb movements, occur several 100 ms before we seem to consciously decide to move a limb. If our conscious decision to act preceded by brain changes that anticipate action, then our “decision” to choose how to behave or “freedom”, as in free will, is in fact illusory. Our choices have in a sense been decided beforehand by our brains.

Spence asserts that evidence such as this, combined with phenomena such as alien hand syndrome, means that philosophers have to reconsider whether we have free will. He argues that these data suggest that our sense of agency is illusory and it follows that most of us share in common the useful delusion that we have free will. Patients with alien hand syndrome have lost this experience in relation to a particular limb. There is a sense then that those who experience the syndrome are closer to the reality of how much we are responsible for our actions than the rest of us. This is because the function of the part of the brain that normally works to make us think that we have conscious freedom of will. They develop the experience, therefore, of becoming mere remote spectators to the actions of their bodies.

Defenders of human “free will” argue what happens before the brain itself decides to act is still unknown, and there may be a role for our own autonomy there. But even these free will guardians concede the neurological research indicates that whatever happens before the brain is roused, must occur below our conscious awareness.

Yet in alien hand syndrome the patient thinks that the limb has hostile motivations; it is invariably the case that the patient not only thinks that the limb is “not self” but finds that the limb behaves towards the self in a destructive and aggressive manner. This could be explained by the suggestion that if we lose our conscious sense of voluntary control over our bodies, our minds have to come up with an explanation for the location of our actions. We decide that if ourselves are not in control, then someone or something else must be; therefore, we no longer have a sense of the limb belonging to us.

Because to lose control over our bodies is one of the most terrifying experiences, our attempt to explain this finding occurs in the context of fear. It may be that our apprehension leads us to misinterpret innocent reflexive acts of our hands, such as scratching or rubbing, as malevolently inspired. Plus it could be that our interpretation of spurious possession in turn leads the patient to believe, only this is beyond our conscious awareness. It may therefore be that we need to believe in our own free will and personal control over our actions, because if we did not, if we did not believe the experience of our bodies acting as if we merely came along for the ride, too frightening. Also, we may no longer believe that our bodies or its relevant parts belong to us. All neurologists who have reported alien hand syndrome remark on how psychologically disturbing the symptom is for the patient. Psychiatrists would be interested in the parallels between alien hand syndrome and the magical experience of the body. If we did not believe the fact that the two diseases may share corpus callosum pathology, it could go some way to explaining why schizophrenic symptoms are frightening to the patient. So it seems that our interpretation of spiteful acts of our hands, such as scratching or rubbing, as malevolently inspired.

CORRESPONDENCE

Sensory alien hand syndrome

The case report by Ay et al. of alien hand syndrome and review of the literature neglected the intriguing issue of why in every case so far reported the patient seems to be terrified of the alien limb. Not believing that you are any more in control of a limb is not likely to be a pleasant experience.

Those with alien hand syndrome seem to jump to extremely negative conclusions concerning the intent of the limb. Typically, as in the report of Ay et al., from the common belief is that the limb has deeply malevolent intentions towards the victim.

It is this aspect of alien hand syndrome that I suggest needs incorporating into its neurological explanations, and which provides a clue as to why our everyday experience of being in charge of our bodies, and so initiating all personal action, itself has a neurological basis. In other words, while the brain is the seat of all our actions and experiences, there is also a part of our nervous system which is responsible for our belief that we have free will over our behaviour. Patients with alien hand syndrome think that they are no longer in control of a limb because the part of the brain that gives us the sensation of control over our bodies has been damaged. When that happens, our limbs seem to act independently of us.

Research conducted in the 1980s has found that the same electrical brain wave changes that characteristically precede all limb movements, occur several 100 ms before we seem to consciously decide to move a limb. If our conscious decision to act preceded by brain changes that anticipate action, then our “decision” to choose how to behave or “freedom”, as in free will, is in fact illusory. Our choices have in a sense been decided beforehand by our brains.

Spence asserts that evidence such as this, combined with phenomena such as alien hand syndrome, means that philosophers have to reconsider whether we have free will. He argues that these data suggest that our sense of agency is illusory and it follows that most of us share in common the useful delusion that we have free will. Patients with alien hand syndrome have lost this experience in relation to a particular limb. There is a sense then that those who experience the syndrome are closer to the reality of how much we are responsible for our actions than the rest of us. This is because the function of the part of the brain that normally works to make us think that we have conscious freedom of will. They develop the experience, therefore, of becoming mere remote spectators to the actions of their bodies.

Defenders of human “free will” argue what happens before the brain itself decides to act is still unknown, and there may be a role for our own autonomy there. But even these free will guardians concede the neurological research indicates that whatever happens before the brain is roused, must occur below our conscious awareness.

Yet in alien hand syndrome the patient thinks that the limb has hostile motivations; it is invariably the case that the patient not only thinks that the limb is “not self” but finds that the limb behaves towards the self in a destructive and aggressive manner. This could be explained by the suggestion that if we lose our conscious sense of voluntary control over our bodies, our minds have to come up with an explanation for the location of our actions. We decide that if ourselves are not in control, then someone or something else must be; therefore, we no longer have a sense of the limb belonging to us.

Because to lose control over our bodies is one of the most terrifying experiences, our attempt to explain this finding occurs in the context of fear. It may be that our apprehension leads us to misinterpret innocent reflexive acts of our hands, such as scratching or rubbing, as malevolently inspired. Plus it could be that our interpretation of spurious possession in turn leads the patient to believe, only this is beyond our conscious awareness. It may therefore be that we need to believe in our own free will and personal control over our actions, because if we did not, if we did not believe the experience of our bodies acting as if we merely came along for the ride, too frightening. Also, we may no longer believe that our bodies or its relevant parts belong to us. All neurologists who have reported alien hand syndrome remark on how psychologically disturbing the symptom is for the patient. Psychiatrists would be interested in the parallels between alien hand syndrome and the magical experience of the body. If we did not believe the fact that the two diseases may share corpus callosum pathology, it could go some way to explaining why schizophrenic symptoms are frightening to the patient. So it seems that our interpretation of spiteful acts of our hands, such as scratching or rubbing, as malevolently inspired.
opposed to the idea that “we know our limbs belong to us because they obey us,” we know that our limbs belong to us because they provide us with sensory input that is recognised as self. Many patients with movement disorders or paralysis lose control of their limbs but still have no difficulty in realising them as self. Indeed even in “phantom limb” there is sense of self due to central processes in the absence of a limb. Our patient, as do others with anosognosia and primary abnor-

mentalities of central sensory systems, shows perhaps that it is central sensory processes that are the key to identifying “self”. We know our limbs not because they obey us but because there is a pattern of sensory activation that accompanies our own limb move-

ts. When this pattern never reaches specific cortical regions, then the limb is not perceived as self; called “amorphosynthesis” by Denny-Brown and Banker. Selection by the centrally deafermented limb in “sensory” or “posterior” alien hand syn-
drome, or kinaesthetic stimuli due to move-
ment of the limb as in the “anterior” or “motor” alien hand syndrome, is perceived as due to another person or thing without criti-
nal questioning. This raises the most interest-
ing question of what brain region is deafer-

mented in the anterior alien hand syndrome wherein the processing is intact.

It is not our clinical experience nor the conclusions based on published reports that all patients suffering with alien hand syn-
drome are terffied by the effected limb. In one author’s experience (BHP), two patients with alien hand syndrome and related intermural conflict were irritated by but not terffied by their opposing limbs simultaneously.

In Kaplan’s patient the affected limb was amused but rather indifferent to his affected left side. The most terrifying situ-

ation we have heard is when the patient iden-
tified his affected left side as belonging to his mother in law! A patient reported by Heilman’s group2 with persistent alien hand syn-
drome after an episode of an anticonvulsant drug.

The article of Baumgartner and Baumgartner entitled “Vasomotor reactivity is exhausted in transient ischaemic attacks with limb shaking”4 provides interesting new infor-
mation regarding the question that involuntary limb movements contralateral to haemody-
namic failure from severe carotid artery occlusive disease. The authors evoke an “exhausted cerebral vasoreactivity in the hemispheres opposite the involuntarily limb movements”7. In their report, involuntary movements affected only the limbs, and displayed no tonic contraction, tonic-clonic jerking, or Jacksonian march and no epileptic activity during or between events.2 These findings led the authors to strongly argue against seizures as the cause of limb shaking in these transient ischaemic events.

In contradistinction, a 72 year old right handed man was admitted to our hospital with a 3 month history of episodic weakness and numbness of the right arm. The patient then had six discrete stereotypic episodes of right arm weakness and clumsiness that were also associated with positive symptoms in the left arm. Several episodes of dysphasia, numbness and weakness of the right arm and leg (MRC grade 4/5) were seen, unrelated to posture, some of which occurred when the patient was supine. Motor abnormalities in the left arm and leg were characterized by slight tremulousness and asterixis-like move-

ments of the outstretched right arm. There was a return to baseline functioning between events.2 Video/EEG monitoring, however, showed low voltage spikes in the left central-

cortical areas. Integration with inhibition of subcortical and supraspinal activity during or between the attacks. These findings based on published reports that inhibitory focal motor seizures may mimick transient ischemic attacks (TIAs). It can be concluded that the brain quickly re-establishes its control by presently unknown adaptive capacities. Furthermore, why it almost exclu-
sively involves the left body side in right handed people remains unknown. Studying this syndrome in greater detail may yield additional insights into the pathophysiology of denial and misidentification.

Vasomotor reactivity is exhausted in transient ischaemic attacks with limb shaking

The term “vasomotor reactivity is exhausted in transient ischaemic attacks with limb shaking”4 provides interesting new infor-
mation regarding the question that involuntary limb movements contralateral to haemody-
namic failure from severe carotid artery occlusive disease. The authors evoke an “exhausted cerebral vasoreactivity in the hemispheres opposite the involuntarily limb movements”7. In their report, involuntary movements affected only the limbs, and displayed no tonic contraction, tonic-clonic jerking, or Jacksonian march and no epileptic activity during or between events.2 These findings led the authors to strongly argue against seizures as the cause of limb shaking in these transient ischaemic events.

In contradistinction, a 72 year old right handed man was admitted to our hospital with a 3 month history of episodic weakness and numbness of the right arm. The patient then had six discrete stereotypic episodes of right arm weakness and clumsiness that were also associated with positive symptoms in the left arm. Several episodes of dysphasia, numbness and weakness of the right arm and leg (MRC grade 4/5) were seen, unrelated to posture, some of which occurred when the patient was supine. Motor abnormalities in the left arm and leg were characterized by slight tremulousness and asterixis-like move-

ments of the outstretched right arm. There was a return to baseline functioning between events.2 Video/EEG monitoring, however, showed low voltage spikes in the left central-

parietal head regions contralateral to the right arm of Kaplan’s patient are due to epil-

ptic seizures, because unilateral asterixis of the right arm, which may not be due to inhibitory seizures in several ways. (1) They are associated with positive phenomena (limb shaking), and the involuntary move-

ments do not affect the facial muscles. (2) Patients with attacks of shaking movements of the limbs have no EEG evidence of epilep-
tic activity, and involuntary movements do not stop after administration of anticonvul-

sive therapy. (3) Although the patient pre-

sented by Kaplan had a 95% stenosis of the left internal carotid artery, it is unclear whether haemodynamic failure was present or not, because no studies evaluating the haemodynamic reserve on the homolateral hemisphere were presented. This is in accordance with the finding that the involun-
tary movements as well as the sensorimotor deficits of Kaplans’ patient were not related to ischaemia. (4) The pathogenesis of the attacks may be due to disinhibition of subcortical control mechanisms as a result of ischaemia.

In our opinion, it is not clear whether the asterixis-like movements of the outstretched right arm of Kaplan’s patient are due to epi-

leptic seizures, because unilateral asterixis of the outstretched arm has been reported with contralateral vascular lesions affecting almost all cerebral structures except for the homolateral hemisphere.

HAKAN AY
FERDINANDO S BONANNO
DEAN A LE

WALTER J KOROSHETZ
Department of Neurology, Stroke Service, Massachusetts General Hospital, Harvard Medical School, 32 Fruit Street, Boston MA 02114, USA

BRUCE H PRICE
Department of Neurology, McLean Hospital, 115 Mill Street, Belmont MA 02178-9106, USA

2 Heilman KM, Valenstein E, eds. Clinical neu-
ropsychology 3rd ed New York: Oxford Univer-

3 Lee H, Lerner A. Transient ischemic seizures mimicking crescendo TIAs. Neurology 1990;40:

169–6.

4 Tinuper P, Aguglia U, Laudadio S, et al. Prolonged ictal paralytic electroencephalo-

5 Lueder ET, Lessner DS, et al. The second-

ary sensory area in humans: evoked poten-

Baumgartner and Baumgartner reply: We are grateful for the response of Kaplan to our short report. We agree that somatic inhibitory seizures may mimick transient ischaemic attacks (TIAs). Such TIAs are associated with negative symptoms such as sensorimotor deficits and difficulty with speaking, EEG evidence of seizure activity, and cessation of the TIAs after the administra-
tion of an anticonvulsant drug.1,2 Limb shak-
ing TIA’s, however, differ from TIAs related to inhibitory seizures in several ways. (1) They are associated with positive phenomena (limb shaking), and the involuntary move-

ments do not affect the facial muscles. (2) Patients with attacks of shaking movements of the limbs have no EEG evidence of epilep-
tic activity, and involuntary movements do not stop after administration of anticonvul-

sive therapy. (3) Although the patient pre-

sented by Kaplan had a 95% stenosis of the left internal carotid artery, it is unclear whether haemodynamic failure was present or not, because no studies evaluating the haemodynamic reserve on the homolateral hemisphere were presented. This is in accordance with the finding that the involun-
tary movements as well as the sensorimotor deficits of Kaplans’ patient were not related to ischaemia. (4) The pathogenesis of the attacks may be due to disinhibition of subcortical control mechanisms as a result of ischaemia.

In our opinion, it is not clear whether the asterixis-like movements of the outstretched right arm of Kaplan’s patient are due to epi-

leptic seizures, because unilateral asterixis of the outstretched arm has been reported with contralateral vascular lesions affecting almost all cerebral structures except for the homolateral hemisphere.

BOOK REVIEWS

To the MRCP candidate neurology is one of the more daunting specialties. The unfamiliar nerve conduction study and the frankly mysterious EEG can distress an otherwise well rounded senior house officer. Despite the fact that much of neurology is commonly seen on a general medical ward—strokes, dementias and so forth—the general perception is of an unimaginable list of eponymous syndromes and obscure signs. Rather than dwell on the last, in this book Dr Smith tries to address the commoner complaints as examination style questions each with a “simple clinical lesson”. The “grey case” section, for instance, includes questions on multiple sclerosis, cluster headache, and HSV encephalitis, while broadening the topics to include postinfective demyelination, chronic hernicmic, and acute haemorrhagic encephalomyelitis. There is, however, a tendency for the discussion after each question to be rather brief. A fuller explanation, with more allowance for the reader’s ignorance, would have been appreciated. The data interpretation section is somewhat better, covering CSF, EEG, and other data extremely well. Perhaps a little too well; would an MRCP candidate really be expected to recognise the characteristic EEG of Creutzfeldt-Jakob disease I surely hope not. Finally, the slide tests are disappointing. If anything, neurology lends itself best to this section of the written examination but it is let down by the poor quality of some of the images in this book. This is especially unfortunate, as other images in the same section are remarkably impressive. The Sturge-Weber skull radiograph and central pontine myelinolysis MRI are beautiful. In the same section are remarkably impressive. The clear and comprehensive current review of transcranial ultrasound examinations are due to an incomplete understanding of the physics of the ultrasound beam. I think that some of the errors made in the interpretation of vascular ultrasound examinations are due to the same lack of understanding. I have no problem with enthusiasm for this technique a little pragmatism would not go amiss. A more balanced discussion of the limitations as well as potentialities of the technique could have been applied.

With any book with multiple authors there is some variation in style and overlap, particularly in the introductions and conclusions of the chapters. Nevertheless, it is a comprehensive current review of transcranial colour coded sonography. Although the reader must decide exactly how this technique fits into clinical practice the book will certainly stimulate some ideas.

PETER MARTIN

This is volume 47 of a series entitled Neurological Disease and Therapy, series editor W C Koller. This volume is edited by an American surgeon and two British neurophysiologists. Most of the 45 contributors are American or British, almost half of whom, including Dr Cole, are from Southampton. The book begins with a pathophysiological

This is the second time that I have been asked to review a book on this topic. The first time I approached the task with some scepticism—were neurological diseases in women really so different from those in men that they warranted their own text book? But I rapidly became a convert to the cause, being reminded that there are issues specific to females that influence both disease, investigation, and treatment (pregnancy, breast feeding, menopause, to name the most obvious) and that not all neurological diseases attack the sexes equally. There are also wider socio-economic and legal issues that play a part in the complete disease picture which many of us neglect too often but which this book is careful to address (see below). Leaving content aside for a moment, this is a beautifully presented book; clearly headed and with wide use of well constructed tables. It encourages one to read on. It seems up to date and well referenced.

The contributors (40 in total) are exclusively American, and east coast American at that with only occasional forays westward. The text is divided into three sections. The first, entitled General Issues in Women includes an anatomical chapter considering the sex differences of regional brain structure and function. More novel for this type of text, it contains two thoughtful chapters considering women’s health in the context of their lifestyles and women’s health and its relation with the law. This chapter considers issues such as coercive approaches to preventing foetal harm, those relating to informed consent to medical treatment, and difficult choices with neurological implications. The law and the case examples are exclusively American but the issues are universal. This opening section leaves no doubt that this is a book that has taken female issues extremely seriously.

The second section looks at neurological diseases as they affect females at different life stages, from birth through menarche, pregnancy, and menopause, to the elderly woman. As well as considering genetic diseases that strike at a particular age, these chapters consider the influence of changing physiology and hormonal balance on neurological disease. The third section is the most conventional. Each chapter considers a neurological disease representing these diseases with emphasis on their effect on women and there is, by necessity, some overlap between this and the previous section. As a non-American, I would feel more comfortable to believe that the high number of female patients with peripheral nerve injuries secondary to physical beatings, knife wounds, or gunshot wounds reflected the country of origin of this book!

If pushed to criticise, the indexing could be more complete and certain conditions considered in more detail, in particular, paraneoplastic conditions associated with breast and gynaecological malignancies. However, that aside, I think this a rather special book and not only a good addition to any neurological library but a useful purchase for anyone interested in female medical issues.

GILLIAN HALL

CORRECTION

During the editorial process the descriptions of the histograms in figure 4 (p 614) were wrongly ascribed. The corrected figure is reproduced below.