LETTERS TO THE EDITOR

Pseudotumour after arteriovenous malformation embolisation

The association between venous outflow obstruction and the development of pseudotumour syndrome is well known, although the mechanism by which the rise in CSF pressure is brought about is less certain. Although there is much evidence that the manifestations are a result of a disturbance of CSF dynamics, previous reports have focused solely on a disturbance to absorption. We present a case in which it is proposed that alterations in CSF formation, and to a lesser extent absorption, are responsible for the development of the syndrome.

At 2 years of age, as part of investigating a failure of left eye visual development, a female infant underwent cerebral CT. This showed an unexpected arteriovenous malformation involving the vein of Galen. Although there was no evidence of cardiac failure or hydrocephalus associated with this, assessment by angiography was advised. This, initially declined by the parents, was not undertaken until the age of 5 years when vertigo and intermittent numbness of the left arm and leg had been present for about 12 months.

Angiography showed a deep right temporal lobe arteriovenous malformation consisting of three separate fistulae supplied by the right posterior cerebral and posterior communicant arteries. These drained into a large venous varix which subsequently drained into the Galenic venous system. A cerebral blood flow study showed a steal syndrome affecting the right frontoparietal area, and a decision was made to attempt embolisation. Complete occlusion of the fistulae was achieved by transarterial platinum coil embolisation.

The patient complained of right sided headache for 24 hours after the procedure, resolving with minor analgesia. Brain CT the next day was reported as normal. A full ophthalmological review was undertaken before the next day was reported as normal. A full ophthalmological review was undertaken before.

It is well known that obstruction to a major portion of the cranial venous outflow can produce intracranial hypertension, presumably by impairing CSF absorption across the arachnoid villi.1 In the present case it would seem that sluggish flow in the venous varix after embolisation has resulted in thrombosis, which has propagated to the vein of Galen. As all investigations seem to have the thrombus confined to this region, a region of relative paucity of arachnoidal granulations,2 and the major outflow tracts seem normal, it is difficult to accept that impairment of absorption is the mechanism responsible in the current case. An alternative mechanism must be considered.

It is held that one of the determinants of the rate of CSF production is the pressure gradient across the choroid plexus capillaries.3 Reduction in this pressure has been shown to decrease the rate of CSF formation, and it is possible that increases in the transcapillary pressure will, as in other parts of the body, result in increased transudation from the capillaries, leading to increased CSF formation. The malformation in the present case, haemodynamically important enough to result in symptoms of steal, and present since birth, may have resulted in a subnormal transcapillary gradient, and a possibly decreased CSF production. If this were the case, with decreased production serving to retard the normal development of absorptive capacity, then the increase in the pressure in the choroid plexus capillaries brought about by both the closure of the fistulae and the subsequent venous thrombosis may have resulted in a rate of CSF production greater than could be handled by the absorptive system. Resolution of the thrombus, recruitment of venous collaterals, and possibly an increase in absorptive capacity would have resulted in the resolution of the syndrome.

Dandy and Blackfan,1 in one of the first experiments of its type, attempted to produce hydrocephalus in dogs by ligating the vein of Galen. Their aim was to increase production, rather than impair absorption, of CSF. Their failure, a result conclusively demonstrated by Bedford, was taken to show that venous obstruction would not result in hydrocephalus. It is, however, worth noting that Bedford3 was able to demonstrate both the fact that dogs have extensive collaterals in the Galenic venous system, not present in humans, and that whereas Galenic venous obstruction produced little change, obstruction of the jugular veins resulted in increased CSF formation. Since these experiments little, if any, work has been done in the area of the relation between CSF formation and venous occlusion.

Although the above report is somewhat speculative, it could serve to explain the facts which at this stage of our understanding of CSF dynamics cannot be confidently demonstrated. A case of pseudotumour developing in the setting of minimal venous thrombosis, particularly in part of the venous system not thought to play a major part in the absorption of CSF, must force us to reconsider our opinions as to the relation between venous obstruction and CSF dynamics.

This research was supported by the Madeline Foundation for Neurosurgical Research.

CHRISTOPHER D KOLLAR
Madeline Foundation Laboratory, University of Sydney, Australia

IAN H JOHNSTON
Department of Neurosurgery, Royal Alexandra Hospital for Children, Sydney, Australia

Correspondence to: Correspondence to: Dr Christopher Kollar, Madeline Foundation Laboratory, Room 323, Building D06, Camperdown Hospital, Sydney 2006, Australia. Telephone 0061 2 9351 3359; fax 0061 2 9351 4887; kollar@surgery.usyd.edu.au

1 Symonds CP. Hydrocephalic and focal cerebral symptoms in relation to thrombophlebitis of the dural sinuses and cerebral veins. Brain 1937;60:251–50.
5 Bedford THB. The great vein of Galen and the syndrome of increased intracranial pressure. Brain 1934;57:1–24.

False negative polymerase chain reaction on cerebrospinal fluid samples in tuberculous meningitis established by culture

The polymerase chain reaction (PCR) has been reported to be of diagnostic value when performed on CSF samples in tuberculous meningitis.1,2 Examination of CSF disclosed a lymphocytic exudate. Repeated samples were sent to a British referral laboratory where CSF PCR for M tuberculosis was reported negative. Despite this, antituberculous treatment was continued for 12 months and both patients responded clinically. Several weeks after the negative PCR result, M tuberculosis was cultured on Lowenstein-Jensen slopes from CSF taken from both patients. False negative PCR in tuberculous meningitis established by culture has rarely been reported. The two patients are described to emphasise the dangers of overreliance on PCR in cases of suspected tuberculous meningitis. Premature cessation of treatment would have had tragic consequences for the two patients concerned.

The first patient was a 28 year old Asian man, last in India 8 years previously. He was sent from a clinic to hospital for incision and drainage of two deep seated Staphylococcus.
age of 6 years during laparotomy for an had peritoneal tuberculosis diagnosed at the had no other systemic symptoms. She had of photophobia and occipital headaches. She grew 12 weeks later from the first again negative although a fully sensitive M tuberculosis phocytes, a raised protein concentration 90 white blood cells/µl, predominantly lym-

appropriate controls.5–7 (0.5 ml) were sent to our referral laboratory remains. Therapy was started empirically. After 2

were used as this is thought to increase the potential contribution of the polymerase chain reaction for rapid diagnosis on cerebrospinal fluid samples

gene. Mutations in the P0 gene have recently been discovered in Charcot-Marie-Tooth disease (CMT). It is classified into two types

Charcot-Marie-Tooth disease (CMT) is the most common type of hereditary peripheral neuropathy. It is classified into two types based on pathological and electrophysiologi-

classified into two types by using polymerase chain reaction and a nonradioactive detection sys-

therapy was started empirically. After 2 months of treatment her symptoms had resolved although a partial third nerve palsy remains.

The assay included primers for the target IS6110, an insertion sequence normally present in multiple copies in the M. tuberculosis genome, which has been used successfully for the detection of M tuberculosis in CSF.1 Multiple primer sets were used as this is thought to increase the probability of detecting target DNA within a specimen.

recent studies suggest that CSF PCR for M tuberculosis is more sensitive than culture in cases of clinically suspected tuberculous meningitis that responded to empirical treatment.1 Some authors have even suggested the usefulness of serial CSF PCR in assessing the efficacy of treatment.4 False negatives and positives are rarely reported in the literature and unless these results are critically reviewed patients could, tragically, have treatment prematurely stopped or be started on prolonged antituberculous chemotherapy. False negatives occurred in two studies, in which reported CSF PCR sensi-
tivities were 32% and 85%.4,5 In one study 6.1% of CSF specimens received from patients with no evidence of tuberculous meningitis were falsely PCR positive. These results also show that sensitivity and specificity can vary when different assays and labo-

other clinical specimens, particularly respiratory specimens, have reported that PCR may be less sensitive than culture for the detection of M tuberculosis and that the low sensitivity correlated with low colony counts on culture.1 Dalvi et al also reported that multiple specimens may be required to improve the sensitivity of the test in some patients. In the two cases described above, colonies were seen after incubation for 12 and 8 weeks on L.J slopes, suggesting a low inoculum.

The PCR has been reported to detect the equivalent of 1–10 mycobacteria in in vitro testing. However, lower sensitivity is found with clinical specimens.4,5 "False negative polymerase chain reaction of PCR present in the reaction, poor lysis of mycobac-
terias. In the two cases described above, colonies were seen after incubation for 12 and 8 weeks on L.J slopes, suggesting a low inoculum.

A novel mutation of the myelin P gene segregating Charcot-Marie-Tooth disease type 1B manifesting as trigeminal nerve thickening

Charcot-Marie-Tooth disease (CMT) is the most common type of hereditary peripheral neuropathy. It is classified into two types based on pathological and electrophysiologi-
classified into two types by using polymerase chain reaction and a nonradioactive detection sys-

Charcot-Marie-Tooth disease type 1B manifests as trigeminal nerve thickening

False negative polymerase chain reaction on cerebrospinal fluid samples in tuberculous meningitis

There have been few studies in the literature concerned solely with the use of the polymerase chain reaction (PCR) to identify Myco-

bacterium tuberculosis DNA directly from CSF.4 These studies suggest that in some cases, PCR may be more sensitive than culture; however, in the largest study, per-

formed by Nguyen et al,5 specimens from seven patients who were culture positive for M tuberculosis were not positive by PCR. The study did report on 22 culture negative, PCR positive patients, suggesting that PCR can be more sensitive than culture. Studies compar-

PCR with more of M tuberculosis using

Letters, Correspondence, Book reviews

M MELZER

Department of Microbiology, St Thomas’ Hospital, Lambeth Palace Road, London SE1 7EH, UK

1 Noordhoek GT, Kaan JA, Mulder S, et al. Routine application of the polymerase chain reaction for detection of Mycobacterium tuberculosi-

2 Nguyen LN, Kox LFF, Pham LD, et al. The potential contribution of the polymerase chain reaction to the diagnosis of tuberculous meningi-

4 Scarpellini P, Racca S, Cinque P, et al. Nested polymerase chain reaction for diagnosis and monitoring treatment response in AIDS pa-

5 Nguyen LN, Kox LFF, Pham LD, et al. The potential contribution of the polymerase chain reaction to the diagnosis of tuberculous meningi-

Macmillan Publishers Ltd. All rights reserved 1466-3814/99 $30.00

D M GASCOYNE-BINZI

Department of Microbiology, The General Infirmary at Leeds, Great George Street, Leeds LS1 3EK, UK

Correspondence to: Dr M Melzer, Department of Microbiology, St Thomas’ Hospital, Lambeth Palace Road, London SE1 7EH, UK.
been recognised in Dejerine-Sottas disease, peripheral neuropathy with an early onset in childhood, and a more severe phenotype than CMT1. CMT1 and Dejerine-Sottas disease are characterised by thickening of peripheral nerves, and thickening of the cauda equina, nerve roots, and ganglia have often been found.2 Although cranial nerves are generally spared in CMT, thickening of the acoustic or optic nerve has been reported in some cases. We report here on a Japanese patient who exhibited severe polyneuropathy, bilateral trigeminal thickening on MRI, and an abnormality of the auditory brain stem response. Gene analysis disclosed a novel missense mutation (His81Arg) of P\(_0\). The cranial nerve involvements in this patient may be associated with the novel missense mutation of P\(_0\) (His81Arg).

A 15 year old Japanese girl presented with CMT disease. She showed delayed motor development. Although she became ambulant at 1 year and 8 months of age, she was never able to run. She was referred to our hospital due to progression of her gait abnormality. Her mentality and higher brain function were normal. Neurological examination disclosed weakness in both proximal and distal muscles of the legs, decreased grasping power, sensory disturbance of distal limbs and hands, and thinness of hair and nails. She also had atrophy of the lower limbs, drop foot, a steppage gait, claw hands and feet, deep flexor contractures, and pes cavus deformities. Optic atrophy, incoordination, autonomic dysfunction, and cardiac involvement were not evident.

In laboratory findings, creatinine kinase was 343 IU/L. A peripheral nerve conduction study showed undetectable sensory and motor action potentials in all limbs. Auditory brain stem response showed abnormal prolongation of the I-III interpeak (2.81 ms on the right side, 2.88 ms on the left side). Brain MRI (figure) showed significant thickening of bilateral trigeminal nerves (7 mm) compared with that of controls (3.15 ± 1.62 mm, mean ± 2 SD, n=20). However, other cranial, spinal nerves and roots were not thick on physiological, and histopathological data between patients with CMT should be compared. We are indebted to the families studied for their participation and support. This work was partly supported by Uehara Memorial Foundation, the Sasaki Health Science Foundation, the Primary Amyloidosis Research Committee, and the Ministry of Education, Science and Culture of Japan 10382002, 18832993.

MASAMI SHIZUKA
YOSHIKO IKEDA
MITSUNORI WATANABE
KOICHI KAMAMOTO
MIKIO SHOJI
Department of Neurology, Gunma University School of Medicine, 5–39–22 Showa-machi, Maebashi, Gunma 371-8511, Japan

TORU IKEGAMI
KIYOSHI HAYASAKA
Department of Pediatrics, Yamagata University School of Medicine, Yamaga, Japan

Correspondence to: Dr Masami Shizuka, Department of Neurology, Gunma University School of Medicine, 3–39–22 Showa-machi, Maebashi, Gunma 371-8511, Japan

mshizuka@news.sb.gunma-u.ac.jp

Intracranial extracerebral follicular lymphoma mimicking a sphenoid wing meningioma

Primary lymphoma in the brain is uncommon, accounting for only 2% of primary intracranial neoplasms.1 Although its incidence seems to be dramatically increasing,2 Leptomeningeal lymphomas are even rarer but have been described.3 However, no leptomeningeal lymphoma of the follicular type has previously been reported. We present a case of a primary meningeal follicular lymphoma which mimicked a sphenoid wing meningioma, both radiologically and intraoperatively.

A 77 year old Ghanaian woman was referred with a 3 year history of worsening bitemporal headache, followed by a 6 month history of daily right frontal headache lasting for 2–3 hours associated with mild photophobia. There were no reports of seizures, nausea, or other visual disturbances. Her medical history was 3 years of treated hypertension, sickle cell carrier trait, and a cataract extraction. The patient was obese but physical examination was otherwise normal. Neurological examination showed no papilloedema and there were no cranial nerve or long tract signs.

Brain CT showed an enhancing mass consistent with a right sided sphenoid wing meningioma.
meningioma (figure A). Right pterional craniotomy was performed and a tumour located under and adherent to the overlying dura was identified. It was entirely extracerebral, measuring 6x6x6 cm, with the greysish colour and hard consistency typical of a meningioma. The tumour and the adherent, thickened dura was macroscopically completely removed.

Histologically the lesion consisted of lymphoid tissue with an ill defined follicular architecture (figure B). The follicles varied in size and shape and infiltrated the overlying dura. Follicular centres were composed of a mixture of centrocytes and centroblasts with mitotic activity (arrow). Immunohistochemical staining for Bcl-2 protein, which is an inhibitor of apoptosis and is expressed in 90% of follicular lymphoma, was found to be positive. The histological appearances and immunohistochemical profile confirmed a follicular lymphoma.

The patient made an uneventful recovery and was referred for staging investigations and consideration of postoperative therapy. An LDH estimation was within normal limits and HIV serology was negative. Whole body CT including repeat CT of the brain did not show any evidence of lymphadenopathy or lymphomatous deposit. Bone marrow examination was declined. Postoperative adjuvant whole brain or localised radiotherapy was discussed with the patient, however, she declined any further intervention. She has been closely reviewed in the follow up clinic and after 6 months there has been no clinical or radiological change.

Primary intracerebral lymphomas represent about 2% of intracranial neoplasms and 2% of all lymphomas. They occur most commonly in the 6th decade of life with a female to male ratio of 1:2. The association between primary intracranial lymphoma and immunodeficiency has long been established, and it is not surprising, therefore, that the incidence has increased 10-fold over the past 3 decades with the onset of transplant surgery and, particularly the AIDS epidemic. In postmortem studies, these neoplasms are found, on average, in 5.5% of AIDS cases, and malignant cerebral lymphoma is the most common diagnosis of a focal intracranial lesion in patients with AIDS. Malignant primary lymphoma can occur throughout the CNS and they often have a periventricular distribution. Multifocality seems to be more common in patients with AIDS. The CT scan usually shows hyperdense masses with peritumourous oedema and 92% enhance after administration of contrast medium. Leptomeningeal lymphoma is usually encountered as a late complication of systemic non-Hodgkin’s lymphoma, although primary leptomeningeal lymphoma is occasionally seen. The prognosis for these tumours is poor.

Diffuse large B cell lymphomas have been mistaken for more common lesions: solitary primary B cell lymphoma of the cerebellopontine angle mimicking acoustic neuroma or meningioma has been reported7; Vignesh et al. reported a patient with a calcified temporoparietal lymphoplasmacytic lymphoma which resembled a meningioma; however, this tumour was entirely extradural. There is only one previous report of a follicular rather than diffuse intracranial lymphoma: Rubinstein described a case of follicular lymphoma metastasis found in the dura of a 61 year old man at necropsy. We found no report of a primary follicular extracerebral lymphoma. Similar radiological and intraoperative appearances of the tumour in our case to splenoid wing meningioma suggest that this entity should be considered as a rare differential diagnosis.

We thank Professor Francesco Scaravalli, National Hospital for Neurology and Neurosurgery and Dr Mark Naper, The Meyerstein Institute of Oncology, Middlesex Hospital, for their help with this report.

Dominic J Hodgson
Karoly M David
Michael Powell
Department of Surgical Neurology
JAN L HOLTON
Department of Neurology, The National Hospital for Neurology and Neurosurgery
FRANCESCO PEZZELLA
Department of Pathology, University College Hospital, London, UK

Correspondence to: Mr Michael Powell, Department of Surgical Neurology, The National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, United Kingdom. Telephone 0044 171 837 3611; fax 0044 171 209 3875.

Determinants of the copper concentration in cerebrospinal fluid

The measurement of CSF copper concentration can serve as an indicator of brain copper concentration. However, the complex mechanisms by which copper crosses into the CSF, and the factors determining the CSF copper concentration in humans are largely obscure. Copper can pass into and out of the CSF by various mechanisms. For example, active transport through the blood-brain barrier or the blood-CSF barrier, or passive diffusion of the free or the bound fraction (bound to albumin or coeruloplasmin) through the blood-CSF barrier. We studied the factors influencing CSF copper concentration using a stepwise multiple linear regression model. The independent variables were age, plasma coeruloplasmin, CSF/serum albumin ratio, total serum copper concentration, and calculated serum free copper concentration (based on serum coeruloplasmin and total serum copper concentration). The CSF copper concentration was treated as a dependent variable of the continuous type. We investigated lumbar CSF samples from 113 patients. These patients had dementia, extrapyramidal, or tremor symptoms; lumbar puncture was performed to exclude Wilson’s disease, and none of the patients had the disease. Copper was measured by flameless atomic absorption (Perkin Elmer, HGA 500, Ueberlingen, Germany). Coeruloplasmin was determined nephelometrically (Beckman Instruments, Brea, CA, USA). The age of the patients was 50.0 (SD15.5) years; 50 were women and 63 were men. Mean serum coeruloplasmin concentrations were 394.3 (SE38.7) µg/l. Mean serum copper concentrations were 1194 (SD 335) µg/l. Mean calculated free copper concentrations in serum were 78.5 (SD 1285) µg/l. Mean CSF copper concentrations were 14.16 (SD 6.00) µg/l. The mean albumin ratio (AR) was 6.63×10⁻³. The mean ratio of calculated serum free copper concentration to total serum copper was 6.6%, the ratio of CSF copper to serum copper was 1.2%, and the ratio of free serum copper to CSF copper was 18%. In the
stepwise linear regression model (F to enter 4.0, F to remove: 3.996), significant positive predictor of the total CSF copper concentration were found to be AR (p<0.0001) and serum coereuloplasmin (p=0.0057). The other independent variables mentioned above showed no statistically significant relation with CSF copper concentration. The figure shows the simple linear regression between CSF/serum albumin ratio and CSF copper concentration (on logarithmic axes; R=0.46, p=0.0001). The formula for the CSF copper concentration, derived from the multiple linear regression model, is: copper CSF (µg/l)=5.32×log(AR)−3.996, with total CSF copper concentration (on logarithmic axes). R=0.46, p=0.0001; 95% confidence bands for the true mean of the total CSF copper concentration are shown.

Correlation of blood-CSF barrier (albumin ratio, AR) with total CSF copper concentration (on logarithmic axes). R=0.46, p=0.0001; 95% confidence bands for the true mean of the total CSF copper concentration are shown.

Albumin ratio (CSF/serum, log) Correlation of blood-CSF barrier (albumin ratio, AR) with total CSF copper concentration (on logarithmic axes). R=0.46, p=0.0001; 95% confidence bands for the true mean of the total CSF copper concentration are shown.

A rare case of solitary interhemispheric myofibroma in a child

A case of congenital fibrosarcoma was first described in 1984, and was noted to have a high incidence of local recurrence and distant metastasis. The clinical presentation of this case is unusual and includes features of both fibrous and sarcomatous components. The case report describes a 4-month-old boy who presented with a large, firm, asymptomatic mass in the right temporal region. The mass was excised and histologically confirmed as a fibrosarcoma. The patient's symptoms resolved postoperatively, and there was no evidence of recurrence at 5 years after surgery.

myoglobin. Ultrastructural examination showed elongated cells with surrounding collagen fibrils, some showing intracytoplasmic myofilaments.

Solitary lesions of infantile myofibromatosis are more common than multiple lesions, with twice as many males as females being affected, and generally involve the skin and soft tissues, especially of the head and neck. Solitary lesions are less commonly found in viscera or bones. Involvement of the CNS is exceedingly rare and only one other case of a solitary mass is reported along with few cases of CNS involvement in the generalised form of infantile myofibromatosis. The prognostic is best for cases with solitary masses and less favourable for multicentric cases, particularly where visceral lesions are present, in which morbidity and mortality derive predominantly from pulmonary involvement or mass effect.

The differential diagnosis for this lesion included meningioma, schwannoma, and haemangiopericytoma. Regionally, the histology was reminiscent of the rare microscopic variant of meningioma. Meningiomas are extremely rare in this age group, this lesion was not meningeal based and such lesions are exceedingly rare and only one other case of a solitary mass is reported along with few cases of CNS involvement in the generalised form of infantile myofibromatosis. These lesions are usually reactive for epithelial membrane antigen unlike this tumour. This lesion, unlike some fibromatoses, showed no immunoreactivity for S-100 protein. Haemangiopericytoma is a diagnosis of exclusion and shows no reactivity for actin, unlike this tumour.

Periorbital intracranial involvement by myofibromatosis includes patients with widespread systemic involvement and multiple leptomeningeal nodules in one patient and extradural masses in another, both of which were fatal at the age of 10 days, a non-fatal extradural mass in one patient, and a patient with systemic involvement, in which there was recurrence of orbital and temporal lesions 2 years after operation. A single previous case of solitary intracranial myofibroma has been reported in which the patient died within 24 hours of surgery, secondary to cardiorespiratory arrest.

We present a patient with a solitary intracranial myofibroma with an excellent postoperative outcome. Although rare, infantile myofibroma should be included in the differential diagnosis of intracranial neoplasms in children.

We acknowledge the expert assistance of Des Lucy Roarke and Dr Louis Dehner in diagnosing this case.

Axonal polyneuropathy and encephalopathy in a patient with verotoxin producing Escherichia coli (VTEC) infection

Escherichia coli serotype O157:H7 causes serious food poisoning worldwide, especially in children and elderly people. It is also called verotoxin producing E. coli (VTEC), which produces a Shiga-like toxin. Gastrointestinal, haemorrhagic, and uraemic effects are well known in VTEC infection, and neurological problems are likely to be more frequent than is generally recognised. We describe axonal polyneuropathy and encephalopathy in a young female patient associated with haemolytic-uraemic syndrome caused by VTEC infection.

A 26 year old woman began to have abdominal pain and haemorrhagic diarrhoea. She was admitted to an emergency hospital and diagnosed as having haemorrhagic colitis due to probable food poisoning. Then her urinary volume increased and she was transferred to our hospital. On the 9th day she had a high fever of 39.7°C with increased C reactive protein of 7.6 mg/l and a leukocytosis of 17 800/mm³. She was in a state of anuria and her blood analysis showed severe kidney dysfunction (increased serum creatinine of 6.76 mg/l). She had severe anaemia (haemoglobin 6.0 g/dl), fragmentation, and tear drop deformation of red blood cells in the blood smear and increased lactate dehydrogenase concentration of 4095 IU (normal range 230–460 IU), suggestive of haemolytic anaemia. Her platelet count was decreased to a range 230–460 IU, suggestive of haemolytic anaemia. Her platelet count was decreased to 23 000 IU. She had ascites and pleural effusion. Her stool was haemolytic-uraemic syndrome (haemolytic anaemia, thrombocytopenia, and uraemia, following diarrhoea), which is the main complication of VTEC infection. Experimentally, vero cells, an immortalised primate kidney cell line, are killed by low doses of verotoxin through the process of apoptosis. Verotoxin shows similar cytotoxicity on human glomerular microvascular endothelial cells via serotonin release such as tumour necrosis factor α, which induced an increase in the numbers of verotoxin receptors, leading to a microvascular thrombosis. Our patient was treated with antibiotics, plasma exchange, and continuous haemodialysis, with benefit.

During the course of the disease, our patient was in a delirious state with visual hallucinations and tonic convolution. She showed mild brain swelling on CT and diffuse slow waves in the frontal area on EEG, evidence of encephalopathy. Previous reports have shown that the incidence of encephalopathy in haemolytic-uraemic syndrome (mostly due to VTEC infection) is 10%, including seizures in 17–44%, altered consciousness in 7–40%, and paralysis in 1–16%. Many of the patients, including ours, seemed to have metabolic encephalopathy, but some developed encephalopathy without metabolic abnormalities. There is experimental evidence that verotoxin has direct virulence to both endothelial cells and neurons in the nervous system, and its initial lesion is in the epithelialic areas, then given 250 mg/day diphenylhydantoin. During the next two weeks her kidney function, haemolytic anaemia, and encephalopathy gradually improved.

After recovery of consciousness she began to complain of numbness of the limbs, manifesting like frost bite when she was lying on the bed, and this gradually exacerbated to be a burning pain. On examination she was alert and cooperative. Her cranial nerves were normal. Muscle strength was normal and coordination was intact. Deep tendon reflexes were decreased in the four limbs. Sensation for vibration was impaired in the lower legs, but preserved for pin prick, light touch, and joint sensation. The laboratory data including haematological studies, serum chemistry, urinalysis, and CSF analysis were normal. Serum concentrations of vitamin B1, B6, and B12 were normal. Nerve conduction studies were carried out on her right limbs, and showed normal findings in the distal latencies, motor conduction velocities, and wave latencies of the median, ulnar, and tibial nerves, and no evidence of conduction block. However, there were markedly decreased amplitudes of the sensory nerve action potentials, with and without a C wave latencies, motor conduction velocities, and F waves in the median, ulnar, and tibial nerves. Sensation for vibration was impaired in the lower legs, but preserved for pin prick, light touch, and joint sensation. The laboratory data including haematological studies, serum chemistry, urinalysis, and CSF analysis were normal. Serum concentrations of vitamin B1, B6, and B12 were normal. Nerve conduction studies were carried out on her right limbs, and showed normal findings in the distal latencies, motor conduction velocities, and wave latencies of the median, ulnar, and tibial nerves, and no evidence of conduction block. However, there were markedly decreased amplitudes of the sensory nerve action potentials, with and without a C wave.
Crying spells as symptoms of a transient ischaemic attack

In the absence of depression, crying spells associated with neural damage usually result from pseudobulbar palsy or, more rarely, from crying seizures. To our knowledge, there are no prior reports of crying spells heralding or signifying a transient ischaemic attack. We report on a patient with prominent cerebrovascular risk factors who had a transient episode of intractable crying and focal neurological findings.

The patient was a 55 year old right-handed man who presented with acute, uncontrolled crying spells following obesity of left-sided paraesthesia, around 6 am on the same morning. He awoke with a diffuse headache, and pressure headache and suddenly started crying for no apparent reason. There was no accompanying feeling of sadness. This crying, which involved lacrimation and “sobbing” abruptly ceased after 5 minutes. Within 30 minutes of his initial crying spell, his headache had resolved but he became aware of numbness over his left face and numbness and pain in his left neck and arm. The numbness was not progressive, and the patient did not complain of paraesthesia in his trunk or left leg. He also complained of photophobia, nausea or vomiting, blurred vision, visual obscurations, difficulty swallowing, dysarthria, or focal weakness. Over the next 2 to 3 hours, he had five more crying spells, each lasting 5 to 10 minutes, occurring out of context, without precipitating factors or sadness, with an acute onset and offset, and without alteration of consciousness. The patient’s left face and arm numbness persisted during and between these spells, but abruptly resolved shortly after his last crying spell.

This patient had hypertension, diabetes mellitus, coronary artery disease, an old myocardial infarction, raised cholesterol concentrations, and a history of heavy smoking.

On examination before recurrent crying spells, his blood pressure was 143/92 with a regular pulse of 62, and there were no carotid bruits. His mental status was normal. Cranial nerve examination disclosed flattening of the left nasal alabard fold and decreased pinprick sensation over his left face with an occasional mild facial twitching. Cranial nerves IX-XII were intact, and gag and reflex elevation were normal. There were no dysarthria or a brisk jaw jerk. The rest of the neurological examination showed mild weakness in his left upper arm, and decreased pinprick and temperature sensation over the left half of his body. Electromyography and nerve conduction studies were +2 and symmetric with descending toes.

The patient lacked prior depression, new depressogenic symptoms, or prior crying spells as an adult except for a single episode during dental anaesthesia. At the time of his admission, he had not had any recent adverse events in his life, and was totally surprised by his reaction.

The patient’s crying spells, paraesthesiaes, and neurological findings entirely resolved within about 3 hours. Routine laboratory tests, ECG, and CT were normal. Two days after admission, MRI disclosed a mild degree of white matter swelling over the right frontal horn, and an ECG showed a frontal intermittent rhythmic delta activity but no epileptiform changes. Carotid Doppler studies showed atherosclerotic changes without haemodynamically relevant obstruction. He was discharged on antplatelet therapy with aspirin.

These results suggest that crying spells can be a manifestation of a transient ischaemic attack. He presented with paroxysmal crying spells followed by a left sided hypothesia and a mild left sided weakness, all of which resolved. His crying was non-emotional, inappropriate to the context, and did not correspond to his underlying mood. Moreover, the patient had multiple vascular risk factors supportive of a cerebrovascular aetiology for his episode.

The most common cause of pathological crying is pseudobulbar palsy, a complication of strokes and other diffuse or bihemispheric brain damage. Pseudobulbar palsy results from bilateral interruption of upper motor neuron innervation of bulbar motor nuclei and brainstem centres. In addition to crying, pseudobulbar palsy may include dysarthria, dysphagia, bifacial weakness, increased facial and mandibular reflexes, and weak tongue movements. There were no signs or symptoms of pseudobulbar palsy in this patient.

Crying or dacrystic seizures also occur but are rare. These seizures are part of the range of complex partial seizures and usually emanate from the right temporal lobe. Crying seizures may result from prior cerebrovascular infarctions. Although our patient had mild left-sided twitching of his left face, he did not have other evidence suggesting definite seizure activity.

It is likely that this patient had a single transient ischaemic attack with multiple crying spells. The localisation of his attack is unclear; involvement of the right thalamus or neighbouring internal capsule is a possibility. Similar to spells of laughter, spells of crying may occur in relation to unilateral cerebrovascular events. Although most reports of crying after unilateral strokes have reported left hemispheric lesions, crying also may result from right hemispheric strokes. Even more similar to our patient, sudden laughing spells, “le fou rire prodromique,” rarely precede strokes involving the left capsular-thalamic, lenticulo-caudate, or pontine regions. Our patient may have had a comparable phenomenon from the right hemisphere, as emotionalism for this phenomenon may have been a temporary activation or stimulation of ischaemic motor pathways.

Ryoji Sakakibara, Takamichi Hattori, Keiko Mizobuchi, Satoshi Kuwabara

Department of Neurology

Mitsugu Ogawa

First Department of Internal Medicine, Chiba University, Chiba, Japan

Correspondence to: Dr Ryoji Sakakibara, Department of Neurology, Chiba University, 1–8–1 Inohana Chuo-ku, Chiba 260, Japan.

Letters, Correspondence, Book reviews

Crying or dacrystic seizures also occur but are rare. These seizures are part of the range of complex partial seizures and usually emanate from the right temporal lobe. Crying seizures may result from prior cerebrovascular infarctions. Although our patient had mild left-sided twitching of his left face, he did not have other evidence suggesting definite seizure activity.

It is likely that this patient had a single transient ischaemic attack with multiple crying spells. The localisation of his attack is unclear; involvement of the right thalamus or neighbouring internal capsule is a possibility. Similar to spells of laughter, spells of crying may occur in relation to unilateral cerebrovascular events. Although most reports of crying after unilateral strokes have reported left hemispheric lesions, crying also may result from right hemispheric strokes. Even more similar to our patient, sudden laughing spells, “le fou rire prodromique,” rarely precede strokes involving the left capsular-thalamic, lenticulo-caudate, or pontine regions. Our patient may have had a comparable phenomenon from the right hemisphere, as emotionalism for this phenomenon may have been a temporary activation or stimulation of ischaemic motor pathways.

Mário F Mendez, Yurie L Bronstein

Department of Neurology, University of California at Los Angeles, West Los Angeles Veterans Affairs Medical Center, Los Angeles, CA, USA

Correspondence to: Dr MF Mendez, Neurobehavioral Unit, 4246 W 9th Street, Los Angeles, CA 90073, USA. Telephone 001 310 478 3711 ext 4260. Fax 001 310 268 4181; email mmendez@ucla.edu

with orthostatic hypotension of the continuous drop type. The other five patients could not remain standing for more than 5 minutes because of symptoms of orthostatic hypotension. No patient showed the sudden drop in blood pressure and heart rate seen in vasovagal syncope. In the continuous drop type, there were no decreases between 5 and 20 minutes was noted (mean=1.4%).

Most patients with continuous drop type orthostatic hypotension reported reduced endurance for more than 10 minutes of exercise (easy fatigability). Two experienced syncope more than 20 minutes after standing.

We used a Swan-Ganz catheter to investigate the haemodynamics in three patients with orthostatic hypotension of the continuous drop type. To prevent the concentration of plasma, saline of calculated volume was infused during tilting. During the continuous decrease in blood pressure, cardiac output proportionally decreased but systemic vascular resistance did not change (figure).

Our results suggest that in many patients with MSA the blood pressure drops continuously on standing. The continuous blood pressure drop is caused by continuous reduction of cardiac output. A part of the mechanism for continuous reduction of cardiac output should be lack of reflex tachycardia and no significant release of noradrenaline (norepinephrine) level (+0.05 ng/ml) during the decrease in blood pressure. A slight increase in packed cell volume between 5 and 20 minutes was noted (mean=1.4%).

Continuous drop type of orthostatic hypotension during 25 minute tilt up in a patient with MSA.

SBP = systolic blood pressure; HR = heart rate; CO = cardiac output; SVR = systemic vascular resistance; NA = plasma noradrenaline concentration.
Idiopathic cerebellar ataxia associated with celiac disease: lack of distinctive neurological features

Although applauding the contribution of Pellecchia et al, we are more widespread recognition of the association between gluten sensitivity and ataxia that we disagree with. Associated gluten sensitivity lacks "distinctive neurological features”. Both their data and our own indicate that this group of patients can be distinguished by the late (non-childhood) onset of ataxia with relatively mild upper limb signs, analogous to Harding's group.1 Again, coexistent neuropathy is uncommon in these patients, found in two out of three of the patients of Pellecchia et al and 21 of our 28.2 We agree that gastrointestinal symptoms are rare: rather than entailing their paper “lack of distinctive neurological features”, perhaps “lack of distinctive gastroenterological features” might have been more appropriate.

We were surprised at the high specificity and sensitivity of increased antigliadin antibody titres in their hands. Although we found both IgA and IgG antigliadin antibodies to be invaluable screening tools in patients with ataxia, only 11 of our 28 patients with increased antigliadin antibodies had histology of overt coeliac disease on duodenal biopsy, the remainder having normal or non-specific inflammatory changes but with an HLA genotype in keeping with gluten sensitivity. It is interesting to note that despite the often quoted high sensitivity for coeliac disease of increased antiendomysium antibody titres, such was found in only one of three patients of Pellecchia et al with coeliac disease. This concurs with our impression of very modest sensitivity of antiendomysium antibodies in gluten ataxia.

Gluten sensitivity is common in patients with ataxia, and can be identified by increased antigliadin antibody titres in the presence of appropriate histocompatibility antigens.3 Although the clinical features of gluten ataxia are not entirely specific, they are distinctive.

We thank Dr Jolobe for his interest in our article; we did not cover neurogenic pulmonary oedema. We appreciate his contribution.
the EMG pattern in patients with myotonic dystrophy show a multitude of defects including expression of myotonia, myopathy, muscular atrophy, and neural abnormalities. 1, 2

The possible management of myotonia and some of its clinical manifestations, such as dysphonia, 3 by its myotonic dystropy (disproportion and procainamide), justifies the use of the same pharmacological approach in anal sphincter dysfunction manifested in a few cases of myotonic dystrophy.

We conclude that treatment of faecal incontinence with procainamide should always be attempted before any surgical option in patients with myotonic dystrophy.

G. PELLICIONI
O. SCARPINO
Department of Neurology, INRCA, Geriatric Hospital, Ancona, Italy

V. PILONI
Department of Radiology, Ac. N. 7, Ancona, Italy

Correspondence to: Dr Giuseppe Pelliconi, Department of Neurology, Geriatric Hospital, via della Montagnola, 164, 60100 Ancona, Italy. Telephone 0039 071 8003432; fax 0039 071 8003530; email: o.scarpino@fastnet.it

Flail arm syndrome or Vulpian-Bernhard's form of amyotrophic lateral sclerosis

We read with interest the article by Hu et al concerning flail arm syndrome, a distinctive variant of amyotrophic lateral sclerosis. The authors presented a subgroup of patients affected by amyotrophic lateral sclerosis that presented with more or less symmetric involvement of the proximal muscles of the upper limbs at the clinical onset. A certain enigma exists surrounding the characteristic distribution of weakness and muscle atrophy. The reason for the preva- lence in the proximal muscles of the upper limbs is unknown. We can furnish little more information in this respect. However, in the 1960s, in the differential diagnosis of this syndrome, it was proposed that the muscles predominantly affected in Vulpian-Bernhard's form were the deltoideus, the infraespinaus, the supraspinaus, the ster nocleidomastoides, and the teres minor. The predominant involvement of these muscles permitted its distinction from that previously called Erb's dystrophy. 2 As a consequence of the atrophy of these muscles, the upper limbs adopt a characteristic position, with the shoulders slumped, and the arms, forearms, and hands in pronation. As the illness progresses, the hand muscles are affected, with atrophy of the following muscles: opponens pollicis, flexor brevis, abductor pollicis brevis, adductor pollicis, interossei, and lumbricales, which leads to the formation of the characteristic Aran-Duchenne hand.

Obviously, signs of corticospinal involve ment with hyperreflexia in the lower limbs and Babinski's sign both appear. In the initial stages of the illness, there is no effect on the diaphragm. The presence of signs of involvement of the upper motor neuron, its different clinical evolution, and the data supplied by genetic molecular investigation allow us to distinguish the syndrome previously known as Vulpian-Bernhard's to be rebaptised as flail arm syndrome from other upper motor neuron syndromes such as of the spinul muscular atrophies, Kennedy's disease, multifocal motor neuropathy, and monomelic amyotrophy.

JOSEP GAMEZ
CARLOS CERVERA
AGUSTIN CODINA
Servicio de Neurología, Hospital Universitari Vall d’Hebron, Passeig Vall d’Hebron 119–135, 08035 Barcelona, Spain

Correspondence to: Dr Josep Gamez, Servicio de Neurologia, Hospital Universitari Vall d’Hebron, Passeig d’Hebron 119–135, 08035 Barcelona, Spain. email 12784jgc@comb.es

Pain after whiplash

This latest study from Lithuania is an answer to many questions—namely, that the previous difficulties that these researchers had with identifying the late whiplash syndrome in Lithuania is that they were not looking “in the right place”. As it turns out, the problem is that Lithuanians simply are not behaving the way many in western countries (we, underlies whiplash associated disorders) like there. There are some methodological issues which can be considered, as below, but, the lesson of discarding “unsightly” data because it is too disturbing to one’s personal view and vested interest in the work that has already been taught elsewhere. Suppose it to say that the truth has been laid bare and we (those of us struggling with epidemic proportions of the late whiplash syndrome in our own country) now need to enlighten ourselves and put this data to practical use in helping whiplash patients rather than resisting the inevitable.

After completion of the first historical cohort study, this more recent study selects an entirely separate, distinct sample of these “misbehaving” Lithuanians, but in a more intriguing fashion. This is the first true inception cohort study whereby people who have not been preselected by their attendance at emergency departments, or contaminated by therapists or lawyers, can be studied to appreciate the natural evolution of the injury which, underlies whiplash associated disorders grades 1 and 2. This is the study’s greatest strength. The study has, however, its limitations. The first consideration is that there were 98 accident victims who reported acute symptoms, and thus were at risk for the late whiplash syndrome. How does this compare with other studies documenting the natural evolution of the late whiplash syndrome in other countries? The Swiss study may be useful for compari son because it too has only 117 subjects, yet is much quoted. Setting aside for the moment that the Swiss study is hampered by the selection atrocity of advertising for subjects, and has a host of other reportedly fatal faults 1, and giving some benefit of the doubt, the study is said to be an accurate representation of the state of affairs in Switzer land at that time. In the Swiss study, not even 60% manage to recover fully by 3 months and many of these were reporting total disability during that time, whereas the Lithuanians fully recover in 4 weeks or less, with little or no therapy at all. Epidemiological studies in other western countries disclose an even greater contrast, with 50%–70% of patients reporting pain even after 3–6 months, despite the fact that all these studies are examining the same grades (1 and 2) of whiplash associated disorders. 6, 7 Thus, while the sample size is small in this Lithuanian study, it is comparable with others reporting the prognosis of whiplash, and yet gives a different picture of outcome.
A second consideration is that perhaps these Lithuanians are in very minor collisions. True, some of their vehicles were completely wrecked, but perhaps the vehicles were not very good quality and so were easily damaged. Perhaps that is why this cohort had such a good outcome and only minor injuries. This is an unhelpful consideration however, as studies in Canada have shown that those with absolutely no vehicle damage, in very low velocity collisions, are just as likely to report chronic pain as those in more severe collisions. Lithuanians seem to behave appropriately then for minor collisions (if that is what they indeed had), but Canadians seem unable to behave appropriately. Again, another cultural rift in the rate of recovery from whiplash injury is demonstrated.

Thirdly, there are sex differences and even differences in seat belt usage between this population and some others, but even then, it does not seem to matter what sex, age, or use of seat belts there is in other western countries, none of these preclude chronic pain. In Lithuania, those who were female, and who did not wear seat belts, still insisted on behaving as the rest of the cohort.

Finally, perhaps the Lithuanians simply refuse to report their chronic pain, and chronic pain cannot be studied in other countries in this way. The Lithuanians have no reluctance to report acute pain, but perhaps for some reason wish to “suffer in silence” in spite of chronic pain and disability. This would be a potential flaw if it was not simultaneously shown in this study that the general Lithuanian population reports the same prevalence, frequency, and character of neck pain and headache as does the general population in western countries. If there were structural barriers to identifying symptoms, the control population would have grossly underreported their symptoms. Indeed, chronic pain can and is reported by studies in many different cultures and languages, including Japan, France, Italy, and others. If researchers in these non-English speaking populations can use simple questionnaires to document the late whiplash syndrome so effectively there, then the same should be possible in Lithuania.

And so, despite the potential limitations of this study as outlined, there is no way to get around the stark realisation that the natural history of acute whiplash injury in Lithuania is a benign syndrome with 4 weeks or less of pain. Equally compelling is the fact that Lithuania is not the only place where researchers are having difficulty identifying epidemics of chronic pain. Recovery from acute whiplash injury without neurological injury or fracture routinely occurs within 4–6 weeks in Germany and Greece. The time has now come for a reconciliation of these epidemiological observations with our own experience of late whiplash syndrome in western countries. The truth has been laid bare and it is our responsibility to utilise this truth to help prevent the chronic pain and the suffering we otherwise encounter.

R FERRARI

The chapter on acute postoperative pain management is well written and informative as are the chapters on obstetric and paediatric pain. The chapter on chronic low back pain by Rauck is one of the best I have seen for some time. It is a comprehensive review of both acute and chronic low back pain. It is an excellent as it also mentions treatments that are often performed outside the medical specialist arena. I was pleased to see in it the mention of some of the newly evolving techniques such as facet denervations, spinal cord stimulation, and disc denervation. It was a pity that the randomised control trials which have shown facet denervation to be an outstandingly useful technique for chronic back pain were not mentioned. It was also a pity that the reference to the disc denervation procedure was to another text book rather than any original papers.

The chapter on cancer pain management has been written by internationally known authors and is an excellent summary of the subject. In the section on interventional pain techniques the emphasis was on spinal cord stimulation, radiofrequency, and cryosurgery. Again this chapter has been written by an internationally well known author who concentrated on general overview of the techniques rather than a how to do it approach, which is fine but one would look to a bigger text for. In summary I think that this volume would make an excellent addition to the bookshelf of those involved in the treatment and management of pain.

RAJEESH MUNGALI

BOOK REVIEWS

This book purports itself to be a comprehensive reference. Certainly the title would suggest so. However, it is clear that this is not a comprehensive text, but a book that is an update on particular timely topics in the field of pain medicine. There are sections on pain mechanisms, a chapter on the pharmacology of acute and chronic pain, and other chapters on postoperative pain, obstetric pain, and acute paediatric pain. There are three further chapters specifically on the management of chronic low back pain, cancer pain, and an overview of interventional pain techniques.

Many of the authors are internationally known and this is perhaps the book’s strongest point—one does get a state of the art review and to this end I warmly welcome this book as an addition to the bookshelf to update a busy anaesthetist or pain specialist. I was pleased to see in it the outstandingly useful technique in chronic low back pain and cancer pain will also be of interest to those in other fields.

The chapter on the anatomy and physiology of pain is excellent in that it has clear explanations and a number of very helpful diagrams. Unfortunately it fails to mention increasing understanding of the role of GABA in mediating analgesia within the spinal cord and furthermore does not mention some of the other neuroplastic changes which are well known to occur in chronic pain states such as central sprouting and phentypic switching.

The chapter on pharmacology of acute and chronic pain is well written, but unfortunately a lot of time is spent on non-steroidal drugs. There is a review of the adjuvant drugs such as gabapentin and other drugs that are used in chronic pain, however one is left at the end with a sense of knowing about the drugs but not quite to use them. There is no mention of the increasing use of gabapentin nor of other drugs that are sometimes used in chronic pain states such as clonidine and other sympatholytic agents or calcium channel blockers.

The chapter on acute postoperative pain management is well written and informative as are the chapters on obstetric and paediatric pain. The chapter on chronic low back pain by Rauck is one of the best I have seen for some time. It is a comprehensive review of both acute and chronic low back pain. It is an excellent as it also mentions treatments that are often performed outside the medical specialist arena. I was pleased to see in it the mention of some of the newly evolving techniques such as facet denervations, spinal cord stimulation, and disc denervation. It was a pity that the randomised control trials which have shown facet denervation to be an outstandingly useful technique for chronic back pain were not mentioned. It was also a pity that the reference to the disc denervation procedure was to another text book rather than any original papers.

The chapter on cancer pain management has been written by internationally known authors and is an excellent summary of the subject. In the section on interventional pain techniques the emphasis was on spinal cord stimulation, radiofrequency, and cryosurgery. Again this chapter has been written by an internationally well known author who concentrated on general overview of the techniques rather than a how to do it approach, which is fine but one would look to a bigger text for. In summary I think that this volume would make an excellent addition to the bookshelf of those involved in the treatment and management of pain.

RAJEESH MUNGALI

This is a really excellent book which is both comprehensive and amazingly up to date, with the inclusion of many references from as late as 1997.

As a clinical neurologist and neuropsycho- logist with a longstanding interest in the dementia, I found it extremely valuable. The editor has done a very good job in posing a coherence, format, and style, which is often lacking from multicontributor textbooks.

The title of the book is perhaps a little misleading in that the book includes, as well as traditional neuropathology, a very comprehensive overview of the molecular biology and genetics of the dementias. As would be expected, a considerable proportion of the book is dedicated to Alzheimer’s disease with chapters on both the clinical features, genetics, and the neuropathology. The frontotemporal dementias are also well covered and the book includes a chapter on the characteristic neuropathological changes related to chromosome 17 linked dementias. There are also sections on progressive supranuclear palsy, Huntington’s disease, corticobasal degeneration, dementia with Lewy bodies, and prion diseases and vascular dementia.

The editor has managed to persuade many of the world’s experts to contribute. For instance, the chapter on prion diseases is by D’Almond and the recent Nobel laureate Prusiner, and the frontotemporal dementias are reviewed by Bruin and Gustafson. Genetics of Alzheimer’s disease are dealt with by St George-Hyslop and the neuropathology of Alzheimer’s disease by Price and coworkers.

I very much enjoyed reviewing this textbook of instrumented spinal surgery written by Giuseppe Tabasso under the auspices of Jürgen Harms. Dr Harms is well known to all spinal surgeons and has made a very important contribution to the development of spinal surgery over the past 20 years, based on strong personal convictions. Many surgeons who manage spinal disorders would not choose to implement all of Professor Harms’ solutions but all who have a serious interest in the surgical treatment of the spine admire and are grateful for his contribution. Within this book spinal surgeons will find a rational and practical approach which will allow them to treat a wide range of spinal disorders according to well thought out principles.

The opening chapter describes spinal biomechanics under normal and pathological circumstances mainly by using easily understood drawings and diagrams. Some of these drawings reminded me of images that I have recently seen on an interactive CD ROM that I bought for my 4 year old son. This is not a criticism and I fully support any attempt to simplify the science of biomechanics which is often cloaked in seemingly contradictory jargon. Most spinal surgeons will be able to assimilate the two basic principles which underpin much of instrumented spinal surgery—namely, that the anterior column resists load compression forces and that the posterior column acts as a tension band which when disrupted should be reconstructed in compression. The remaining chapters cover fracture management, late kyphosis, metastatic tumours, spondylolisthesis, degenerative spinal disease, and infection. Each chapter sets out the principles of management which are illustrated schematically. There then follow case studies illustrated by radiological images including CT and MRI. These have reproduced well and surgeons will admire the technical precision and excellent anatomical reductions illustrated by these clinical cases. It is, however, a source of constant annoyance to spinal surgeons that perfect postoperative films do not always correlate with good clinical results and this discrepancy remains a source of fascination and mystery.

It is in the degenerative spine that this discrepancy between radiological and clinical findings is most apparent and it is partly for this reason that the management of these conditions is often controversial. It is difficult to disagree with much of the logic presented by the authors in planning their interventions but there is a danger that inexperienced surgeons may be misled into adopting complex solutions when often more simple operations will suffice. The authors’ description of their approach to failed back surgery syndrome illustrates this problem and the inadequacies of attempting to treat a complex clinical problem by focusing on one aspect of it.

This book will be a useful addition to the shelves of spinal surgery textbooks and many orthopaedic and neurosurgical departmental libraries will wish to buy a copy.

I wondered, when I received this book, how I could possibly say anything adverse about a book written by three such world renowned experts. I have heard them all lecture often and have seen them all at work. They have a vast knowledge and experience of treating disorders of peripheral nerves. In clinic and on the operating theatre, they have shown myself and many trainees a clarity in their planning of management of complex problems that humbles one’s own thoughts. That clarity has continued in this text book of over 500 pages. The field of peripheral nerve surgery is covered comprehensively, commencing with descriptions of anatomy, physiology, and pathological reaction to injury. This is followed in subsequent chapters with descriptions of approaches to virtually all the main peripheral nerves, and the operative management of brachial plexus injury and outcomes is covered in three detailed chapters. These are followed by chapters on nerve entrapment, neuropathy, iatropathic injury, and neoplasm within the peripheral nerve. The final section covers electrodiagnosis, pain, nerve recovery, reconstruction techniques, and rehabilitation.

The text is well written, easy to read, and supplemented by some excellent line drawings similar to those used in Lundborg’s text. There are detailed plates showing histology and various imaging techniques. Each chapter is comprehensive, containing important historical aspects as well as up to date techniques, and there is an extensive reference section. I would recommend that trainees of all specialties dealing with peripheral nerve injuries should read much of this text and it would be extremely useful as a regular reference. It would also make an important and necessary addition to most medical libraries. All clinicians would be well advised to read the chapters on iatropathic injuries, not only for the extensive causes of such injuries encompassing all medical and surgical departments, but also for the précis of the changes occurring in medical negligence claims. This text represents good value for money.

IAN WHITWORTH