Behavioural status during the intracarotid amobarbital procedure (Wada test): relevance for surgical management (J Neurol Neurosurg Psychiatry 1999;67:549–559)

Presurgical evaluation in many epilepsy programmes often includes the intracarotid amobarbital procedure (IAP). Sodium amytal is injected into the internal carotid artery to produce a temporary “pharmacological paralysis” of hemispheric function. Traditionally, the IAP has been employed in patients with refractory temporal lobe epilepsy being considered for anterior temporal lobectomy. In these cases it is used to determine cerebral dominance for language, to assess the risk of severe postsurgical amnesia, and to predict postsurgical material specific memory changes. More recently, the use of the IAP has been extended to complimentary EEG localisation and radiological data by lateralisation temporal lobe dysfunction.

This is particularly relevant in those candidates with a history of cerebral trauma in whom damage to the bifrontal lobe is known or suspected. A review of the IAP studies performed on patients with temporal lobe epilepsy in our comprehensive epilepsy programme (1991–8) suggests that the emergence of frontal lobe behavioural features is common in patients in whom the anatomy leads to the suspicion of bifrontal compromise (for example, a history of traumatic head injury). By contrast, these features rarely occurred in cases of non-traumatic aetiology, in which the integrity of frontal lobes is presumed. Although it remains an incidental finding in the context of determining the suitability of a candidate for anterior temporal lobectomy, this outcome may have potential implications for the selection of patients for frontal lobectomy.

We report a case of frontal lobe epilepsy secondary to a traumatic head injury. Out of concern for untoward postoperative behavioural change, we employed the IAP in an attempt to predict the risk of a frontal lobe syndrome.

A 39 year old man had a 23 year history of severe refractory epilepsy. The seizures presented a rare head on accident at the age of 12 years when he sustained a head injury with an ill defined period of loss of consciousness. Seizures commenced within months of that injury and, although initially well controlled, became refractory within a few years. The seizure types included staring spells, violent tonic-clonic seizures, and tonic drop attacks. He had complications from his epilepsy including a fracture jaw, two episodes of severe burning due to seizures while showering, multiple episodes of postictal confusion and probable postictal psychosis, a lung abscess secondary to aspiration, and episodes of status epilepticus. Interictal EEG recordings showed bilateral generalised spike and wave discharges at around 2 Hz-2.5 Hz with some mild increase in bilateral slow activity and no convincing evidence of electrographic focalisation. Video EEG monitoring showed apparent generalised seizures without any focal onset on scalp EEG. Brain MRI disclosed a well defined atrophic lesion involving the left hemisphere, which was considered likely to be post-traumatic in origin. Interictal FDG PET and HMPO SPECT disclosed hyperfusion in the left anterior frontal region commensurate with the abnormality shown on MRI. Although his electroclinical pattern was suggestive of symptomatic generalised epilepsy, because of the left frontal lesion, seizure onset from that region was considered likely.

On neuropsychological examination, his general cognitive functions were normal. At a behavioural level, however, he presented as very peurile in manner with a very rigid, inflexible cognitive style. The neuropsychological opinion was of a mild left frontal lobe syndrome consistent with the history of traumatic head injury. There was no current evidence of psychiatric disorder. Although having successfully passed his final year of secondary school (together with several courses of advanced education), he had remained unemployed due to his seizures. He was socially isolated and his interpersonal relationships were limited.

He had severe life threatening epilepsy with the surgical candidacy being gaining increasing priority of treatment. However, as surgical management would involve resection of the left frontal lobe against a background of traumatic head injury and the possibility of more generalised frontal problems, a left hemispheric IAP was performed. Sodium amytal (125 mg) was administered via a slow hand injection. Of relevance, no crossflow into the contralateral anterior cerebral artery via the anterior communicating artery was present (as assessed by a separate injection of contrast medium). The injection was accompanied by a dense right hemiplegia and global aphasic arrest. Resolution of language was characterised by a dense perseveration of counting and a dense right hemiplegia which could not be influenced by the examiner. Despite normal comprehension, he showed severely impaired capacity for motor regulation (pantomimic function), together with marked behavioural disinhibition (agitation, swearing, verbosity, childishness). Although seemingly aware of some aspects of his behaviour (apologising for swearing), he seemed unable to control these responses. The overall impression was that of a pronounced frontal lobe syndrome, suggesting that the right frontal lobe had incurred some damage secondary to the documented head trauma and that he must have been reliant on some left frontal contribution.

On the basis of the IAP findings, a selective cortical resection (as opposed to more extensive frontal lobectomy) was considered, because the region of damage was advised. Intraoperative electrocorticography showed active focal epileptiform discharges maximal in the inferior frontal lobe in the electrodes closest to the lesion. A cortical resection was performed with frameless stereotaxy guidance excision of the frontal lesion. Histopathology on the resected tissue showed an old post-traumatic cyst involving the cortex and white matter. His postoperative course was unremarkable. When reviewed 3 months after surgery he was seizure free. His performance on neuropsychological evaluation remained commensurate with presurgical status. There were no novel subjective complaints, mood, behaviour, and temperament remained stable.

Despite its undoubted value in many individual cases of temporal lobe epilepsy, the IAP has remained a controversial assessment instrument.1 Amid this controversy its potential usefulness in other patient groups seems to have been overlooked. A primary criticism of its use in temporal lobe epilepsy has been the question of irrigation and whether the medial temporal lobe is adequately “disabled” during the procedure. This particular limitation is not applicable to these patients with frontal lobe epilepsy, as the region of interest is clearly ablated via supply from the carotid arterial system. Caution must, however, be exercised with respect to possible crossflow into the anterior cerebral artery via the anterior communicating artery. When such crossflow is present, the ability to assess validity the integrity of contralateral frontal lobe function will be compromised by the lateralised bilateral frontal lobe syndrome. As with the use in cases of temporal lobe epilepsy, only a restricted form of assessment is possible with the frontal lobe patient during the period of ablation. Performance following on issues of behavioural regulation would seem most useful.

It should be borne in mind that the degree of frontal lobe dysfunction induced by the IAP represents the worst case scenario where the entire frontal lobe is included in the ablation. There are likely to be few surgical scenarios in which a comparable extensive resection of tissue is likely to be considered, and results must be interpreted in this context. This limitation not withstanding, the IAP does seem to have a role in separating out those patients in whom more extensive frontal lobe resections could be considered, as opposed to those in whom a more conserva- tive approach is warranted.

This case report forms only the basis for a novel hypothesis that clearly requires more rigorous scientific research before its clinical utility can be reliably established. Nonetheless, we think that it is worth drawing the attention of the epileptological community to the potential application of the IAP in the surgical management of extratemporal cases.

MARIE F O’SHEA
MICHAEL M SALING
Department of Neuropsychology
SAMUEL F BERKOVIC
Department of Neurology, Austin and Repatriation Medical Centre, Melbourne, Australia; and
Department of Medicine, University of Melbourne, Grattan Street, Parkville 3052, Australia.

Correspondence to: Dr Marie F O’Shea, Department of Neuropsychology, Austin and Repatriation Medical Centre (Austin Campus), Studley Road, Heidelberg, Victoria 3084, Australia. Telephone 613 3 03 9496 5913; Fax 613 3 03 9457 2654.

Reversal of tetrabenazine induced depression by selective noradrenaline (norepinephrine) reuptake inhibition

Tetrabenazine (TBZ), a synthetic benzoquinolizine, was first introduced as a neuroleptic agent in 1960, and is now widely used in the treatment of hyperkinetic movement disorders such as chorea, tics, or tardive dyskinesia. The side effect profile is mainly characterised by the triad of drowsiness/fatigue, parkinsonism, and depression; depression is found in about 15% of patients treated with TBZ.\(^1\) Here we report on the rapid reversal of depressive symptoms in a patient treated with TBZ for orofacial dystonia by administering the new and highly selective noradrenaline (norepinephrine) reuptake inhibitor (SNRI) reboxetine.\(^2\)

On admission, the 64-year-old woman presented with perioral and lingual hyperkinesias as well as intermittent and involuntary movements of her lower jaw, which had lasted for about 2 years, causing her considerable inconvenience. No history of neuroleptic treatment or Parkinson's disease was evident. Her cranial CT and blood chemistry were normal. We diagnosed a segmental dystonia, which improved dramatically after a tetrabenazine medication (60 mg a day). This successful treatment response, however, was accompanied by a severe depressive syndrome, which was characterized by a mixed anxious-depressive mood, low self-esteem, a complete loss of drive, and intermittent suicidal ideation. After switching from TBZ to triapride, the patient recovered from depression, but her neurological status worsened significantly after re-exposure to TBZ again ameliorated hyperkinesia, but provoked a depressive relapse. A comedication with reboxetine (6 mg/day), a new and selective noradrenaline reuptake inhibitor, finally led to a stable remission of the depressive symptoms within a week, without any worsening of the dystonic syndrome.

Tetrabenazine (TBZ) is known to act as a monoamine depleting and dopamine receptor blocking drug.\(^3\) In more detail, TBZ binds to and inhibits specifically the human vesicular monoamine transporter isoform 2 (hVMAT2). Whereas the indolamine serotonergic system forms a similar affinity for both hVMAT1 and hVMAT2, catecholamines such as noradrenaline exhibit a threefold higher affinity for hVMAT2.\(^4\) As these specific transporters are responsible for packaging monoamine neurotransmitters into presynaptic secretory vesicles for release by exocytosis, the inhibition of hVMAT2 by compounds such as tetrabenazine thus results in consecutive noradrenaline depletion.\(^5\)

Alterations of noradrenergic neurotransmission—that is, a neuronal noradrenaline depletion—can therefore be postulated to form one major origin of TBZ induced depressive symptoms with this assumption, brain-specific catecholaminergic activity enhancers (CAEs) such as phenylephylamine have been shown to antagonise TBZ induced depression-like behaviour in rats.\(^6\) Modulating this altered noradrenergic neurotransmission pattern by the administration of selective noradrenaline reuptake inhibitors such as reboxetine may thus provide a new, specific, and fast acting tool in the management of depression caused by TBZ and related (neuroleptic) compounds.

WOLFGANG SCHREIBER
JÜRGEN-CHRISTIAN KRIEG
Department of Psychiatry and Psychotherapy, Philipps-University, Rudolf-Bultmann-Straße 8, D-35033 Marburg/Lahn, Germany

TOBIAS EICHHORN
Department of Neurology, Philipps-University, Rudolf-Bultmann-Straße 8, D-35033 Marburg/Lahn, Germany

Correspondence to: Dr Wolfgang Schreiber, Department of Psychiatry and Psychotherapy, Philipps-University, Rudolf-Bultmann-Straße 8, D-35033 Marburg/Lahn, Germany. Telephone 0049 6421 281 2928/2929; schreib@mailer.uni-marburg.de

Spinal sulcal artery syndrome due to spontaneous bilateral vertebral artery dissection

In young adults vertebral artery dissection (VAD) is an important cause of brain infarction.\(^1,2\) A known mechanism is micro-trauma due to abrupt head movements, for example, chiropractic manoeuvres. In addition a pathogenetic role of connective tissue diseases, cystic media necrosis, fibromuscular dysplasia, migraine, and inflammatory diseases has been postulated.\(^3\) In VAD initial neck pain is often reported, which may be slight. Lesions caused by VAD are cerebellar or brainstem infarcts, unilateral or bilateral thalamic infarcts (top of the basilar syndrome), or infarctions in the posterior cerebral artery territory due to intra-arterial embolism or haemodynamic decomposition when collaterals are insufficient.\(^4\) Lesions of the spinal cord are rare because of its good collateral supply.\(^5\) We report on a patient with a syndrome of the spinal sulcal artery (incomplete Brown-Séquard syndrome) caused by spontaneous bilateral VAD. A 43 year old man with a history of arterial hypertension presented with left sided numbness sparing the face, which had evolved suddenly while he was walking. In addition, he reported on dull right sided neck pain irradiating into the occiput, which had been initiated by a head rotation while he was working at a computer 2 weeks before. The neck pain had spontaneously ceased 6 days later. Neurological examination disclosed dissociated sensation defect on the left with an indistinct level around C4 to C6. Below this level on the left he had a marked hypalgesia and nearly a loss of temperature sense. The right limbs were warmer than the left ones. In addition, we found mild right sided motor system deficits. Cranial nerve function was intact, despite a right sided Horner's syndrome. According to chest radiography phrenic nerve function was preserved. Routine laboratory findings including CSF analysis were normal. The hemiparesis and the different temperature sensation in the limbs resolved completely within 3 weeks.

Tibial nerve somatosensory evoked potentials (SSEPs) had regular N22 and P40 latencies and amplitudes. Central motor conduction time (CMCT) and transcranial magnetic stimulation was prolonged to the right abductor digiti minimi (9.2 ms) and tibialis anterior (23.1 ms). The CMCT to the left target muscles was normal. Duplex sonography showed increased flow velocity on the level of the cervical vertebral artery (VAD), in both right and left vertebral arteries. The flow velocity was higher in the left vertebral artery. Flow velocity profile was normal. Bilateral spontaneous VAD is not rare, but often missed. In most cases, microtrauma preceding the dissection can be recalled by the patients. Due to the mild mechanical impact, the action of predisposing factors might be postulated. Among these may be changing in type III collagen, migraine, fibromuscular dysplasia, infections in the near past, and inflammatory vasculopathy.\(^6\) Magnetic resonance imaging with typical semilunar mural haematoma and in addition magnetic resonance angiography (MRA) with complementary documentation of an incomplete Brown-Séquard syndrome of the vertebral arteries (V4 segment) were not visible.

Bilateral spontaneous VAD is not rare, but often missed. In most cases, microtrauma preceding the dissection can be recalled by the patients. Due to the mild mechanical impact, the action of predisposing factors might be postulated. Among these may be changes in type III collagen, migraine, fibromuscular dysplasia, infections in the near past, and inflammatory vasculopathy.\(^6\) Magnetic resonance imaging with typical semilunar mural haematoma and in addition magnetic resonance angiography (MRA) with complementary documentation of an incomplete Brown-Séquard syndrome of the vertebral arteries (V4 segment) were not visible.

In cases of unclear non-invasive findings, DSA is still the method of choice.\(^7\) In addition to consecutive brain infarctions, cervical spinal cord infarctions and nerve root compression syndromes may occur in cases of unilateral or bilateral VAD. Probably as a result of the pial collateral network and the dual posterior spinal artery, spi-
Cerebral cavernous malformations are vascular malformations mostly located in the CNS. Their frequency is estimated close to 0.5% in the general population. Cerebral cavernous malformations occur as a sporadic or hereditary condition. From the Hispanic-American population, familial forms were reported with a high frequency. CCM1, a hitherto unidentified gene mapping on chromosome 7 was shown to be involved in all families with cerebral cavernous malformations of Hispanic-American descent with a strong founder effect. Around 50% of non-Hispanic-American families showed linkage to CCM1 but no common haplotype was found. A recent study showed linkage of cerebral cavernous malformations to two additional loci. No Spanish family with cerebral cavernous malformations has been analysed so far.

We report herein a genetic linkage analysis conducted on nine Spanish families with cerebral cavernous malformations. All procedures were approved by an ethics committee. The families were unrelated and originated from different regions of Spain (south west (CVE2, 3, 4, 10, 17, 25), central (CVE24), south east (CVE28), and north east (CVE29). Seventy seven subjects including 55 potentially informative meioses and 12 spouses gave their informed consent. They were examined by a board certified neurologist, underwent cerebral MRI, and blood samples were taken. Magnetic resonance imaging was used to establish status for linkage analysis. Thirty four members had MRI diagnosis of cavernomas and were considered as affected. Among them, 14 experienced neurological symptoms (cerebral haemorrhage n=6, seizures n=8). Nineteen members with normal cerebral MRI were considered as healthy. Twelve members without MRI investigation had an unknown status. Analysis of pedigrees was consistent with an

Table A

<table>
<thead>
<tr>
<th>Marker</th>
<th>CVE2</th>
<th>CVE3</th>
<th>CVE4</th>
<th>CVE10</th>
<th>CVE24</th>
<th>CVE25</th>
<th>CVE28</th>
<th>CVE17</th>
<th>CVE29</th>
</tr>
</thead>
<tbody>
<tr>
<td>D7S558</td>
<td>107</td>
<td>103</td>
<td>103</td>
<td>103</td>
<td>103</td>
<td>103</td>
<td>103</td>
<td>103</td>
<td>103</td>
</tr>
<tr>
<td>D7S2410</td>
<td>279</td>
<td>273</td>
<td>265</td>
<td>269</td>
<td>265</td>
<td>265</td>
<td>265</td>
<td>265</td>
<td>265</td>
</tr>
<tr>
<td>D7S2409</td>
<td>ND</td>
<td>221</td>
<td>219</td>
<td>215</td>
<td>221</td>
<td>219</td>
<td>219</td>
<td>223</td>
<td>219</td>
</tr>
<tr>
<td>D7S4183</td>
<td>137</td>
<td>123</td>
<td>127</td>
<td>127</td>
<td>127</td>
<td>127</td>
<td>127</td>
<td>127</td>
<td>127</td>
</tr>
<tr>
<td>D7S1789</td>
<td>137</td>
<td>139</td>
<td>133</td>
<td>133</td>
<td>129</td>
<td>131</td>
<td>133</td>
<td>129</td>
<td>133</td>
</tr>
<tr>
<td>D7S565B</td>
<td>ND</td>
<td>135</td>
<td>131</td>
<td>133</td>
<td>135</td>
<td>133</td>
<td>129</td>
<td>129</td>
<td>129</td>
</tr>
<tr>
<td>D7S646</td>
<td>185</td>
<td>185</td>
<td>185</td>
<td>187</td>
<td>187</td>
<td>183</td>
<td>185</td>
<td>181</td>
<td>187</td>
</tr>
<tr>
<td>D7S647</td>
<td>107</td>
<td>107</td>
<td>107</td>
<td>103</td>
<td>107</td>
<td>103</td>
<td>103</td>
<td>103</td>
<td>103</td>
</tr>
<tr>
<td>D7S669</td>
<td>129</td>
<td>127</td>
<td>125</td>
<td>129</td>
<td>127</td>
<td>139</td>
<td>127</td>
<td>125</td>
<td>127</td>
</tr>
</tbody>
</table>

(A) Pedigrees of the nine families with cerebral cavernous malformations. Black symbols symptomatic patients with cavernous angiomas on MRI; half filled symbols asymptomatic members with cavernous angiomas on MRI; empty symbols asymptomatic members with normal MRI; question mark members with unknown status.

Figure B

Diagram showing the spinal cord with sparing of posterior horns of the unilateral horn and the lateral column of the spinal cord due to symmetrical infarction of the spinal cord arterial supply. The dissection involved the V2 segment from which these spinal branches originate. A transient occlusion of these spinal branches is a likely consequence. This unusual type of arterial medullary supply may explain why VAD causes spinal cord infarction. Contrary to Pullicino, who described upper limb atrophies due to cervical spinal cord infarction involving the anterior horns, the present case shows a unilateral involvement of commissural, spinohalamic, pyramidal, and vasocostrictor tracts. To our knowledge sulcal spinal artery syndrome caused by bilateral spontaneous VAD has not yet been described. In conclusion, differential diagnosis of acute spinal symptoms in young adults should include spontaneous unilateral or bilateral VAD with cervical spinal cord ischaemia.

S. WEIDAUER, D. CLAUS
Department of Neurology
M. GARTENSCHLÄGER
Institute for Radiology, Klinikum Darmstadt,
Teaching Hospital University Frankfurt, Germany

Correspondence to: Professor D. Claus, Department of Neurology, Klinikum Darmstadt, Teaching Hospital University Frankfurt, Heidelberger Landstrasse 379, 64297 Darmstadt, Germany.

scores were close to 1 for four markers within family CVE4, lod scores did (five), and CVE28 (seven). Lod scores higher and 1.8 cM, respectively.3 Distances between D7S2410/D7S2409, val flanked by markers D7S2410 and RG085C05). The length of the genetic inter-
sequence data of a bacterial artificial chromosome (M65B) was identified by SL based on (D7S1813, D7S1789, D7S558). The last one Cooperative Human Linkage Center spanning the autosomal dominant pattern of inheritance suggested linkage to haplotype (figure B). In addition, the extended siblings inherited the same haplotype (figure A). In family CVE17, both extended mother. Although the extended siblings inherited a distinct haplotype relatives (figure B). In family CVE17, all affected siblings inherited the same haplotype from their affected mother. When the data of all examined families were pooled, a maximum combined lod score of 5.92 was obtained for marker D7S2410 at q0.0. In seven families (CVE2, 3, 4, 10, 24, 25, and 26), all affected members inherited an haplotype that was not shared by their healthy relatives (figure B). In family CVE17, both affected siblings inherited a distinct haplotype from their affected mother. Although the limited size of this family does not allow to formally test for a founder effect, this suggests genetic heterogeneity. In family CVE29, the two affected siblings inherited the same haplotypes from their mother and father whose status was unknown.
None of the families shared a common haplotype (figure B). In addition, the extended Hispanic-American haplotype was not segregating with the disease phenotype in any of the nine families including the four families with suggested linkage to CMC1. However, two out of nine families (CVE2 and 3), the D7S646 (185bp) and D7S558 (107bp) alleles segregating with the disease phenotype were identical to the ones observed in the Hispanic-American haplotype. Consequently, we analysed the frequency of this combination of alleles within a panel of 80 haplotypes of 40 healthy white subjects. Frequency was 17% compared with 25% in our Spanish sample. Therefore, this finding might be attributed to a random distri-
Hydrocephalus caused by metastatic brain lesions: treatment by third ventriculostomy
Metastasis to the brain occurs in 20%–40% of cancer patients.1 About 20% of these metastases are located in the posterior fossa, cerebellum, and brainstem. Metastatic disease to peryentricrivial brain tissue can obstruct the cerebrospinal fluid (CSF) produced in the ventricles to the subarachnoid space where it is normally absorbed by arachnoid granulations. This typically causes an obstructive or non-communication hydro-
chezalus. A patient with a large cranial mass customarily placed to drain CSF from a lateral ventricle through a pressure regulating valve and into the atrium or peritumoral or pleural cavity. Even though this technique has been successful in relieving the hydrocephalus, it has about a 50% chance of infection or failure from blockage.2 Another option for the treatment of obstructive hydrocephalus is third ventriculo-

1. Otten P, Pizzolato GP, Rilliet B, et al. A propos de 131 cas d’anogingues caverno-
ses du SNC, repères par l’analyse retrospec-
2. Günel M, Awad IA, Finberg K, et al. A founder mutation as a cause of cerebrov-
mation gene (CCM1) to a 4 cM interval of chromosome 7q contained in a well-defined YAC contig. Genoma Res 1999;9:368–80.
5. Graig HD, Günel M, Cepeda O, et al. Multilo-
Table 1 Clinical characteristics of patients who underwent third ventriculostomy for obstructive hydrocephalus

<table>
<thead>
<tr>
<th>Case</th>
<th>Age (y), Sex</th>
<th>Diagnosis</th>
<th>Result*</th>
<th>Postoperative stay in hospital (days)</th>
<th>Survival time (weeks)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>70,M</td>
<td>Lung mixed adenosarcoma and squamous cancer metastasis to thalamus</td>
<td>Improved</td>
<td>17</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>46,F</td>
<td>Ovarian adenosarcoma metastases to cerebrum and medulla</td>
<td>Improved</td>
<td>9</td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td>38,F</td>
<td>Breast ductal carcinoma metastases to brainstem and cerebellum</td>
<td>Improved</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>75,M</td>
<td>Rectal adenocarcinoma metastasis to cerebellum</td>
<td>Failed</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>39,F</td>
<td>Breast adenocarcinoma metastasis to cerebellum</td>
<td>Improved</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>60,M</td>
<td>Lung adenocarcinoma metastasis to thalamus</td>
<td>Failed</td>
<td>6</td>
<td>6†</td>
</tr>
<tr>
<td>7</td>
<td>64,M</td>
<td>Oesophageal carcinoma metastatic to cerebellum</td>
<td>Improved</td>
<td>7+</td>
<td>1†</td>
</tr>
</tbody>
</table>

*Results are considered improved if the patient had resolution of symptoms and follow up imaging showed hydrocephalus improved or resolved.
†Patient is currently alive.

Such an interaction between cortical blood flow and tumour blood flow may be of value for evaluating mechanisms of neurological symptoms associated with brain tumours.

Neuronal activation causes an increase of regional cerebral blood flow (rCBF) in the activating cortical area. Near infrared spectroscopy (NIRS) demonstrates the increase in rCBF during neuronal activity as increases in oxygenated haemoglobin (oxy-Hb) and total haemoglobin (total-Hb) with a decrease in deoxyhaemoglobin (deoxy-Hb)\(^\ddagger\). NIRS is an optical method to measure concentration changes of oxy-Hb, deoxy-Hb, and total-Hb in cerebral vessels by means of the characteristic absorption spectra of haemoglobin in the near infrared range. In the present study, we measured changes of oxygenation and haemodynamics in the brain tumour adjacent to the activating cortex by means of NIRS. We found transient decreases in oxy-Hb and total-Hb in the tumour during neuronal activation, suggesting that the local blood flow of the tumour was decreased by a transient increase of rCBF induced by neuronal activation.

The patient was a 35 year old right handed man who presented with complaints of headache and dizziness. A neurological examination showed no abnormalities and a decline in language functions. A postcontrast CT showed a well defined large enhancing tumour (4×5 cm) compressing the left frontal lobe. Computed tomographic angiography showed that the branches of the left middle cerebral artery supplied the tumour (figure A). The patient underwent a left frontal craniotomy for removal of the tumour; the pathological diagnosis was meningioma. The NIRS measurement was performed before the operation.

We measured haemodynamic changes in the brain tumour during neuronal activation in the left frontal lobe induced by cognitive activity.

Neuronal activity alters local blood flow in brain tumour adjacent to the activating cortex

Characteristics of blood flow in brain tumours have been studied extensively; these studies are important for diagnosis of malignancy and therapy monitoring. Our study is the first to consider how activity dependent changes of regional cerebral blood flow (rCBF) alter tumour blood flow in the brain tumour adjacent to the activating cortex.

Migraine aura masquerading as Balint’s syndrome

Migraine is a common neurological disorder with a prevalence of 0.5% to 2% in the general population. In one fourth of total migraines, aura was preceded by a visual aura.6 We describe a patient with recurrent episodes of migraine in whom headache was preceded by a constellation of visual symptoms, which constituted salient components of Balint’s syndrome. This syndrome, consisting of a triad of simultanagnosia, optic ataxia, and oculomotor apraxia, is seen with bilateral lesions of occipito-parietal cortices affecting connections between visual cortical regions and the frontal eye field.7

A 29 year old female teacher presented with an 8 year history of paroxysmal alternating hemiparesis and throbbing headache, which was often associated with nausea, photophobia, and occasionally vomiting. Headache used to last for about 4 to 18 hours and would respond to either ergot drugs or sumatriptan, especially if taken before the beginning of the episode. Occasionally these visual symptoms were not followed by headache. The patient would not lose contact with the environment during or after the visual symptoms. Her mother and two younger sisters were also having paroxysmal episodes of common migraine.

Her general physical and neurological examination in between the episodes was unremarkable. Neurological examination during the aura symptoms disclosed that she was unable to see simultaneously all the objects in the visual field (simultanagnosia). She did omit several words while reading a paragraph. However, she could comprehend and read each and every word individually. On being shown a complex picture comprising multiple subunits she was not able to comprehend and perceive the entire picture but only able to perceive parts of the picture individually (seeing in piecemeal). These aforementioned features were consistent with simultanagnosia. Besides simultanagnosia, she had optic ataxia as evidenced by her inability to coordinate hand and eye movements. Optic ataxia was tested as follows: each eye was tested separately and the hand ipsilateral to the eye being tested was used. The target stimulus was a 5 mm long pin with a white head placed at preselected locations. The patient was asked to touch this pin with her index finger without shifting her gaze from the fixation point. The patient had difficulty in performing this test but had no problems in reaching out to her own body parts or any stimulus with her eyes closed. These features were consistent with optic ataxia. Moreover, gaze apraxia was evident by her inability to look at an object on command. However, she could do it spontaneously. In addition, she had impaired smooth pursuit and voluntary saccades in all directions. Reflex eye movements were normal. Visual acuity during the episode was 6/6 bilaterally. Visual field defects during the episode as demonstrated by the confrontation method. Ophthalmological examination, including perimetry performed during a symptom free period was normal. There was no clinical evidence of Gerstmann syndrome, prosopagnosia, objectagnosia, or colour agnosia. Her cranial CT and magnetic resonance angiography were unremarkable.

Electroencephalography was also non-contributory. The frequency of visual aura symptoms and headache decreased considerably after the patient was started on flunarizine at a daily dosage of 10 mg at bedtime. The visual impulses, after being recorded by the primary visual cortex (Brodmann area 17), are interpreted and integrated in visual association areas 18 and 19. Brodmann area 19, in turn, is connected with the angular gyrus and frontal eye field via association fibres. Any lesion in the visual association areas or their connections would result in impaired integration of visual impulses despite normal visual acuity.

The visual symptom complex in this case possibly represents an aura of migraine. The pathogenesis of migraine aura has been a debatable issue.8 In this case it is suggested that the parasympathetical process of migraine aura results in a disconnection syndrome by...
A healthy 39 year old man was bitten on the ankle by his own apparently normal dog. After the incident the dog disappeared into the forest and was not seen again. Three days later the patient was seen at a provincial hospital in Vietnam and started on an alternate day regimen of suckling mouse brain postrabies exposure vaccine (SMBV). After the second dose, he felt unusually lethargic although he was still able to work. After the third dose, he became unrousable, and was transferred to the Centre for Tropical Diseases, Ho Chi Minh City, the referral hospital for infectious diseases in southern Vietnam. On admission, he was afebrile, confused, had slurred speech, and his Glasgow coma score was 13. He had mild spastic weakness of his left face, left arm, and both legs. Full blood count and results from routine biochemistry and chest radiography were all normal. The CSF: blood glucose ratio was 0.47 (63/140 mg%), the protein content was raised (78 mg/dl), and there was one lymphocyte/ml in the CSF. Screens for malaria toxoplasmosis, cryptococcus, and neurocysticercosis were negative, as was a CSF gram stain. The CSF was sterile after 2 weeks of culture. Brain MRI (Access Toshiba LPT 6.01p, 0.064 Tesla) showed areas of high signal in both cerebral hemispheres (figure A). These variably sized lesions were bilateral, widely distributed, asymmetric, and showed no evidence of haemorrhage or mass effect.

As paralytic rabies could not be excluded he was managed conservatively and the SMBV course was continued. On the 4th day after admission he deteriorated with a Glasgow coma score of 10, and was incontinent of urine and faeces with generalised spastic paraparesis. Methylprednisolone (1000 mg/ day) was given for 5 days followed by a reducing course of prednisone for a presumptive diagnosis of postvaccination encephalitis. The SMBV was stopped. Within 72 hours of starting steroids there was a dramatic improvement in his neurological state. An MRI examination performed 4 weeks later showed a marked decrease in both size and number of brain lesions and no new lesions (figure B). After 6 weeks he was discharged walking, eating, talking, and continent but with some persistent emotional liability and mild memory impairment. A follow up MRI examination 5 weeks after discharge showed further improvement, apart from minor abnormalities in the basal ganglion, and generalised increase in ventricular size, consistent with residual cerebral atrophy.

Rabies is caused by an RNA virus, a member of the Rhabdoviridae family, which infects mammals and can be transmitted to humans by contact, generally from an animal excreting the virus in the saliva. Rabies manifests as an acute encephalomyelitis, the development of which is almost invariably fatal. The distinction between rabies and postvaccine encephalitis is difficult and may be helped by antigen detection via a skin biopsy; however, this technique is not available in Vietnam. Paralytic rabies could not be excluded in this patient and hence steroids were not used initially. Steroids have been reported to increase mortality in experimental animals with rabies, and it has been suggested that they may abrogate the immune response to the postvaccine virus, thus precipitating uncontrolled rabies.

There are three types of postexposure vaccine in use worldwide. The Simple type (STV) is obtained from inactivated virus prepared on adult animal nerve tissue; it is inexpensive and relatively easy to produce. In India 3 million people receive postexposure courses of STV (phenolised sheep brain) antirabies vaccine each year. These produce neurological reactions, including postvaccination encephalomyelitis, in up to 1 in 500 courses, with a 3% mortality. Clinical forms include a reversible mononeuritis multiplex, and meningoencephalitic and encephalomyelitic reactions. Myelin basic protein and related neural proteins from the nervous tissue of the animal on which the virus was cultivated stimulate an autoimmune reaction in the human nervous system.

Tolerance has been improved by the development of the suckling mouse brain vaccine (SMBV). The attenuated virus is cultured on immature mouse brain tissue, which contains little myelin, thus reducing the risk of complications. SMBV is inexpensive (US$1.5 per treatment course) and easily manufactured locally; it is the most widely used postexposure vaccine in Vietnam. Rare neurological reactions do occur with SMBV, Complications of the CNS have been reported to occur after vaccination with an incidence of 1:27000 treated people, with a 22% mortality. The mortality was particularly high (90%) if the meningitis was extensive CNS involvement. The third type of vaccine available is the human diploid cell culture tissue culture vaccine (HDCV), which is both safe and efficacious. However, the recommended regimen is not affordable in most developing countries.

When we approached the Rabies Laboratory, Ministry of Agriculture and Fisheries, United Kingdom for advice in this case their comment was “why do you use the SMBV, can’t you use another vaccine”. Worldwide about 10 million people each year receive rabies vaccine after exposure; at the Centre for Tropical Diseases we treat 3000 people exposed to animal bites in such countries. This case stresses the need for high dose steroids in postexposure vaccine encephalitides and the urgent need for the development and deployment of a safe, and critically, affordable postrabies exposure vaccine regimen. The economic low dose multisite intradermal regimen using the HDCV provides an example of how this goal may be achieved although it is not yet widely accepted. Such a vaccine regimen (0.1 ml HDCV given at multisite injections on days 0, 7, 14, and 28 with an optional booster on day 90) is US$ 125, making the use of this vaccine unaffordable.

This is the first report to show the demyelinating CNS lesions on MRI, and their resolution after steroid therapy. It is relatively rare for patients to survive if they develop severe CNS effects after postexposure rabies vaccination. Although the incidence of reactions to SMBV is very much lower than STV, this report confirms that it does still occur. Both SMBV and STV are widely used throughout the developing world, and would be the vaccine administered to travellers exposed to animal bites in such countries.
Leukoencephalopathy associated with khat misuse

The leaves of the tree Catha edulis, or khat (also qat and kat) are chewed by a large proportion of the adult population of the Yemen, and throughout Saharan and sub-Saharan Africa. The leaves are also chewed by members of the Yemeni and Somali communities in the United Kingdom. The psychoactive constituents of khat are cathin (d-nor-ephedrine), cathine, and cathinone (an alkaloid) which release serotonin and produce euphoria and amphetamine-like effects and are reported to be used for the control of pain and for neuralgia. The clinical presentation, EEG, and MRI findings suggest a rapidly progressive leukoencephalopathy. There were no previous reports of leukoencephalopathy in association with khat or amphetamine misusers; however, it has been reported in association with other recreational drugs taken by mouth or inhalation. An alternative for this man's presentation is a necrotising vasculitis, a well described complication of oral amphetamine misuse. The clinical features, MRI appearance, brain biopsy, absence of haemorrhage, and lack of response to steroids make this unlikely.

The likely precipitant of this man's illness seems to be the use of khat. A drug screen on admission was negative, and his family denied misuse of other drugs. It remains possible that the sample of khat chewed by this man was contaminated. We are unaware of any previous reports of khat misuse with severe neurological deterioration; previous cases may not have been investigated or reported. In reporting this case our intention is to alert others to a possible complication of the misuse of this drug. Evidence of other cases would provide a powerful argument for the restriction of import and sale of khat.
M-protein, direct and indirect Coombs tests, cryoglobulin, antibodies to mycoplasma, myelin associated glycoprotein, gangliosides (GM1, GD1b, asialo-GM1, GT1b, GQ1b, Gal-C), P-ANCA, and C-ANCA. The CSF was normal. Titre of cold agglutinins was detected at 1:2048 at 4°C (normal <1:256). The patient’s serum agglutinated adult group O-red blood cells, but not O-red blood cells or human cord red blood cells, signifying cold agglutinins with 1 specificity. Immunelectrophoresis of the eluate confirmed IgM composition.

The initial nerve conduction study showed severe diminution or absence of compound motor potentials (CMAPs) with mildly diminished conduction velocities. F wave latencies were mildly prolonged. There were no evoked sensory nerve action potentials (SNAPs) in median, ulnar, and sural nerves bilaterally. Electromyographic studies of the affected muscles showed moderate neurogenic changes, but there were no fibrillation potentials except in the left anterior tibialis muscle. Sural nerve biopsy was performed. Epineurial vessels were surrounded by mononuclear cell infiltrates (figure A). Some vessels had focal necrosis of perineurium. (bar=30 µm). Six patients with neuropathy associated with cold agglutinins have been reported including our patient. Cold agglutinins are cold reactive autoantibodies that react with the antigenic determinant termed I/i or Pr present on glycoproteins and glycolipids in erythrocyte membranes. Arai et al. reported a case of polyneuropathy and IgM M proteinemia with anti-Pr2 CA activity. IgM protein cross reacted with sialosyl paragloboside, GT1b, GD1a, GD1b, GM3, and GD3 present in muscle and in endothelial cells of the peripheral nervous system. It has been speculated that anti-Pr2 IgM protein induced immune mediated damage to vascular endothelium and peripheral nervous system myelin. A similar pathomechanism has been postulated in the other cases. However, necrotising vasculitis has never been reported in neuropathy with cold agglutinins. This is the first demonstration of vasculitic neuropathy with cold agglutinins. Although the mechanism for neuropathy with cold agglutinins is unknown, mechanisms similar to those in cryoglobulinaemic neuropathy have been postulated. The hypotheses are (1) immunologically mediated demyelination; (2) ischaemic injury secondary to slugging or agglutination of red blood cells in the vasa nervorum; and (3) associated vasculitis. In the present case, we have confirmed the necrotising vasculitis and probable conduction block. Pathophysiological explanations for association of vasculitis and conduction block may be as follows. Firstly, conduction block may occur as a consequence of nerve ischaemia due to small vessel occlusion. There have been reports of conduction block occurring in vasculitic neuropathy which support this possibility. Secondly, humoral factors including cold agglutinins may induce immunologically mediated demyelination in the peripheral nervous system. Taken together, neuropathy with cold agglutinins may involve immunologically mediated demyelination, microcirculation occlusion, and vasa nervorum vasculitis. The diversity of pathomechanisms may come from the difference target antigens recognised by cold agglutinins. Plasmapheresis proved effective in all cases. These findings strongly suggest that humoral factors including cold agglutinins may play an important part in the induction of neuropathy with cold agglutinins. We recommend plasmapheresis as first choice treatment for neuropathy associated with cold agglutinins.

We thank Dr Gerard Salazar for critical reading of the manuscript, Ms M Teshima and N Hara for their technical assistance, Drs S Kusunoki (Department of Neurology, Institute for Brain Research, University of Tokyo) for analyses of antibodies to gangliosides, and Mr H Moug (Division of Blood Transfusion Medicine, University of Kagoshima) for characterization of cold agglutinin.

O RTSUKA KINTAI KARIMURA Y MARUYAMA Y ARIMURA M OSAME

The Third Department of Internal Medicine, Kagoshima University School of Medicine, Kagoshima 890–851, Japan

Correspondence to: Dr R Otsuka, The Third Department of Internal Medicine, Kagoshima University School of Medicine, Sakuragaoka 8 – 35 – 1 Kagoshima, Japan

(A) Sural nerve (toluidine blue staining) showing epineural vessel surrounded by mononuclear cell infiltrates. Note fibrin deposition (arrows) and necrosis in media. (bar=20 µm). (B) Most of myelinated fibres are undergoing axonal degeneration. Many macrophages containing myelin debris infiltrate the endoneurium. (bar=80 µm).
The cholinergic hypothesis of Alzheimer’s disease: a review of progress

I read with interest the review of Francis et al regarding the progress of the cholinergic hypothesis of Alzheimer’s disease. They mentioned that donepezil produced improvement or no deterioration in more than 80% of patients, and that such responses should be viewed positively considering the progressive, degenerative nature of the disease. Various donepezil manufacturer’s medical representatives presenting data from a clinical study also commonly use this statement. However, this only partially reveals the truth. In fact, the same study produced improvement or no deterioration in 59% patients on placebo. I think that the beneficial effect of donepezil in particular clinical trials should always be critically reviewed in comparison with placebo. In addition, as both 24 week placebo controlled donepezil trials performed so far excluded patients with behavioural disturbances, my impression is that the positive effect of donepezil on the symptoms of behavioural disturbances still remains controversial. In fact there are reports that donepezil might induce behavioural disturbances in patients with Alzheimer’s disease.

Finally, donepezil was never investigated in a 36 week randomised double blind study as was mentioned in the review. The authors are probably referring to the randomised 24 week double blind placebo controlled trial with an additional 6 week single blinded placebo phase.

The authors reply:
We thank Professor Babic for the letter, which raises several interesting points. We agree that it may be more helpful to put the results attributed to treatment with donepezil in the context of the placebo response. In general, looking at this as a class effect in relation to several compounds, the picture emerging is that about twice as many people obtain a response to active treatment as to that with placebo. The high placebo response is a common factor in most studies in this field and is worthy of some explanation in its own right. Although it seems that these studies compare drug treatment with that of a placebo (one treatment against no treatment), the reality is that it is a comparison of patients receiving two treatments against other patients who are receiving one form of treatment. The additional treatment regime is, of course, the care and attention that they receive by being part of the clinical study, which often seems to have an impact, not just on the patient but also on their main carer or carers.

As far as behavioural disturbances are concerned, however, our review was making the point that evidence in favour of clinical trial hypotheses in patients with Alzheimer’s disease that cholinomimetics can cause a dose-dependent reduction in hallucinations, agitation, and delusions in a 6 month randomised double blind placebo controlled, parallel group trial. In addition, Cummings and Kaiser have shown that the cholinesterase inhibitors are effective in reducing psychotic features than cognitive disturbances; tacrine also reduces or abolishes hallucinations in Parkinson’s disease. Another cholinesterase inhibitor, metrifonate, was also shown to reduce the number of hallucinations in a 26 week randomised, double blind, placebo controlled safety and efficacy study in patients with Alzheimer’s disease. Further support for a link between acetylcholine and psychosis derives from postmortem data showing that the activity of choline acetyltransferase in the temporal cortex of patients with Lewy body dementia was lower in those patients with hallucinations than in patients without this feature.

Finally, in animals the partial M/M, agonist (5R,6R)-6-(3-propylthio-1,2,5-thiadiazol-4-yl)-1-azabicyclo[3.2.1]octane produced a preclinical profile suggestive of antipsychotic efficacy and that the psychomimetic NMDA receptor antagonist ketamine (when administered at subanesthetic doses) reduced brain concentrations of acetylcholine. Thus, on the basis of both clinical and preclinical data, a clear rationale is emerging for prescribing cholinomimetic agents for treating the non-cognitive behavioural symptoms associated with dementia, particularly psychosis.

Professor Babic is also correct in identifying two of the studies referred to as the 30 week randomised multicentre placebo controlled, parallel group studies, which included a 24 week double blinded treatment phase.

We are grateful to your correspondence for providing us with the opportunity to clarify these points.

The authors reply:
We thank Professor Babic for the letter, which raises several interesting points. We agree that it may be more helpful to put the results attributed to treatment with donepezil in the context of the placebo response. In general, looking at this as a class effect in relation to several compounds, the picture emerging is that about twice as many people obtain a response to active treatment as to that with placebo. The high placebo response is a common factor in most studies in this field and is worthy of some explanation in its own right. Although it seems that these studies compare drug treatment with that of a placebo (one treatment against no treatment), the reality is that it is a comparison of patients receiving two treatments against other patients who are receiving one form of treatment. The additional treatment regime is, of course, the care and attention that they receive by being part of the clinical study, which often seems to have an impact, not just on the patient but also on their main carer or carers.

As far as behavioural disturbances are concerned, however, our review was making the point that evidence in favour of clinical trial hypotheses in patients with Alzheimer’s disease that cholinomimetics can cause a dose-dependent reduction in hallucinations, agitation, and delusions in a 6 month randomised double blind placebo controlled, parallel group trial. In addition, Cummings and Kaiser have shown that the cholinesterase inhibitors are effective in reducing psychotic features than cognitive disturbances; tacrine also reduces or abolishes hallucinations in Parkinson’s disease. Another cholinesterase inhibitor, metrifonate, was also shown to reduce the number of hallucinations in a 26 week randomised, double blind, placebo controlled safety and efficacy study in patients with Alzheimer’s disease. Further support for a link between acetylcholine and psychosis derives from postmortem data showing that the activity of choline acetyltransferase in the temporal cortex of patients with Lewy body dementia was lower in those patients with hallucinations than in patients without this feature.

Finally, in animals the partial M/M, agonist (5R,6R)-6-(3-propylthio-1,2,5-thiadiazol-4-yl)-1-azabicyclo[3.2.1]octane produced a preclinical profile suggestive of antipsychotic efficacy and that the psychomimetic NMDA receptor antagonist ketamine (when administered at subanesthetic doses) reduced brain concentrations of acetylcholine. Thus, on the basis of both clinical and preclinical data, a clear rationale is emerging for prescribing cholinomimetic agents for treating the non-cognitive behavioural symptoms associated with dementia, particularly psychosis.

Professor Babic is also correct in identifying two of the studies referred to as the 30 week randomised multicentre placebo controlled, parallel group studies, which included a 24 week double blinded treatment phase.

We are grateful to your correspondence for providing us with the opportunity to clarify these points.
This is certainly a book for the specialist and not at all (as the preface suggests) for the family practitioner. There are good reviews of nerve structure, causation, and treatment of painful neuropathies and focal neuropathies. The comprehensive survey of the Diabetes Control and Complications Trial (DCCT) shows in detail the only treatment which is truly effective (diabetic control), and the lengthy description of aldose reductase inhibitor trials establishes that, even after more than two decades of investigation, further trials are still needed.

Clinical evaluation of somatic and autonomic neuropathies are useful and also, to trials are still needed. than two decades of investigation, further

The title and back cover of the latest addition to Neurology Lite texts contains the usual proclamations. “Concise, key topics, revision aid, essential, review”... the well trailed soundbites demanded by the consumer in the increasingly competitive market of “read - learn more” books. This book, however, is unusual and distinct. Unlike many rivals it is not an A5 facsimile of a superior parent A3 reference tome. brevity, so essential to the success of an overview work, has sacrificed neither clarity nor clinical relevance. The strength of Key Topics in Neurology owes much to the author’s ability to negotiate skilfully the compromises necessary for a successful distillation of a large and complex field. It has not shied from wholesale culling of neurological ballast. The allied ability to distinguish and highlight the salient and relevant from the obscure and historical allows this small book to be surprisingly thorough in its coverage and topicality. There is sufficient up to date information on most areas of neurology such that this book would be useful for specialist registrars albeit without the detail or embellishment they seek. In terms of the aims of this book such observations must be regarded as complimentary.

My limited criticisms relate to details of layout and presentation. I found the exclusive alphabetical arrangement of chapters mildly disorientating in that, for example, History taking in Neurology is to be found at p 131. Similarly, the absence of diagrams and tables is an unexpected omission as I would imagine that this would have complemented the overall style of the book. These are minor gripes of what in print largely matches the sleeve hype and with a price tag of just £25-30 the book will be welcomed by undergraduates through to specialist registrars.

SIDDHARTHAN CHANDRAN

CORRECTION

K Sudo, N Fujiki, S Tsuji, M Aijki, T Higashi, M Niino, S Kikuchi, F Moriwaka, K Tashiro.

Focal (segmental) dyshidrosis in syringomyelia. J Neurol Neurosurg Psychiatry 1999;67:106-8. During the editorial process the footnote to table 1(p 107) was wrongly transcribed. The last line—“p value for each pair of items: hyperhidrosis v normohidrosis 0.0007; hypohydrosis v normohidrosis 0.7282; normohidrosis v hypohydrosis 0.0012 should read—“p value for each pair of items: hyperhidrosis v hyperhidrosis 0.0007; hypohydrosis v hyperhidrosis 0.0007; hyperhidrosis v normohidrosis 0.7282; normohidrosis v hypohydrosis 0.0012.”