The association between venous outflow obstruction and the development of pseudotumour syndrome is well known, although the mechanism by which the rise in CSF pressure is brought about is less certain. Although there is much evidence that the manifestations are a result of a disturbance of CSF dynamics, previous reports have focused solely on a disturbance to absorption. We present a case in which it is proposed that alterations in CSF formation, and to a lesser extent absorption, are responsible for the development of the syndrome.

At 2 years of age, as part of investigating a finding of left hemihypertrophy, a female child underwent cerebral CT. This showed an unexpected arteriovenous malformation involving the vein of Galen. Although there was no evidence of cardiac failure or hydrocephalus associated with this, assessment by angiography was advised. This, initially declined by the parents, was not undertaken until the age of 5 years when vertigo and intermittent numbness of the left arm and leg had been present for about 12 months.

Angiography showed a deep right temporal lobe arteriovenous malformation consisting of three separate fistulae supplied by the right posterior cerebral and posterior communicant arteries. These drained into a large venous varix which subsequently drained into the Galenic venous system. A cerebral blood flow study showed a steal syndrome affecting the frontotemporal area, and a decision was made to attempt embolisation. Complete occlusion of the fistulae was achieved by transarterial platinum coil embolisation.

The patient complained of right sided headache for 24 hours after the procedure, resolving with minor analgesia. Brain CT the next day was reported as normal. A full ophthalmological review was undertaken before the next day was reported as normal. At this assessment by angiography was advised. This, initially declined by the parents, was not undertaken until the age of 5 years when vertigo and intermittent numbness of the left arm and leg had been present for about 12 months.

It is well known that obstruction to a major portion of the cranial venous outflow can produce intracranial hypertension, presumably by impairing CSF absorption across the arachnoid villi. In the present case it would seem that sluggish flow in the venous varix after embolisation has resulted in thrombosis, which has propagated to the vein of Galen. As all investigations seem to have the thrombus confined to this region, a region of relative paucity of arachnoid granulations, and the major outflow tracts seem normal, it is difficult to accept that impairment of absorption is the mechanism responsible in the current case. An alternative mechanism must be considered.

It is held that one of the determinants of the rate of CSF production is the pressure gradient across the choroid plexus capillaries. Reduction in this pressure has been shown to decrease the rate of CSF formation, and it is possible that increases in the transcapillary pressure will, as in other parts of the body, result in increased transudation from the capillaries, leading to increased CSF formation. The malformation in the present case, haemodynamically important enough to result in symptoms of steal, and present since birth, may have resulted in a subtotal transcapillary gradient, and hence a possibly decreased CSF production. If this were the case, with decreased production serving to retard the normal development of absorptive capacity, then the increase in the venous pressure in the choroid plexus capillaries brought about by both the closure of the fistulae and the subsequent venous thrombosis may have resulted in a rate of CSF production greater than could be handled by the absorptive system. Resolution of the thrombus, recruitment of venous collaterals, and possibly an increase in absorptive capacity would have resulted in the resolution of the syndrome.

Dandy and Blackfan, in one of the first experiments of its type, attempted to produce hydrocephalus in dogs by ligating the vein of Galen. Their aim was to increase production, rather than impair absorption, of CSF. Their failure, a result conclusively demonstrated by Bedford, was taken to show that venous obstruction would not result in hydrocephalus. It is, however, worth noting that Bedford was able to demonstrate both the fact that dogs have extensive collaterals in the Galenic venous system, not present in humans, and that whereas Galenic venous obstruction produced little change, obstruction of the jugular veins resulted in increased CSF formation. Since these experiments little, if any, work has been done in the area of the relation between CSF formation and venous occlusion.

Although the above report is somewhat speculative, it could serve to explain the facts which at this stage of our understanding of CSF dynamics cannot be conclusively accounted for. A case of pseudotumor developing in the setting of minimal venous thrombosis, particularly in part of the venous system not thought to play a major role in the absorption of CSF, must force us to reconsider our opinions as to the relation between venous obstruction and CSF dynamics.

This research was supported by the Madeline Foundation for Neurological Research and the Frederick Foundation (Australia).

5 Bedford TH. The great vein of Galen and the syndrome of increased intracranial pressure. Brain 1934;57:1–24.

False negative polymerase chain reaction on cerebrospinal fluid samples in tuberculous meningitis established by culture

The polymerase chain reaction (PCR) has been reported to be of diagnostic value when performed on CSF samples in tuberculous meningitis.1–3 Rapid amplification of Mycobacterium tuberculosis specific DNA enables results to be available within 48 hours and can influence treatment decisions. Recently two patients presented to our hospital with symptoms and signs suggestive of tuberculous meningitis. Examination of CSF disclosed a lymphocytic exudate. Repeated samples were sent to a British referral laboratory where CSF PCR for M tuberculosis was reported negative. Despite this, antituberculous treatment was continued for 12 months and both patients responded clinically. Several weeks after the negative PCR result, M. tuberculosis was cultured on Lowenstein-Jensen slopes from CSF taken from both patients. False negative PCR result in tuberculous meningitis established by culture has rarely been reported. The two patients are described to emphasise the dangers of overreliance on PCR in cases of suspected tuberculous meningitis. Premature cessation of treatment would have had tragic consequences for the two patients concerned.

The first patient was a 28 year old Asian man, last in India 8 years previously. He was sent from a clinic to hospital for incision and drainage of two deep seated Staphylococcus...
The patient was a 21-year-old Kenyan woman living in the United Kingdom for 3 years. She was admitted with a 3-month history of photophobia and occipital headaches. She had no other systemic symptoms. She had had peritoneal tuberculosis diagnosed at the age of 6 years during laparotomy for an abdominal abscess and had received antituber-

culous medication for 1 month only. On examination she had mild neck stiffness and a partial left third cranial nerve palsy. Brain CT was normal. Lumbar puncture results showed a high opening pressure (15 cm CSF), 90 white blood cells/µl, predominantly lym-

phocytes, a raised protein concentration (1.62 g/l), and a low CSF/blood glucose ratio. At the same referral laboratory CSF PCR for M tuberculosis was negative but culture after 2 weeks grew a fully sensitive organism. De-

spite the negative PCR antituberculous therapy was started empirically. After 2 months of treatment her symptoms had resolved although a partial third nerve palsy remains.

Adequate volumes of both patients’ CSF (0.5 ml) were sent to our referral laboratory where the CSF was assayed using DNA extracted from 50 lab samples by using three primer sets and appropriate controls. The assay included primer sets designed by Nguyen et al, Kox LFF, Pham LD, et al. The potential contribution of the polymerase chain reaction to the diagnosis of tuberculous meningitis. Arch Neurol 1996;53:717–6. The PCR has been reported to detect the equivalent of 1–10 mycobacteria in in vitro testing. However, lower sensitivity is found with clinical specimens. 3 The PCR may be the result of inhibitors of PCR present in the reaction, poor lysis of mycobac-

teria, and the uneven distribution of myco-

bacterial in clinical specimens. 4

Case reports

We are grateful to Dr Deborah Binzi-Gascogne of the Leeds mycobacterium laboratory, where the PCR tests were performed and who provided addi-
tional information for the manuscript.

4 Fauville-Dufaux M, Vanfletern B, De Wit L, et al. Rapid detection of non-tuberculous mycobac-

6 Shankar P, Mandal B, Chakraborty S, et al. Mycobacterium tuberculosis DNA in the CSF of patients with tuberculous meningitis after antibiotic treat-

8 Garcia JE, Lowada JP, Gonzalez Villaron L. Reli-

A novel mutation of the myelin P gene segregating Charcot-Marie-Tooth disease type 1B manifesting as trigeminal nerve thickening

Charcot-Marie-Tooth disease (CMT) is the most common type of hereditary peripheral neuropathy. It is classified into two types based on pathological and electrophysiological findings: type 1 and type 2. CMT type 1 (CMT1) has been mapped to the long arm of chromosome 17 (CMT1A), chromosome 1 (CMT1B), an unknown unknown chromosome, (CMT1C) and the X chromosome (CMTX), CMT1B is a rare form of CMT1 associated with mutations of the myelin protein zero (P) gene. Mutations in the P gene have recently...
been recognised in Dejerine-Sottas disease, peripheral neuropathy with an early onset in childhood, and a more severe phenotype than CMT1. CMT1 and Dejerine-Sottas disease are characterised by thickening of peripheral nerves, and thickening of the cauda equina, nerve roots, and ganglia have often been found. 1 Although cranial nerves are generally spared in CMT, thickening of the acoustic or optic nerve has been reported in some cases. We report here on a Japanese patient who exhibited severe polyneuropathy, bilateral trigeminal thickening on MRI, and an abnormality of the auditory brain stem response. Gene analysis disclosed a novel missense mutation (His81Arg) of P0. The cranial nerve involvements in this patient may be associated with the novel missense mutation of P0 (His81Arg).

A 15 year old Japanese girl presented with CMT disease. She showed delayed motor development. Although she became ambulant at 1 year and 8 months of age, she was never able to run. She was referred to our hospital due to progression of her gait abnormality. Her mentality and higher brain function were normal. Neurological examination disclosed weakness in both proximal and distal muscles of the legs, decreased grasping power, sensory disturbance of distal limbs was noted. Facial sensation, mastication power, and hearing acuity were normal. She also had atrophy of the lower limbs, drop foot, a steppage gait, claw hands and carpal deformities. Optic atrophy, incoordination, autonomic dysfunction, and cardiac involvement were not evident.

In laboratory findings, creatinine kinase was 343 IU/L. A peripheral nerve conduction study showed undetectable sensory and motor action potentials in all limbs. Auditory brain stem response showed abnormal prolongation of the I-III interpeak (2.81 ms on the right side, 2.88 ms on the left side). Brain MRI figures showed significant thickening of bilateral trigeminal nerves (7 mm) compared with that of controls (3.15 ± 1.62 mm (mean ± 2 SD), n=20). However, other cranial, spinal nerves and roots were not thick on physical examination or MRI study. Sural nerve biopsy was not performed.

Although no detailed familial information was available, her mother (49 years old) showed normal findings on neurological examination and peripheral nerve conduction study.

Blood samples were obtained from the patient and her mother with informed consent. DNA was extracted from the blood by a standard phenol/chloroform protocol.

The six exons of the P0 gene were amplified by the polymerase chain reaction using primers, and analysed by single strand conformational polymorphism (SSCP) and sequencing analyses. DNA sequencing of exon 3 showed a novel point mutation (A81C) to C at codon 81) resulting in misincorporations of arginine for histidine only in the patient. A DNA duplication in chromosome 17p11.2-p12, including the peripheral myelin protein-22 (PMP-22) gene, was not present. The patient’s mother did not show any mutations in the P0 gene.

CMT type 1 is caused by abnormalities in myelin protein of Schwann cells. Repeated demyelinating and remyelinating responses in the peripheral nerve produce disordered diameter of nerves in CMT type 1, and thickening of the cauda equina, nerve roots, and ganglia has also been found. 1, 2 Although blepharoptosis, ophthalmoplegia, facial weakness, deafness, dysphagia, and dysphonia in CMT have been previously reported, 2 clinical involvement in the cranial nerves is rare and thickening of cranial nerves has not been reported except for the acoustic or optic nerves in some cases. 23

In the present study, our patient showed severe clinical manifestations of early onset and undetectable conduction velocities. Therefore, this patient was considered to have a severe form of CMT or Dejerine-Sottas disease. Although her facial sensation, mastication power, and hearing acuity were normal, the thickness of bilateral trigeminal nerves on MRI and prolongation of the I-III interpeak interval in auditory brain stem response were found. The I-III interpeak interval represents the conduction time from the eighth nerve to the pontomedullary portions of the auditory pathway. Prolongation of the auditory brain stem response suggests peripheral conduction delay of the auditory nerve.

Trigeminal neuralgia with CMT has been reported. 24 In these rare cases, trigeminal neuralgia was inherited, suggesting a partial symptom of CMT. Although some patients were surgically treated, it was not clear whether a thickened trigeminal nerve was present. Moreover, on electrophysiological studies of facial and trigeminal nerves in CMT, Kimura 25 reported that the sensory component of the trigeminal nerve was relatively spared, despite extremely delayed conduction of the facial nerve. However, the MRI study of our patient suggested that the fifth cranial nerves were subjected to the same pathological process that affects other peripheral nerves.

Our patient showed no DNA duplication on chromosome 17p11.2 and we found a novel mutation (A to C) representing an Arg81His substitution in the P0 gene. Histidine 81 is conserved among many other species, including cows, rats, chickens, and sharks. This mutant allele was absent in the DNA from 100 controls. Therefore we identified this mutation as pathogenic. Arg81His was located in exon 3, which codes for the extracellular domain of P0. The extracellular domain plays a part in myelin compaction by homophilic interaction and many mutations in this area have been reported. Although the phenotypic variability is related to the position and nature of the P0 mutation, patients with cranial nerve involvement are rare in CMT with a P0 mutation. Therefore, the unique thickening of trigeminal nerves and the clinical severity in this patient may be related to this novel missense mutation. A careful comparison of the clinical, electrophysiological, and histopathological data between patients with CMT should be conducted.

We are indebted to the families studied for their cooperation and support. This work was partly supported by Uehara Memorial Foundation, the Sasaki Health Science Foundation, the Primary Amyloidosis Research Committee, and the Ministry of Education, Science and Culture of Japan 10832002, 18832993.

MASAMI SHIZUKA
YOSHIKO IKEDA
MITSUNORI WATANABE
KOICHI KAMATA
MIKIO SHOJI
Department of Neurology, Gunna University School of Medicine, 3–39–22 Showa-machi, Maebashi, Gunma 371–8511, Japan

TORU KEGAMI
KIYOSHI HAYASAKA
Department of Pediatrics, Yamagata University School of Medicine, Yamagata, Japan

Correspondence to: Dr Masami Shizuka, Department of Neurology, Gunma University School of Medicine, 3–39–22 Showa-machi, Maebashi, Gunma 371–8511, Japan. Telephone 0081 27 220 8061, fax 0081 27 220 8068, email mshizuka@news.sb.gunma-u.ac.jp

Intracranial extracerebral follicular lymphoma mimicking a sphenoid wing meningioma

Primary lymphoma in the brain is uncommon, accounting for only 2% of intracranial neoplasms; although its incidence seems to be dramatically increasing. 1, 2 Leptomeningeal lymphomas are even rarer but have been described 3, 4; however, no leptomeningeal lymphoma of the follicular type has previously been reported. We present a case of a primary meningeal follicular lymphoma which mimicked a sphenoid wing meningioma, both radiologically and intraoperatively.

A 57 year old Ghanaian woman was referred with a 3 year history of worsening bitemporal headache, followed by a 6 month history of daily right frontal headache lasting for 2–3 hours associated with mild photophobia. There were no reports of seizures, nausea, or other visual disturbances. Her medical history was 3 years of treated hypertension, sickle cell carrier trait, and a cataract extraction. The patient was obese but physical examination was otherwise normal. Neurological examination showed no papilloedema and there were no cranial nerve or long tract signs.

Brain CT showed an enhancing mass consistent with a right sided sphenoid wing

Axial T1 weighted (TR 600/TE 15) brain MRI at 1.5 Tesla of our patient with CMT. Note the thickness of the bilateral trigeminal nerves.
lar lymphoma, was found to be positive. The apoptosis and is expressed in 90% of follicular kappa light chain restriction. Staining for confirmed that these cells had a B lymphocytic phenotype (CD20 positive) with kappa light chain restriction. Staining for Bcl-2 protein, which is an inhibitor of apoptosis and is expressed in 90% of follicular lymphoma, was found to be positive. The histological appearances and immunohistochemical profile confirmed a follicular lymphoma.

The patient made an uneventful recovery and was referred for staging investigations and consideration of postoperative therapy. An LDH estimation was within normal limits and HIV serology was negative. Whole body CT including repeat CT of the brain did not show any evidence of lymphadenopathy or lymphomatous deposit. Bone marrow examination was declined. Postoperative adjuvant whole brain or localised radiotherapy was discussed with the patient, however, she declined any further intervention. She has been closely reviewed in the follow up clinic and after 6 months there has been no clinical or radiological evidence of recurrence.

Primary intracerebral lymphomas represent about 2% of intracranial neoplasms and 2% of all lymphomas. They occur most commonly in the 6th decade of life with a female to male ratio of roughly 2:1.1

The association between primary intracranial lymphoma and immunodeficiency has long been established, and it is not surprising, therefore, that the incidence has increased 10-fold over the past 3 decades with the onset of transplant surgery and, particularly, the AIDS epidemic. In postmortem studies, these neoplasms are found, on average, in 5.5% of AIDS cases, and malignant cerebral lymphoma is the most common diagnosis of a focal intracranial lesion in patients with AIDS. Malignant primary lymphoma can occur throughout the CNS and they often have a periventricular distribution. Multifocality seems to be more common in patients with AIDS. The CT scan usually shows hyperdense masses with peritumoral oedema and 92% enhance after administration of contrast medium.

Leptomeningeal lymphoma is usually encountered as a late complication of systemic non-Hodgkin’s lymphoma, although primary leptomeningeal lymphoma is occasionally seen. The prognosis for these tumours is poor.

Determinants of the copper concentration in cerebrospinal fluid

The measurement of CSF copper concentration can serve as an indicator of brain copper concentration. However, the complex mechanisms by which copper crosses into the CSF, and the factors determining the CSF copper concentration in humans are largely obscure. Copper can pass into and out of the CSF by various mechanisms. For example, active transport through the blood–brain barrier or the blood–CSF barrier, or passive diffusion of the free or the bound fraction (bound to albumin or ceruloplasmin) through the blood–CSF barrier. We studied the factors influencing CSF copper concentration using a stepwise multiple linear regression model. The independent variables were age, plasma ceruloplasmin, CSF/serum albumin ratio, total serum copper concentration, and calculated serum free copper concentration (based on serum ceruloplasmin and total serum copper concentration). The CSF copper concentration was treated as a discrete or continuous type. We investigated lumbar CSF samples from 113 patients. These patients had dementia, extrapyramidal, or tremor symptoms; lumbar puncture was performed to exclude Wilson’s disease, and none of the patients had the disease. Copper was measured by flameless atomic absorption (Perkin Elmer, HGA 500, Ueberlingen, Germany). Ceruloplasmin was determined nephelometrically (Behring Instruments, Brea, CA, USA).

We thank Professor Francesco Scaravelli, National Hospital for Neurology and Neurosurgery and Dr Mark Napier, The Meyerstein Institute of Oncology, Middlesex Hospital, for their help with this report.

DOMINIC J HODGSON
KAROLY M DAVID
MICHAEL POWELL
Department of Surgical Neurology

IAN L HOLTON
Department of Neurology, The National Hospital for Neurology and Neurosurgery

FRANCESCO PEZZELLA
Department of Pathology, University College Hospital, London, UK

Correspondence to: Mr Michael Powell, Department of Surgical Neurology, The National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, United Kingdom. Telephone 0044 171 837 3611; fax 0044 171 209 3875.

(A) Contrast enhanced CT of the head showing a 6×4×6 cm enhancing mass lesion in the region of the right lesser sphenoid wing. (B, C) Photomicrographs of the surgical specimen. (B) Section through the lesion showing triangular, ill defined lymphoid follicles. Haematoxylin and eosin, original magnification×30. (C) Follicle centre composed of a mixture of centrocytes andcentroblasts with mitotic activity (arrow). Haematoxylin and eosin, original magnification×500.

meningioma (figure A). Right pt erional craniotomy was performed and a tumour located under and adherent to the overlying dura was identified. It was entirely extracerebral, measuring 6×4×6 cm, with the greysih colour and hard consistency typical of a meningioma. The prognosis for these tumours is poor.

Histologically the lesion consisted of lymphoid tissue with an ill defined follicular architecture (figure B). The follicles varied in size and shape and infiltrated the overlying dura. Follicular centres were composed of a mixture of centrocytes and centroblasts with frequent mitotic figures and apoptotic bodies (figure C). Immunochemical staining confirmed that these cells had a B lymphocytic phenotype (CD20 positive) with kappa light chain restriction. Staining for Bcl-2 protein, which is an inhibitor of apoptosis and is expressed in 90% of follicular lymphoma, was found to be positive. The histological appearances and immunohistochemical profile confirmed a follicular lymphoma.
stepwise linear regression model (F to enter 4.0, F to remove: 3.996), significant positive predictive power of the CSF copper concentration were found to be AR (p=0.0001) and serum ceruloplasmin (p=0.0057). The other independent variables mentioned above showed no statistically significant relation with CSF copper concentration. The figure shows the simple linear regression between CSF/serum albumin ratio and CSF copper concentration (on logarithmic axes; R²=0.46, p=0.0001). The formula for the CSF copper concentration, derived from the multiple linear regression model, is:

\[\text{Copper CSF (µg/l)} = 5.32 + 0.012 \times \text{CSF/serum albumin ratio} + 0.012 \times \text{CSF ceruloplasmin (mg/l)} \]

According to this analysis, all measured copper concentrations in the CSF should be adjusted using the CSF/serum albumin ratio and serum ceruloplasmin concentration. A statistical relation with a low correlation (p=0.05) between CSF protein content and CSF copper was already shown in 1985 in various neurological diseases; our study shows a much higher significance and, in addition, the effect of serum ceruloplasmin (therefore of bound serum copper). Furthermore, we have been able to determine quantitatively the fraction of CSF copper which enters the CSF across the blood-CSF barrier.

HANS JOERGSTUERBURG
MATTHIAS OECHSNER
SVEIN SCHROEDER
KLAES KUNZKE
Neurological Department, University Hospital Hamburg-ppendorf, Hamburg, Germany. Telephone 0049 40 4717 4832; fax 0049 40 4717 5086.

Correspondence to: Dr Hans Joerg Stuermen, Neurological Department, University Hospital Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.

SOLITARY INTRACRANIAL MYOFIBROMA IN A CHILD

A rare case of solitary interhemispheric myofibroma with excellent outcome in a 20 month old boy is described. The clinicopathological features of this unusual condition are reviewed with emphasis on the CNS manifestations.

A case of congenital fibrosarcoma was first diagnosed by William and Schum' and was subsequently renamed congenital generalised fibromatosis by Stout in 1954 as a distinct form of juvenile fibromatosis characterised by tumour-like nodules involving the skin, soft tissues, bones, and viscera. Based on the ultrastructural and immunohistochemical features of the cell of origin and the occurrence of this condition in infants, as well as congenitally, it was renamed infantile myofibromatosis by Chung and Enzinger in 1981. This disorder is considered to represent a hamartomatous myofibroblastic proliferation, although laboratory evidence suggests that it may arise secondary to oestrogen stimulation in utero. Infantile myofibromatosis represents the most common fibrous tumour of infancy and may present with solitary or multicentric lesions. Whole body imaging with contrast enhancement, although suggestive of a multifocal tumour, is non-specific.

Central nervous system involvement is exceptionally rare and has been reported as a finding in the multicentric type of myofibromatosis.1,2 We describe a solitary interhemispheric myofibroma which presented as an intracranial mass in a 20 month old child. To our knowledge, only one other case of solitary intracranial myofibromatosis has been reported.3

A 20 month old Irish boy, the only son of healthy, unrelated parents, was admitted for investigation of a large head. He had one previous hospital admission at the age of 6 weeks for a respiratory tract infection. The father’s head hypotonia was noted at that time as was his skull circumference of 43 cm. At 6 months there was no hypotonia, neurological examination was normal, and the head circumference was 49 cm. The father’s head circumference was 61 cm and he stated that all of his family had “big heads”. By 20 months, the patient’s head circumference measured 55.6 cm and was diverging from the 97th centile. Brain CT showed a well circumscribed, contrast enhancing mass in the midline and left frontal lobe, with surrounding oedema. There was evidence of left sided hydrocephalus due to displacement of the right foramen of Munro by tumour. The radiological differential diagnosis included a primary meningeal tumour, glioma, and leukaemic deposit. The patient underwent a left frontal craniotomy and a firm, rounded mass was removed from below the fronto-temporal part of the cranial base. This mass was confirmed to be the lesion. The mass was not attached to the falx, but was firmly adherent to the left pericallosal artery. A fragment (4 mm×2 mm) had to be left attached to the vessel wall. The patient’s head circumference had transited paresis of the right leg, which subsequently resolved completely. Repeat CT 6 months later and at 4 years after the operation showed no evidence of recurrence or mass effect. His head circumference persisted on the 97th centile 4 years after operation. His development and clinical examination otherwise remained normal 6 years after surgery. A younger sibling is normal.

The rounded 3.0 cm mass had a whorled, fibrous, white-yellow cut surface appearance. Microscopically, it consisted of hypercellular fasciculated and storiform areas, alternating with hypocellular, hyalinised regions. Cytokeratin, epithelial membrane antigen, desmin, smooth muscle actin, and CD 34 were focally positive. The diagnosis of solitary intracranial myofibroma was made.

45
myoglobin. Ultrastructural examination showed elongated cells with surrounding collagen fibrils, some showing intracytoplasmic myofilaments.

Solitary lesions of infantile myofibromatosis are more common than multiple lesions, with twice as many males as females being affected, and generally involve the skin and soft tissues, especially of the head and neck. 7 Solitary lesions are less commonly found in viscera or bones. 11 Involvement of the CNS is exceedingly rare and only one other case of a solitary mass is reported 12 along with few cases of CNS involvement in the generalised form of infantile myofibromatosis. 14 This report is best for cases with solitary masses and less favourable for multicentric cases, particularly where visceral lesions are present, in which morbidity and mortality derive predominantly from pulmonary involvement or mass effect.

The differential diagnosis for this lesion included meningoima, schwannoma, and haemangiopericytoma. Regionally, the histology was reminiscent of the rare microscopic variant of meningoima. Meningiomas are extremely rare in this age group, this lesion was not meningeal based and such lesions are usually reactive for epithelial membrane antigen unlike this tumour. This lesion, unlike schwannoma and haemangiopericytoma showed no immunoreactivity for S-100 protein. Haemangiopericytoma is a diagnosis of exclusion and shows no reactivity for actin, unlike this tumour.

Intracranial involvement by myofibromatosis includes patients with widespread systemic involvement and multiple leptomeningeal nodules in one patient and extrathalamic masses in another, 7 both of which were fatal at the age of 10 days, a non-fatal extrathalamic mass in one patient, and a patient with systemic involvement, in which there was recurrence of orbital and temporal lesions 2 years after operation. A single previous case of solitary intracranial myofibroma has been reported 12 in which the patient died within 24 hours of surgery, secondary to cardiorespiratory arrest.

We present a patient with a solitary intracranial myofibroma with an excellent postoperative outcome. Although rare, infantile myofibroma should be included in the differential diagnosis of intracranial neoplasms in children.

Axonal polyneuropathy and encephalopathy in a patient with verotoxin producing Escherichia coli (VTEC) infection

Escherichia coli serotype O157:H7 causes serious food poisoning worldwide, especially in children and elderly people. 1 It is also called verotoxin producing E.coli (VTEC), which produces a toxic Shiga-like toxin. Gastrointestinal, haemorrhagic, and ureamic effects are well known in VTEC infection, 1 and neurological problems are likely to be more frequent than is generally recognised. 2 Here we describe axonal polyneuropathy and encephalopathy in a young female patient associated with haemolytic-uraemic syndrome caused by VTEC infection.

A 26 year old woman began to have abdominal pain and haemorrhagic diarrhoea. She was admitted to an emergency hospital and diagnosed as having haemorrhagic colitis due to probable food poisoning. Then her urinary volume increased and sodium and creatinine decreased. A high fever of 39.7°C appeared and she was transferred to our hospital. On the 9th day of her hospital stay she had a fever of 39.7°C with increased C reactive protein (7.6 mg/l) and a leukocytosis of 17 800/mm³. She was in a state of anaemia and her blood analysis showed severe kidney dysfunction (increased serum creatinine of 6.76 mg/l). She had severe anaemia (haemoglobin 6.0 g/dl), fragmentation, and tear drop deformation of red blood cells in the blood smear and increased lactate dehydrogenase concentration of 4095 IU (normal range 230–460 IU), suggestive of haemolytic anaemia. Her platelet count was decreased to 21 000/mm³.

The culture of her stool showed the growth of E.coli O157:H7 and analysis of the bacterial toxins showed the presence of verotoxin, which confirmed the diagnosis of VTEC infection. 3 Western blot analysis of tissue and fluid from the pancreas, and intense haemolysis, and antibiotics (4 g/day fosfomycin, 600 mg/day levofloxacin, and 2 g/day cepharazon/ sulfactam). Her general status was unchanged for 1 week after admission and she was in a delirious state with visual hallucinations and tonic convulsion, indicative of encephalopathy. Brain CT disclosed mild brain swelling and there were diffuse slow waves in the frontal, parietal, and occipital areas.

She was given 250 mg/day diphenylhydantoin. During the next two weeks her kidney function, haemolytic anaemia, and encephalopathy gradually improved.

After recovery of consciousness she began to complain of numbness of the limbs, manifested as tingling in her fingers. She was noted to have a tingling feeling like frost bite when she was lying on the bed, and this gradually exacerbated to be a burning pain. On examination she was alert and cooperative. Her cranial nerves were normal. Muscle strength was normal and coordination was intact. Deep tendon reflexes were decreased in the four limbs. Sensation for vibration was impaired in the lower legs, but preserved for pin prick, light touch, and joint position. Signs of proximal muscular weakness were absent.

Axial problems included urinary retention, incontinence, and constipation, and she failed to pass her stools. The patient was diagnosed as having VTEC infection, because of a typical history of acute haemorrhagic colitis, the cultural growth of enterohaemorrhagic E. coli O157:H7, and the detection of verotoxin in her stool. She had haemolytic-uraemic syndrome (haemolytic anaemia, thrombocytopenia, and uraemia, following diarrhoea), which is the main complication of VTEC infection. Experimentally, vero cells, an immortalised primate kidney cell line, are killed by high doses of verotoxin through the process of apoptosis. 4 Verotoxin shows similar cytotoxicity on human glomerular mesangial cells via saturation of verotoxin receptors, such as tumour necrosis factor-a, which induced an increase in the numbers of verotoxin receptors, leading to a microvascular thrombosis. 5

Our patient was treated with antibiotics, plasma exchange, and continuous haemodialysis, with benefit. During the course of the disease, our patient was in a delirious state with visual hallucinations and tonic convolution. She showed mild brain swelling on CT and diffuse slow waves in the frontal area on EEG, evidence of encephalopathy. Previous reports have shown that the incidence of encephalopathy in haemolytic-uraemic syndrome (mostly due to infections) is 15%–40%, especially in infants, children, adults, and patients with haemolytic-uraemic syndrome, including seizures in 17%–44%, altered consciousness in 7%–40%, and paralysis in 1%–16%. Many of the patients, including ours, seemed to have metabolic encephalopathy, but some developed encephalopathy without metabolic abnormalities. 6 There is experimental evidence that verotoxin has direct virulence to both endothelial cells and neurons in the nervous system, and its initial lesion is in the hypothalamic areas, then...
Crying spells as symptoms of a transient ischaemic attack

In the absence of depression, crying spells associated with neurological disease usually result from pseudobulbar palsy or, more rarely, from crying seizures. To our knowledge, there are no prior reports of crying spells heralding or signifying a transient ischaemic attack. We report on a patient with multiple vascular risk factors who had a transient episode of intractable crying and focal neurological findings.

The patient was a 55 year old right handed man who presented with acute, uncontrolled crying spells following by left sided paraesthesia. Around 6.00 am he awoke with a severe pressure headache and suddenly started crying for no apparent reason. There was no accompanying feeling of sadness. This crying, which involved lacrimation and “sobbing,” abruptly ceased after 5 minutes. Within 30 minutes of his initial crying spell, his headache had resolved but he became aware of numbness over his left face and numbness and pain in his left neck and arm. The numbness was not progressive, and the patient did not complain of paraesthesia in his trunk or any other limb. He had photophobia, nausea or vomiting, blurred vision, visual obscurations, difficulty swallowing, dysartria, or focal weakness. Over the next 2 to 3 hours, he had five more crying spells, each lasting 5 to 10 minutes, occurring out of context, without precipitating factors or sadness, with an acute onset and offset, and without alteration of consciousness. The patient’s left face and arm numbness persisted during and between the spells, but abruptly resolved shortly after his last crying spell. This patient had hypertension, diabetes melitus, coronary artery disease, an old myocardial infarction, raised cholesterol concentrations, and a history of heavy smoking.

On examination between recurrent crying spells, his blood pressure was 143/92 with a regular pulse of 62, and there were no carotid bruits. His mental status was normal. Cranial nerve examination disclosed flattening of the left nasolabial fold and decreased pinprick sensation over his left face with an occasional mild facial twitching. Cranial nerves IX-XII were intact, and gag reflex and palate elevation were normal. He did not have dysarthria or a brisk jaw jerk. The rest of the neurological examination showed mild weakness in his left upper arm, and decreased pinprick and temperature sensation over the left half of his body. Reflexes were +2 and symmetric with downgoing toes.

The patient lacked prior depression, new depressive symptoms, or prior crying spells as an adult except for a single episode during dental anaesthesia. At the time of his admission, he had not had any recent adverse events in his life, and was totally surprised by his reaction.

The patient’s crying spells, paraesthesia, and neurological findings entirely resolved within about 3 hours. Routine laboratory tests, ECG, and CT were normal. Two days after admission, MRI disclosed a mild degree of white matter capping over the right frontal horn and an EDCT. Nerve conduction studies and the clinical examination showed mild areflexia and serum concentrations of vitamins and trace elements in the patient’s serum. There were no signs or symptoms of pseudobulbary palsy at his inpatient visit.

Crying or dacyrastic seizures also occur but are rare. These seizures are part of the range of complex partial seizures and usually emanate from the right temporo-parietal lobe. Crying seizures may result from prior cerebrovascular infarctions. Although our patient had mild photophobia of his left face, he did not have other evidence suggesting definite seizure activity.

It is likely that this patient had a single transient ischaemic attack with multiple crying spells. The localisation of his attack is unclear; involvement of the right thalamus or neighbouring internal capsule is a possibility. Similar to spells of laughter, spells of crying may occur in relation to unilateral cerebrovascular events. Although most reports of crying after unilateral strokes have reported left hemispheric lesions, crying also may result from right hemispheric strokes. Even more similar to our patient, sudden laughing spells, “le fou rire prodromique,” rarely precede strokes involving the left capsular-thalamic, lenticulo-caudate, or pontine regions. Our patient may have had a comparable phenomenon from the right hemisphere. Crying in our patient may have been a temporary activation or stimulation of ischaemic motor pathways.

RYUJI SAKAKIBARA

TAKAMICHI HATTORI

KEIKO MIZOBUCHI

SATOSHI KUWABARA

Department of Neurology

MITSUGU OGAWA

First Department of Internal Medicine, Chiba University, 1–8–1 Inohana Chuo-ku, Chiba 260, Japan.

Correspondence to: Dr Ryuji Sakakibara, Department of Neurology, Chiba University, 1–8–1 Inohana Chuo-ku, Chiba 260, Japan.

6 Brain damage.1
We used a Swan-Ganz catheter to investigate ventricular function by echocardiography, the final conclusion and its interpretation require further study.

We think that more than a 20 minute tilt up study is needed to evaluate orthostatic hypotension and that reduced endurance of exercise and the syncope that occurs some time after standing should be considered symptoms of a continuous drop in blood pressure.

TAKANORI YOKOTA
KAZUTO MITANI
YUKINOBU SAITO
Department of Neurology

TOSHIYUKI ONIKI
Third Department of Internal Medicine, Tokyo Medical and Dental University, Tokyo 113, Japan

MICHYUKI YAYASHI
Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo 183, Japan

Correspondence to: Dr Takanori Yokota, Department of Neurology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan. Telephone +81-3-5803-5234; fax +81-3-5808-0169.

CORRESPONDENCE

Respiratory aspects of neurological disease

An account of respiratory aspects of neurological disease, such as the highly informative one presented, would be incomplete without mention of breathlessness resulting from neurogenic pulmonary oedema, characterised by an “increase in extravascular lung water in patients who have sustained a change in neurological condition”. Neurological disorders associated with this syndrome include subarachnoid haemorrhage, middle cerebral artery stroke, and cerebellar haemorrhage. Brain stem stroke, acute hydrocephalus due to colloid cyst of the third ventricle, closed head injury, and status epilepticus, were also documented as risk factors in a literature review by Smith and Matthay, who proposed, on the basis of their own study, that increased pulmonary vascular hydrostatic pressure might be a more significant aetiopathogenic mechanism than increased pulmonary capillary permeability. A more direct link between neurogenic myocardial damage and pulmonary oedema can be postulated when subarachnoid haemorrhage is complicated by reversible severe left ventricular dysfunction, as documented in two cases reported by Wells et al.
Idiopathic cerebellar ataxia associated with celiac disease: lack of distinctive neurological features

Although applauding the contribution of Pellecchia et al, and more widespread recognition of the association between gluten sensitivity and ataxia, we disagree that ataxia associated with gluten sensitivity lacks “distinctive neurological features”. Both their data and comments indicate that this group of patients can be distinguished by the late (non-childhood) onset of gait ataxia with relatively mild upper limb signs, analogous to Harding’s group.1 Again, coexistent neuropathy is common in these patients, found in two out of three of the patients of Pellecchia et al and 21 of our 28.2 We agree that gastrointestinal symptoms are rare: rather than entitling their paper “lack of distinctive gastroenterological features” might have been more appropriate.

We were surprised at the high specificity and sensitivity of increased antigliadin antibody titres in their patients. Although we found both IgA and IgG antigliadin antibodies to be invaluable screening tools in patients with ataxia, only 11 of our 28 patients with increased antigliadin antibodies had histology of overt coeliac disease on duodenal biopsy, the remainder having normal or non-specific inflammatory changes but with an HLA genotype in keeping with gluten sensitivity. It is interesting to note that despite the often quoted high sensitivity for coeliac disease of increased antigliadin antibody titres, such was found in only one of three patients of Pellecchia et al with coeliac disease. This concurs with our impression of very modest sensitivity of antigliadin antibodies in gluten ataxia.

Gluten sensitivity is common in patients with ataxia, and can be identified by increased antigliadin antibody titres in the presence of appropriate histocompatibility antigens.3 Although the clinical features of gluten ataxia are not entirely specific, they are distinctive.

HADJIVASSILIOU M, GRÜNENWALD R, DAVIES-JONES G

Department of Neurology, Royal Hallamshire Hospital, Glossop Road, Sheffield S10 2JF, UK

Correspondence to: Dr G A B Davies-Jones, Department of Neurology, Royal Hallamshire Hospital, Glossop Road, Sheffield S10 2JF, UK

Pellecchia et al reply:

We thank Hadjivassiliou et al for their interesting comments on our paper. They suggest that patients with gluten ataxia can be distinguished by the late onset of gait ataxia and the relatively mild upper limb signs. Our results support the finding of a late onset in these patients, but this feature cannot be considered a distinctive one. In fact, in our population 11 out of 24 patients with idiopathic cerebellar ataxia had a late onset, but only three of them were affected by celiac disease. Furthermore, we do not think that celiac patients may be distinguished by mild upper limb signs and coexistent neuropathy; in our study 20 out of 24 patients with idiopathic cerebellar ataxia, including the three patients with celiac disease, had ataxic gait as the presenting and prominent clinical feature. Similarly, nerve conduction studies, performed in 17 out of 24 patients, showed a peripheral neuropathy in nine, including two out of the three patients with celiac disease.

We understand that some discrepancies arise comparing our study with that of Hadjivassiliou et al. Firstly, only six out of our 28 patients had evidence of cerebellar atrophy on MRI, whereas all of our patients had cerebellar atrophy. Secondly, many of their patients had a peripheral neuropathy in the absence of cerebellar atrophy.2 This finding could explain their relatively mild upper limb signs. Although two of our three celiac patients had a clinically silent peripheral neuropathy, we think that their ataxia was explained by cerebellar atrophy. Thirdly, we found a high prevalence (12.5%) of cerebellar disease on duodenal biopsy among patients with idiopathic cerebellar ataxia, whereas none of the six patients with cerebellar atrophy described by Hadjivassiliou et al showed histological features of celiac disease.1 It would be interesting to know the prevalence of gluten ataxia among all ataxic patients screened for antigliadin by Hadjivassiliou et al.

Our series is too small to estimate the sensitivity of both antigliadin and antiendomysium antibodies in gluten ataxia; unfortunately Hadjivassiliou et al did not report any data on antiendomysium antibody screening in their patients. On the other hand, we were surprised at the high prevalence of antigliadin antibody positivity (12%) in the normal control group.2 This is by contrast with the 2% of antigliadin antibody positivity found in a large population by Catassi et al.3 Further studies are required to better characterise the syndrome of cerebellar ataxia associated with celiac disease or gluten sensitivity.

M T PELLECCHIA
R SCALA
A FILLA
G DE MICHELE
P BARONE

Department of Neurological Sciences, Via S Pansini 5, 80131 Naples, Italy

Procamidine for faecal incontinence in myotonic dystrophy

We read with interest the article by Abercrombie et al which describes the pathophysiology and surgical management of faecal incontinence in two siblings with severe myotonic dystrophy.1

In the authors’ experience, longer term results of both medical and surgical management of the faecal incontinence of myotonic dystrophy is difficult to relieve by any currently available treatment other than colostomy.2 It should be noted, however, that the medical treatment used is not specified in the text.

Our experience with medical treatment using procamidine in a patient with severe myotonic dystrophy and faecal incontinence is less disappointing. The patient—a 19 year old man—had had his illness diagnosed 4 years earlier on clinical grounds and electrophysiological and genetic tests. Early symptoms of sphincter impairment developed soon after, including mild stress urinary incontinence and minor episodes of poor control of loose stool.

A complete diagnostic investigation, including physical examination, defecography, and electrophysiological tests of pelvic floor muscle function, was performed. At physical examination, digital anorectal evaluation showed low squeeze pressures. A reduced rectal diameter (4.5 cm), anal gaping, and barium loss at rest were found in defecography. Motor evoked potentials elicited by cortical and lumbar magnetic stimulation and recorded from the external anal sphincter showed a normal latency and decreased amplitude. Somatosensory evoked potentials after anal stimulation and sacral reflex latency were normal. EMG recording of the external anal sphincter showed, as in the first patient of Abercrombie et al, a decreased number of motor units and multiple myotonic discharges. Few motor unit potentials presented polyphasic waveforms and decreased duration and amplitude.

A regular treatment with procamidine (300 mg twice a day) lead to a dramatic improvement of both systemic myotonia and faecal incontinence. A 13 month follow up assessment has shown a stable clinical improvement. Repeated electrophysiological investigation showed disappearance of myotonic discharges at the external anal sphincter, whereas defecography disclosed an improved rectal compliance (5.2 cm in diameter) at capacity and no more than a barium leak on straining.

The pathophysiology of motor disorders of the gastrointestinal tract in myotonic dystrophy is still debated and controversial. Histological study of the external anal sphincter and...
the EMG pattern in patients with myotonic dystrophy shows a multitude of defects including expression of myotonia, myopathy, muscular atrophy, and neural abnormalities. The possible management of myotonia and some of its clinical manifestations, such as dysphonia, by use of myotonic drugs (disopyramide and procainamide), justifies the use of the same pharmacological approach in anal sphincter dysfunction manifested in a few cases of myotonic dystrophy. We conclude that treatment of faecal incontinence with procainamide should always be attempted before any surgical option in patients with myotonic dystrophy.

G PELLICCIIONI
O SCARPINO
Department of Neurology, INRCA, Geriatric Hospital, Ancona, Italy

V PILONI
Department of Radiology, Ac. N 7, Ancona, Italy

Correspondence to: Dr Giuseppe Pelliccion, Department of Neurology, Geriatric Hospital, via della Magnanapoli, 46, 60110 Ancona, Italy. Telephone 0039 071 8003432; fax 0039 071 8003530; email: o.scarpino@fastnet.it

Flail arm syndrome or Vulpian-Bernhardt’s form of amyotrophic lateral sclerosis

We read with interest the article by Hu et al. concerning flail arm syndrome, a distinctive variant of amyotrophic lateral sclerosis. The authors presented a subgroup of patients affected by amyotrophic lateral sclerosis that predominately showed signs of lower motor neuron disease in the upper limbs without significant functional involvement of other regions upon clinical presentation. This subgroup of patients is clinically characterised by the display of progressive atrophy and weakness in the upper limbs at clinical onset. A certain etiogram exists surrounding the characteristic distribution of weakness and muscle atrophy. The reason for the prevalence in the proximal muscles of the upper limbs is unknown. We can furnish little more information in this respect. However, in the 1960s, in the differential diagnosis of this syndrome, it was thought that the muscles predominantly affected in Vulpian-Bernhardt’s form were the deltoideus, the infraespinaeus, the supraespinaeus, the sternocleidomastoideus, and the teres minor. The predominant involvement of these muscles permitted its distinction from that previously called Erb’s dystrophy. As a consequence of the atrophy of these muscles, the upper limbs adopt a characteristic position, with the shoulders slumped, and the arms, forearms, and hands in pronation. As the illness progresses, the hand muscles are affected, with atrophy of the following muscles: opponens pollicis, flexor brevis, abductor pollicis brevis, adductor pollicis, interossei, and lumbricales, which leads to the formation of the characteristic Arandachenne hand.

Obviously, signs of corticospinal involvement with hyporeflexia in the lower limbs and Babinski’s sign both appear. In the initial stages of the illness, there is no effect on the dia phragm. The presence of signs of involvement of the upper motor neuron, its different clinical evolution, and the data supplied by genetic molecular investigation allow us to distinguish the syndrome previously known as Vulpian-Bernhardt rechristened as flail arm syndrome from other motor neuron syndromes such as the spinial muscular atrophies, Kennedy’s disease, multifocal motor neuronopathy, and monomelic amyotrophy.

JOSEP GAMEZ
CARLOS CERVERA
AGUSTIN CODINA
Servicio de Neurologia, Hospital General Universitari Vall d’Hebron, Passeig Vall d’Hebron 119–135, 08035 Barcelona, Spain

Correspondence to: Dr Josep Gamez, Servicio de Neurología, Hospital General Universitario de Vall d’Hebron, Passeig d’Hebron 119–135, 08035 Barcelona, Spain. Email: 12784gg@comp.

Pain after whiplash

This latest study from Lithuania is an answer to many questions—namely, that the previous difficulties that these researchers had with identifying the late whiplash syndrome in Lithuania is that they were not looking “in the right place”. As it turns out, the problem is that Lithuanians simply are not behaving the way many in western countries. Underlies whiplash associated disorders like. There are some methodological issues which can be considered, as below, but the lesson of discarding “unsightly” data because it is too disturbing to one’s personal view and vested interest in the study or because it has already been taught elsewhere. Suffice it to say that the truth has been laid bare and we (those of us studying with epidemic proportions of the late whiplash syndrome in our own countries) now need to enlighten ourselves and put this data to practical use in helping whiplash patients rather than resisting the inevitable.

After completion of the first historical cohort study, this more recent study selects an entirely separate, distinct sample of these “misbehaving” Lithuanians, but in a more intriguing fashion. This is the first true inception cohort study where people who have not been preselected by their attendance at emergency departments, or contaminated by therapists or lawyers, can be studied to appreciate the natural evolution of the injury which, underlies whiplash associated disorders grades 1 and 2. This is the study’s greatest strength. The study has, however, its limitations. The first consideration is that there were 98 accident victims who reported acute symptoms, and thus were at risk for the late whiplash syndrome. How does this compare with other studies documenting the natural evolution of the late whiplash syndrome? The Swiss study may be useful for comparison because it too has only 117 subjects, yet is much quoted. Setting aside for the moment that the Swiss study is hampered by the selection atrocity of advertising for subjects, and has a host of other reportedly fatal faults, and giving some benefit of the doubt, the study is said to be an accurate representation of the state of affairs in Switzerland at that time, in Switzerland, not even 60% manage to recover fully by 3 months and many of these were reporting total disability during that time, whereas the Lithuanians fully recover in 4 weeks or less, with little or no therapy. The study is a classical case of how other studies in other western countries disclose an even greater contrast, with 50%–70% of patients reporting pain even after 3–6 months, despite the fact that all these studies are examining the same grades (1 and 2) of whiplash associated disorders. Thus, while the sample size is small in this Lithuanian study, it is comparable with others reporting the prognosis of whiplash, and yet gives a different picture of outcome.
A second consideration is that perhaps these Lithuanians are in very minor collisions. True, some of their vehicles were completely wrecked, but perhaps the vehicles were not very good quality and so were easily damaged. Perhaps that is why this cohort had such a good outcome and only minor injuries. This is an unhelpful consideration however, as studies in Canada have shown that those with absolutely no vehicle damage, in very low velocity collisions, are just as likely to report chronic pain as those in more severe collisions. Lithuanians seem to behave appropriately then for minor collisions (if that is what they indeed had), but Canadians seem unable to behave appropriately. Again, another cultural rift in the rate of recovery from whiplash injury is demonstrated.

Thirdly, there are sex differences and even differences in seat belt usage between this population and some others, but even then, it does not seem to matter what sex, age, and use of seat belts there is in other western countries, none of these preclude chronic pain. In Lithuania, those who were female, and who did not wear seat belts, still insisted on behaving as the rest of the cohort.

Finally, perhaps the Lithuanians simply refuse to report their chronic pain, and chronic pain cannot be studied in other countries in this way. The Lithuanians have no reluctance to report acute pain, but perhaps for some reason wish to “suffer in silence” in spite of chronic pain and disability. This would be a potential flaw if it was not simultaneously shown in this study that the general Lithuanian population reports the same prevalence, frequency, and character of neck pain and headache as does the general population in western countries. If there were study design barriers to identifying symptoms, the control population would have grossly underreported their symptoms. Indeed, chronic pain can and is reported by studies in many different cultures and languages, including Japan, France, Italy, and others. If researchers in these non-English speaking populations can use simple questionnaires to document the late whiplash syndrome so effectively there, then the same should be possible in Lithuania.

And so, despite the potential limitations of this study as outlined, there is no way to get around the stark realisation that the natural history of acute whiplash injury in Lithuania is a benign syndrome with 4 weeks or less of pain. Equally compelling is the fact that Lithuania is not the only place where researchers are having difficulty identifying epidemics of chronic pain. Recovery from acute whiplash injury without neurological injury or fracture routinely occurs within 4–6 weeks in Germany and Greece. The time has now come for a reconciliation of these epidemiological observations with our own experience of late whiplash syndrome in western countries. The truth has been laid bare and it is our responsibility to utilise this truth to help prevent the chronic pain and the suffering we otherwise encounter.

R FERRARI

BOOK REVIEWS

This book purports itself to be a comprehensive reference. Certainly the title would suggest so. However, it is clear that this is not a comprehensive text, but a book that is an update on particular timely topics in the field of pain medicine. There are sections on pain mechanisms in a chapter on the pharmacology of acute and chronic pain, and other chapters on postoperative pain, obstetric pain, and acute paediatric pain. There are three further chapters specifically on the management of chronic low back pain, cancer pain, and an overview of interventional pain techniques.

Many of the authors are internationally known and this is perhaps the book's strongest point—one does get a state of the art review and to this end I warmly welcome this book as an addition to the bookshelf to update a busy anaesthetist or pain specialist, though the chapters on chronic low back pain and cancer pain will also be of interest to those in other fields.

The chapter on the anatomy and physiology of pain is excellent in that it has clear explanations and a number of very helpful diagrams. Unfortunately it fails to mention increasing understanding of the role of GABA in mediating analgesia within the spinal cord and furthermore does not mention some of the other neurochemical changes which are well known to occur in chronic pain states such as central sprouting and pentytych switching.

The chapter on pharmacology of acute and chronic pain is well written, but unfortunately a lot of time is spent on non-steroidal drugs. There is a review of the adjuvant drugs such as antidepressants and anticonvulsants that are used in chronic pain, however one is left at the end with a sense of knowing about the drugs but not quite to use them. There is no mention of the increasing use of gabapentin or nor of other drugs that are sometimes used in chronic pain states such as clonidine and other sympathetic agents or calcium channel blockers.

The chapter on acute postoperative pain management is well written and informative as are the chapters on obstetric and paediatric pain. The chapter on chronic low back pain by Rauck is one of the best I have seen for some time. It is a comprehensive review of both acute and chronic low back pain. It is excellent as it also mentions treatments that are often performed outside the medical specialist arena. I was pleased to see in it the mention of some of the newly evolving techniques such as facet denervation, spinal cord stimulation, and disc denervation. It was a pity that the randomised control trials which have shown facet denervation to be an outstandingly useful technique for low back pain were not mentioned. It was also a pity that the reference to the disc denervation procedure was to another text book rather than any original papers.

The chapter on cancer pain management has been written by internationally known authors and is an excellent summary of the subject. In the section on interventional pain techniques the emphasis was on spinal cord stimulation, radiofrequency, and cryoneurolysis. Again this chapter has been written by an internationally well known author who concentrated on general overviews of the techniques rather than a how to do it approach, which is what one would be more likely to turn to a bigger text for. In summary I think that this volume would make an excellent addition to the bookshelf of those involved in the treatment and management of pain.

RAJESH MUNGLANI
The standard of illustrations is excellent and the style generally very readable. I shall certainly find it extremely useful as a work of reference and for teaching purposes. The editor is to be complimented on producing such a delightful work.

JOHN HODGES

I very much enjoyed reviewing this textbook of instrumented spinal surgery written by Giuseppe Tabasso under the auspices of Jürgen Harms. Dr Harms is well known to all spinal surgeons and has made a very important contribution to the development of spinal surgery over the past 20 years, based on strong personal convictions. Many surgeons who manage spinal disorders would not choose to implement all of Professor Harms’ solutions but all who have a serious interest in the surgical treatment of the spine admire and are grateful for his contribution. Within this book spinal surgeons will find a rational and practical approach which will allow them to treat a wide range of spinal disorders according to well thought out principles.

The opening chapter describes spinal biomechanics under normal and pathological circumstances mainly by using easily understood drawings and diagrams. Some of these drawings remined me of images that I have recently seen on an interactive CD ROM that I bought for my 4 year old son. This is not a criticism and I fully support any attempt to simplify the science of biomechanics which is often cloaked in seemingly contradictory jargon. Most spinal surgeons will be able to assimilate the two basic principles which underpin much of instrumented spinal surgery—namely, that the anterior column resists load compression forces and that the posterior column acts as a tension band which when disrupted should be reconstructed in compression. The remaining chapters cover fracture management, late kyphosis, metastatic tumours, spondylolisthesis, degenerative spinal disease, and infection. Each chapter sets out the principles of management which are illustrated schematically. There then follow case studies illustrated by radiological images including CT and MRI. These have reproduced well and surgeons will admire the technical precision and excellent anatomical reductions illustrated by these clinical cases. It is, however, a source of constant annoyance to spinal surgeons that perfect postoperative films do not always correlate with good clinical results and this discrepancy remains a source of fascination and mystery.

It is in the degenerative spine that this discrepancy between radiological and clinical findings is most apparent and it is partly for this reason that the management of these conditions is often controversial. It is difficult to disagree with much of the logic presented by the authors in planning their interventions but there is a danger that inexperienced surgeons may be misled into adopting complex solutions when often more simple operations will suffice. The authors’ description of their approach to failed back surgery syndrome illustrates this problem and the inadequacies of attempting to treat a complex clinical problem by focusing on one aspect of it.

This book will be a useful addition to the shelves of spinal surgery textbooks and many orthopaedic and neurosurgical departmental libraries will wish to buy a copy.

RODNEY LAING

I wondered, when I received this book, how I could possibly say anything adverse about a book written by three such world renowned experts. I have heard them all lecture often and have seen them all at work. They have a vast knowledge and experience of treating disorders of peripheral nerves. In clinic and the operating theatre, they have shown myself and many trainees a clarity in their planning of management of complex problems that humbles one’s own thoughts. That clarity has continued in this text book of over 500 pages. The field of peripheral nerve surgery is covered comprehensively, commencing with descriptions of anatomy, physiology, and pathological reaction to injury. This is followed in subsequent chapters with descriptions of approaches to virtually all the main peripheral nerves, and the operative management of brachial plexus injury and outcomes is covered in three detailed chapters. These are followed by chapters on nerve entrapment, neuropathy, iatropathic injury, and neoplasm within the peripheral nerve. The final section covers electrodiagnosis, pain, nerve recovery, reconstruction techniques, and rehabilitation.

The text is well written, easy to read, and supplemented by some excellent line drawings similar to those used in Lundborg’s text. There are detailed plates showing histology and various imaging techniques. Each chapter is comprehensive, containing important historical aspects as well as up to date techniques, and there is an extensive reference section. I would recommend that trainees of all specialties dealing with peripheral nerve injuries should read much of this text and it would be extremely useful as a regular reference. It would also make an important and necessary addition to most medical libraries. All clinicians would be well advised to read the chapters on iatropathic injuries, not only for the extensive causes of such injuries encompassing all medical and surgical departments, but also for the précis of the changes occurring in medical negligence claims. This text represents good value for money.

IAN WHITWORTH