LETTERS TO THE EDITOR

Behavioural status during the intracarotid amobarbital procedure (Wada test): relevance for surgical management

Presurgical evaluation in many epilepsy programmes often includes the intracarotid amobarbital procedure (IAP). Sodium amytal is injected into the internal carotid artery to produce a temporary “pharmacological paralysis” of hemispheric function. Traditionally, the IAP has been employed in patients with refractory temporal lobe epilepsy being considered for anterior temporal lobectomy. In these cases it is used to determine cerebral dominance for language,1 to assess the risk of severe post-surgical amnesia by predicting post-surgical hemispheric specific memory changes.2 More recently, the use of the IAP has been extended to complement EEG localisation and radiological data by lateralisering temporal lobe dysfunction.

The use of the IAP has been cited as providing a hitherto unrecognized role in patients with refractory frontal lobe epilepsy being considered for frontal lobectomy. Specifically, observation of behavioural function during the period of the ablation may provide useful information about the integrity of the contralateral frontal lobe. This is particularly relevant in those candidates with a history of cerebral trauma in whom damage to the bifrontal lobe is known or suspected. A review of the IAP studies performed on patients with temporal lobe epilepsy in our comprehensive epilepsy programme (1991–8) suggests that the emergence of frontal lobe behavioural features is common in patients in whom the anatomy leads to the suspicion of bifrontal compromise (for example, a history of traumatic head injury). By contrast, these features rarely occur in cases of non-traumatic epilepsy, in which the integrity of frontal lobe systems is presumed. Although it remains an incidental finding in the context of determining the suitability of a candidate for anterior temporal lobectomy, this outcome may have potential implications for the selection of patients for frontal lobectomy.

We report a case of frontal lobe epilepsy secondary to a traumatic head injury. Out of concern for untoward postoperative behavioural change, we employed the IAP in an attempt to predict the risk of a frontal lobe syndrome. A 39 year old man had a 23 year history of severe refractory epilepsy. The seizures postdated a reported car accident at the age of 12 years when he sustained a head injury with an ill defined period of loss of consciousness. Seizures commenced within months of that injury and, although initially well controlled, became refractory within a few years. The seizures types included staring spells, violent tonic-clonic seizures, and atonic drop attacks. He had complications from his epilepsy including a fractured jaw, two episodes of severe burning due to seizures while showering, multiple episodes of postictal confusion and postictal psoriasis, a lung abscess secondary to aspiration, and episodes of status epilepticus. Interictal EEG epochs showed bilateral generalised spike and wave discharges at around 2 Hz-2.5 Hz with some mild increase in bilateral slow activity and no convincing evidence of electrographic focalisation. Video EEG monitoring showed apparent generalised seizures without any focal onset on scalp EEG. Brain MRI disclosed a well defined atrophic lesion involving the entire left frontal lobe, considered likely to be post-traumatic in origin. Interictal FDG PET and HMPO SPECT disclosed hypoperfusion in the left anterior frontal region commensurate with the abnormality shown on MRI. Although his electroclinical pattern was suggestive of symptomatic generalised epilepsy, because of the left frontal lesion, seizure onset from that region was considered likely.

On neuropsychological examination, his general cognitive function was normal. At a behavioural level, however, he presented as very peevish in manner with a very rigid, inflexible cognitive style. The neuropsychological opinion was of a mild frontal lobe syndrome consistent with the history of traumatic head injury. There was no current evidence of psychiatric disorder. Although having successfully passed his final year of secondary school (together with several courses of advanced education), he had remained unemployed due to his seizures. He was socially isolated and his interpersonal relationships were limited. He had severe life threatening epilepsy with the surgical option the only remaining avenue of treatment. However, as surgical management would involve resection of the left frontal lobe against a background of traumatic head injury and the possibility of more generalised frontal lobe dysfunction a left hemispheric IAP was performed. Sodium amytal (125 mg) was administered via a slow hand injection. Of relevance, no crossflow into the contralateral anterior cerebral artery via the anterior communicating artery was present (as assessed by a separate injection of contrast medium). The injection was accompanied by a dense right hemiplegia and global aphasic arrest. Resolution of language was characterised by a dense perseveration of counting and reading, with marked behavioural disinhibition (agitation, swearing, verbosity, childishness). Although seemingly aware of some aspects of his behaviour (apologising for swearing), he seemed unable to control his responses. The overall impression was of a pronounced frontal lobe syndrome, suggesting that the right frontal lobe had incurred some damage secondary to the documented head trauma and that he must have been reliant on some left frontal contribution.

On the basis of the IAP findings, a selective cortical resection (as opposed to more extensive frontal lobe resection) to the region of damage was advised. Intraoperative electrocorticography showed active focal epileptic discharges maximal in the inferior frontal lobe in the electrodes closest to the lesion. A cortical resection was performed with frameless stereotaxic guidance excision of the frontal lesion. Histopathology on the resected tissue showed an old post-traumatic cyst involving the cortex and white matter. His postoperative course was unremarkable. When reviewed 3 months after surgery he was seizure free. His performance on neuropsychological evaluation remained commensurate with presurgical status. There were no novel subjective complaints. Mood, behaviour, and temperament remained stable.

Despite its undoubted value in many individual cases of temporal lobe epilepsy, the IAP has remained a controversial assessment instrument.3 Amid this controversy its potential usefulness in other patient groups seems to have been overlooked. A primary criticism of its use in temporal lobe epilepsy has been the question of irrigation and whether the medial temporal lobe is adequately “disabled” during the procedure. This particular limitation is not applicable in the case of the patient with frontal lobe epilepsy, as the region of interest is clearly ablated via supply from the carotid arterial system. Caution must, however, be exercised with respect to possible crossflow into the anterior cerebral artery via the anterior communicating artery. When such crossflow is present, the ability to assess validity the integrity of contralateral frontal lobe function will be compromised. Although seemingly aware of some aspects of his behaviour (apologising for swearing), he seemed unable to control his responses. The overall impression was of a pronounced frontal lobe syndrome, suggesting that the right frontal lobe had incurred some damage secondary to the documented head trauma and that he must have been reliant on some left frontal contribution. As surgical management would involve resection of the left frontal lobe against a background of traumatic head injury and the possibility of more generalised frontal lobe dysfunction a left hemispheric IAP was performed. Sodium amytal (125 mg) was administered via a slow hand injection. Of relevance, no crossflow into the contralateral anterior cerebral artery via the anterior communicating artery was present (as assessed by a separate injection of contrast medium). The injection was accompanied by a dense right hemiplegia and global aphasic arrest. Resolution of language was characterised by a dense perseveration of counting and reading, with marked behavioural disinhibition (agitation, swearing, verbosity, childishness). Although seemingly aware of some aspects of his behaviour (apologising for swearing), he seemed unable to control his responses. The overall impression was of a pronounced frontal lobe syndrome, suggesting that the right frontal lobe had incurred some damage secondary to the documented head trauma and that he must have been reliant on some left frontal contribution. As surgical management would involve resection of the left frontal lobe against a background of traumatic head injury and the possibility of more generalised frontal lobe dysfunction a left hemispheric IAP was performed. Sodium amytal (125 mg) was administered via a slow hand injection. Of relevance, no crossflow into the contralateral anterior cerebral artery via the anterior communicating artery was present (as assessed by a separate injection of contrast medium). The injection was accompanied by a dense right hemiplegia and global aphasic arrest. Resolution of language was characterised by a dense perseveration of counting and reading, with marked behavioural disinhibition (agitation, swearing, verbosity, childishness). Although seemingly aware of some aspects of his behaviour (apologising for swearing), he seemed unable to control his responses. The overall impression was of a pronounced frontal lobe syndrome, suggesting that the right frontal lobe had incurred some damage secondary to the documented head trauma and that he must have been reliant on some left frontal contribution.

Reversal of tetrabenazine induced depression by selective noradrenaline (norepinephrine) reuptake inhibition

Tetrabenazine (TBZ), a synthetic benzoquinolizine, was first introduced as a neuroleptic agent in 1960, and is now widely used in the treatment of hyperkinetic movement disorders such as chorea, tics, or tardive dyskinesia. The side effect profile is mainly characterised by the triad of drowsiness/fatigue, parkinsonism, and depression; depression is found in about 15% of patients treated with TBZ. We here report on the rapid reversal of depressive symptoms in a patient treated with TBZ for orofacial dystonia by administering the new and highly selective noradrenaline (norepinephrine) reuptake inhibitor (SNRI) reboxetine.

On admission, the 64 year old woman presented with perioral and lingual hyperkinesias as well as intermittent and involuntary movements of her lower jaw, which had lasted for about 2 years, causing her considerable inconvenience in mastication. No history of neuroleptic treatment or Parkinson’s disease was evident. Her cranial CT and blood chemistry were normal. We diagnosed a segmental dystonia, which improved dramatically, after the withdrawal of a tetrabenazine medication (60 mg a day). This successful treatment response, however, was accompanied by a severe depressive syndrome, which was characterised by a mixed neurovegetative mood, low self esteem, a complete loss of drive, and intermittent suicidal ideactions. After switching from TBZ to tiapride, the patient recovered from depression, but her neurological status worsened significantly after re-exposure to TBZ again ameliorated hyperkinesia, but provoked a depressive relapse. A comedication with reboxetine (6 mg/day), a new and selective noradrenaline (norepinephrine) reuptake inhibitor, finally led to a stable remission of the depressive symptoms within a week, without any worsening of the dystonic syndrome. Tetrabenazine (TBZ) is known to act as a monoaminergic and dopamine receptor blocking drug.1 In more detail, TBZ bends to and inhibits specifically the human vesicular monoamine transporter isoform 2 (hVMA2). Whereas the indolamine serotonin forms a similar affinity for both hVMA1 and hVMA2, catecholamines such as noradrenaline exhibit a threefold higher affinity for hVMA2.2 As these specific transporters are responsible for packaging monoamine neurotransmitters into presynaptic secretory vesicles for release by exocytosis, the inhibition of hVMA2 by compounds such as tetrabenazine thus results in consecutive noradrenaline depletion.3

Alterations of noradrenergic neurotransmission—that is, a neuronal noradrenaline depletion—can therefore be postulated to form one major origin of TBZ induced depression. In line with this assumption, brain-specific catecholaminergic activity enhancers (CAEs) such as phentolamine have been shown to antagonise TBZ induced depression-like behaviour in rats.4 Modulating this altered noradrenergic neurotransmission pattern by the administration of selective noradrenaline reuptake inhibitors such as reboxetine may thus provide a new, specific, and fast acting tool in the management of depression caused by TBZ and related (neuroleptic) compounds.
Cerebral cavernous malformations are vascular malformations mostly located in the center of the CNS. Their frequency is estimated close to 0.5% in the general population, but varies widely between families. Cerebral cavernous malformations occur as a sporadic or hereditary condition. From the Hispano-American population, familial forms were reported with a high frequency. CCM1, a hitherto unidentified gene mapping on chromosome 7 has shown to be involved in all families with cerebral cavernous malformations of Hispanic-American descent with a strong founder effect. A recent study showed linkage of cerebral cavernous malformations to two additional loci. CCM2 and D7S2409 were different from those in the Hispano-American families resulting in a distinct haplotype segregating with the disease phenotype within Spanish families. Polymorphic markers were informative in 12 meioses and 12 spouses gave their consent. They were examined by a board certified neurologist, underwent cerebral MRI, and blood samples were taken. Magnetic resonance imaging was used to establish status for linkage analysis. Thirty four families had MRI diagnosis of cavernomas and were considered as affected. Among them, 14 experienced neurological symptoms (cerebral haemorrhage 8, seizures 8). Seventeen members with normal cerebral MRI were considered as healthy. Twelve members without MRI investigation had an unknown status. Analysis of pedigrees was consistent with an autosomal dominant mode of inheritance. We report herein a genetic linkage analysis conducted on nine Spanish families with cerebral cavernous malformations. All procedures were approved by an ethics committee. The families were unrelated and originated from different regions of Spain (south west (CVE2, 3, 4, 10, 17, 25), central (CVE24), south east (CVE28), and north east (CVE29). Seventy seven subjects including 55 potentially informative meioses and 12 spouses gave their informed consent. They were examined by a board certified neurologist, underwent cerebral MRI, and blood samples were taken. Magnetic resonance imaging was used to establish status for linkage analysis. Thirty four families had MRI diagnosis of cavernomas and were considered as affected. Among them, 14 experienced neurological symptoms (cerebral haemorrhage 8, seizures 8). Seventeen members with normal cerebral MRI were considered as healthy. Twelve members without MRI investigation had an unknown status. Analysis of pedigrees was consistent with an autosomal dominant mode of inheritance. We report herein a genetic linkage analysis conducted on nine Spanish families with cerebral cavernous malformations. All procedures were approved by an ethics committee. The families were unrelated and originated from different regions of Spain (south west (CVE2, 3, 4, 10, 17, 25), central (CVE24), south east (CVE28), and north east (CVE29). Seventy seven subjects including 55 potentially informative meioses and 12 spouses gave their informed consent. They were examined by a board certified neurologist, underwent cerebral MRI, and blood samples were taken. Magnetic resonance imaging was used to establish status for linkage analysis. Thirty four families had MRI diagnosis of cavernomas and were considered as affected. Among them, 14 experienced neurological symptoms (cerebral haemorrhage 8, seizures 8). Seventeen members with normal cerebral MRI were considered as healthy. Twelve members without MRI investigation had an unknown status. Analysis of pedigrees was consistent with an autosomal dominant mode of inheritance.
for all markers. In this family, two a
(D7S2410, D7S1789, D7S558, D7S689).

Hydrocephalus caused by metastatic brain lesions: treatment by third ventriculostomy

Metastasis to the brain occurs in 20%–40% of cancer patients. About 20% of these metastases are located in the posterior fossa, cerebellum, and brainstem. Metastatic disease to the ventricles can obstruct the cerebrospinal fluid (CSF) production in the ventricles to the subarachnoid space where it is normally absorbed by arachnoid granulations. This typically causes an obstructive or non-communication hydrocephalus. Third ventriculostomy has a low operative morbidity and a high probability of success in secondary hydrocephalus, it is only commonly used on patients with aqueductal stenosis and the pediatric population. To avoid placing shunts in patients with inoperable metastatic brain tumours who typically have only a few months to live, we have offered the patients third ventriculostomy as a palliative procedure.

We performed third ventriculostomy on seven patients with hydrocephalus due to metastatic tumours of the posterior fossa or thalamus. They typically presented with symptoms of acute hydrocephalus in addition to any local mass effect of the tumour. Postoperatively, five patients were relieved of hydrocephalic symptoms and follow up brain imaging studies disclosed decreased ventricu-
lar size. These five patients had a median hospital time of 6.5 days and median survival of 5 weeks after the operation. One patient's hospital stay was prolonged by care of their primary disease. However, most of our patients who underwent this operation for hydrocephalus caused by other diseases were discharged from the hospital within 72 hours and were able to walk and do 48 hours from the procedure. There were no operative complications. All five patients had no evidence of redevelopment of hydrocephalus up to the last clinic visit.

None of these patients had one successful results from their third ventriculostomy. One patient (case 4) showed no change from his initial neurological exam after the procedure, but his mental status deteriorated on post operative day 6. Brain CT showed no change in the size of his ventricles compared with the scan obtained on the day of admission. The patient's family requested comfort care only and the patient died 2 days later. In the second case (case 6) the patient had improvement in his neurological examination and ventricle size by CT scan immediately after the operation, but had recurrent symptoms of hydrocephalus 11 days later. After placement of a ventriculoperitoneal shunt, his examination returned to baseline.

Every patient except the person described in case 4 received brain radiation therapy after the palliative procedure. One patient (case 3) underwent a course of radiation treatment prior to the operation. Another (case 5) had radiation to her orbit in the distan
t past after enucleation for retinoblastoma. Even though previous radiotherapy may be considered a contraindication for third ventriculostomy by some authors, it did not seem to affect the success of third ventriculostomy in our patients. Carcinomatous menin
gioma which could have caused a communicating hydrocephalus was not grossly evident on examination, on any of the brain imagings, or during endoscopy. However, tumours in contact with CSF space can also cause a communicating hydrocephalus by raising CSF protein which can obstruct distal CSF space and arachnoid granulations.

as 50%, with the highest failure rate in the first few months after shunt placement. The complication rates for both procedures are low. Third ventriculostomy and shunting can potentially cause a stroke, bleeding, ventriculitis, meningitis, a subdural haematoma, CSF leak, diabetes insipidus, and SIADH. However, shunting has additional risks of mechanical malfunction, complications associated with implanting a foreign body, and overdrainage syndrome.

Because third ventriculostomy restores near normal CSF dynamics, overdrainage is prevented. The procedure is also minimally invasive and safe. The procedure’s low morbidity, high efficacy, and potentially short hospital stay are well suited as a palliative treatment of hydrocephalus for patients with an expected shortened life span. We propose that third ventriculostomy should be offered as a first treatment to patients suffering from obstructive hydrocephalus from unresectable tumours.

Neuronal activity alters local blood flow in brain tumour adjacent to the activating cortex.

Characteristics of blood flow in brain tumours have been studied extensively; these studies are important for diagnosis of malignancy and therapy monitoring. Our study is the first to consider how activity dependent changes of regional cerebral blood flow (rCBF) alter tumour blood flow in the brain tumour adjacent to the activating cortex.

Such an interaction between cortical blood flow and tumour blood flow may be of value for evaluating mechanisms of neurological symptoms associated with brain tumours.

Neuronal activation causes an increase of regional cerebral blood flow (rCBF) in the activating cortical area. Near infrared spectroscopy (NIRS) demonstrates the increase in rCBF during neuronal activity as increases in oxygenated haemoglobin (oxy-Hb) and total haemoglobin (total-Hb) with a decrease in deoxyhaemoglobin (deoxygen-Hb) \(^*\). NIRS is an optical method to measure concentration changes of oxy-Hb, deoxy-Hb, and total-Hb (oxy-Hb+deoxygen-Hb) in cerebral vessels by means of the characteristic absorption spectra of haemoglobin in the near infrared range.

In the present study, we measured changes of oxygenation and haemodynamics in the brain tumour adjacent to the activating cortex by means of NIRS. We found transient decreases in oxy-Hb and total-Hb in the tumour during neuronal activation, suggesting that the local blood flow of the tumour was decreased by a transient increase of rCBF induced by neuronal activation.

The patient was a 35 year old right handed man who presented with complaints of headache and dizziness. A neurological examination showed no abnormalities and a decline in language functions. A postcontrast CT showed a well defined large enhancing tumour (4×5 cm) compressing the left frontal lobe. Computed tomographic angiography showed that the branches of the left middle cerebral artery supplied the tumour (figure A). The patient underwent a left frontal craniotomy for removal of the tumour; the pathological diagnosis was meningioma. The NIRS measurement was performed before the operation.

We measured haemodynamic changes in the brain tumour during neuronal activation in the left frontal lobe induced by cognitive
that a stealing of blood flow is one of the mechanisms." The present report supports this hypothesis.

KAORU SAKATANI
HUANCONG ZOU
YANG WANG
Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, China

WEMARA LICHTY
Group of Detection and Analysis of Human Body Movement, Program of BME, Department of Electrical Engineering, Tsinghua University, Japan

KIYOH YABU
Department of Rehabilitation, Tahkashi Neurosurgical Hospital

Correspondence to: Dr. Kaoru Sakatani, Department of Neurosurgery, China-Japan Friendship Hospital, Yungia East Rd., Hepingi, Beijing 100029, People’s Republic of China. Telephone (fax) 0086 10 64203246; email sakatani@public.east.cn.net

Migraine aura masquerading as Balint’s syndrome

Migraine is a common neurological disorder with a prevalence of 0.5% to 2% in the general population.1 In one fourth of total migraineurs, headache is preceded by an aura.2 We describe a patient with recurrent episodes of migraine in whom headache was preceded by a constellation of visual symptoms which constituted salient component of Balint’s syndrome. This syndrome, consisting of a triad of simultagnosia, optic ataxia, and oculomotor apraxia, is seen with bilateral lesions of occipitoparietal cortices affecting connections between visual cortical regions and the frontal eye field.3

A 29 year old female teacher presented with an 8 year history of paroxysmal alternating hemi-kinetic and throbbing headache which was often associated with nausea, photophobia, and occasionally vomiting. Headache used to last for about 4 to 18 hours and would respond to either ergot drugs or sumatriptan, especially if taken at the beginning of the episode. Occasionally these visual symptoms were not followed by headache. The patient would not lose contact with the environment during or after the visual symptoms. Her mother and two younger sisters were also having paroxysmal episodes of common migraine.

Her general physical and neurological examination in between the episodes was unremarkable. Neurological examination during the aura symptoms disclosed that she was unable to see simultaneously all the objects in the visual field (simultagnosia). She did omit several words while reading a paragraph. However, she could comprehend and read each and every word individually. On being shown a complex picture comprising multiple subunits she was not able to comprehend and perceive the entire picture but was able to perceive each and every part of the picture individually (seeing in piecemeal). These aforementioned features were consistent with simultagnosia. Besides simultagnosia, she had optic ataxia as evidenced by her inability to coordinate hand-eye movements. Optic ataxia was tested as follows: each eye was tested separately and the hand ipsilateral to the eye being tested was used. The target stimulus was a 5 mm long pin with a white target placed at a prestated locations. The patient was asked to touch this pin with her index finger without shifting her gaze from the fixation point. The patient had difficulty in performing this task but had no problems in reaching out to her own body parts or any stimulus with her eyes closed. These features were consistent with optic ataxia. Moreover, gaze apraxia was evident by her inability to look at an object on command. However, she could do it spontaneously. In addition, she had impaired smooth pursuit and voluntary saccades in all directions. Reflex eye movements were normal. Visual acuity during the episode was 6/6 bilaterally. Visual field examination was normal during the episode as demonstrated by the confrontation method. Ophthalmological examination, including perimetry performed during a symptom free period, was normal. There was no clinical evidence of Gerstmann syndrome, prosopagnosia, object agnosia, or colour agnosia. Her cranial CT and magnetic resonance angiography were unremarkable.

Electroencephalography was also non-contributory. The frequency of visual aura symptoms and headache decreased considerably after the patient was started on flunarizine at a daily dosage of 10 mg at bedtime.

The visual symptoms, after being recognized by the primary visual cortex (Brodmann area 17), are interpreted and integrated in visual association areas 18 and 19. Brodmann area 19, in turn, is connected with the angular gyrus and frontal eye field through corticocortical connections. Any lesion in the visual association areas or their connections would result in impaired integration of visual impulses despite normal visual acuity.

The visual symptom complex in this case possibly represents an aura of migraine. The pathogenesis of migraine aura has been a debatable issue.4 In this case it is suggested that the parasympathetic process of migraine aura results in a disconnection syndrome by...
involve visual association areas and their association pathways. Optic ataxia, gaze apraxia, and simultagnosia seem to represent a dissociation of visual information from the frontal eye field and dorsal parietal regions.

PARVAIZ A SHAH
NAFEEPI
Division of Neurology, Department of Medicine, Government Medical College and Associated SMHS Hospital, Srinagar, Kashmir, J and K 190001, India
Correspondence to: Dr Parvaiz A Shah, Firdousa-
lar hemisphere (figure A). These variably sized
throughout the white matter, and cystic-like
6.01p, 0.064 Tesla) showed areas of high signal
were raised (78 mg/dl), and there was one
was 0.47 (63/140 mg%), the protein content
was afebrile, confused, had slurred speech, and
was still able to work. After the third dose, he
felt unusually lethargic although he
sure vaccination (SMBV). After the second
dose, he was managed conservatively and the
was made a
regimen (0.1 ml HDCV given at multisite
deployment of a safe, and critically, a
be the vaccine administered to travellers
exposed to animal bites in such countries.
This case stresses the need for high
dose sterile in postexposure vaccine encephalitis and the urgent need for the development and deployment of a safe, and critically, affordable postexposure vaccine regimen.

The economic low dose multisite intradermal regimen using the HDCV provides an example of how this goal may be achieved although it is not yet widely accepted. Such a vaccine regimen (0.1 ml HDCV given at multisite injections on days 0, 7, 14, and 28 with an optional booster on day 90) is US$ 125, making the use of this vaccine unaffordable.

This is the first report to show the demyeli-
nating CNS lesions on MRI, and their resolu-
tion after steroid therapy. It is relatively rare for patients to survive if they develop severe CNS effects after postexposure rabies vaccination. Although the incidence of reac-
tions to SMBV is very much lower than to STV, this report confirms that it does still occur. Both SMBV and STV are widely used throughout the developing world, and would be the vaccine administered to travellers exposed to animal bites in such countries.

R N V CHAU
T T THIEU
Centre for Tropical Diseases, 190 Ben Hien Tu, District 5, Ho Chi Minh City, Vietnam
R SELGAR
Department of Clinical Neurosciences, Western General Hospital, Edinburgh, UK
R KNEEN
J FARRAR
Leukoencephalopathy associated with khat misuse

The leaves of the tree Catha edulis, or khat (also qat and kat) are chewed by a large proportion of the adult population of the Yemen, and throughout Saharan and sub-Saharan Africa. The leaves are also chewed by members of the Yemeni and Somali community in the United Kingdom. The psychoactive constituents of khat are cathin (d-norisoephedrine), cathine, and cathinone (an alkaloid with a structure resembling norisoephedrine), cathidine, and cathinone (an alkaloid with a structure resembling norisoephedrine), cathidine, and cathinone (an alkaloid with a structure resembling norisoephedrine), cathidine, and cathinone. The leaves of the tree Catha edulis, or khat (also qat and kat) are chewed by a large proportion of the adult population of the Yemen, and throughout Saharan and sub-Saharan Africa. The leaves are also chewed by members of the Yemeni and Somali community in the United Kingdom. The psychoactive constituents of khat are cathin (d-norisoephedrine), cathine, and cathinone (an alkaloid with a structure resembling norisoephedrine), cathidine, and cathinone. There are reports of leukoencephalopathy in association with khat or amphetamine misuse; it has, for example, been slow improvement in his cognitive and motor function. After 1 year he is able to open and close his eyes, occasionally verbalise, localise pain, and obey simple commands. His plantars are flexor but he has persistent plantar reflexes. His nutrition is maintained by gastrostomy and he has an indwelling catheter.

The clinical presentation, EEG, and MRI findings suggest a rapidly progressive leukoencephalopathy. There are no previous reports of leukoencephalopathy in association with khat or amphetamine misuse; it has, however, been reported in association with other recreational drugs taken by mouth or inhalation. An alternative for this man’s presentation is a necrotising vasculitis, a well-described complication of oral amphetamine misuse. The clinical features, MRI appearance, brain biopsy, absence of haemorrhage, and lack of response to steroids make this unlikely.

The likely precipitant of this man’s illness seems to be his use of khat. A drug screen on admission was negative, and his family denied misuse of other drugs. It remains possible that the sample of khat chewed by this man was contaminated. We are unaware of any previous reports of khat misuse with severe neurological deterioration; previous cases may not have been investigated or reported. In reporting this case our intention is to alert others to a possible complication of the misuse of this drug. Evidence of other cases would provide a powerful argument for the restriction of import and sale of khat.

Necrotising vasculitis with conduction block in mononeuropathy multiplex with cold agglutinins

Cold agglutinins are cold reactive autoantibodies that have haemolytic effects on red blood cells mediated via complement fixation. Mononeuropathy multiplex with cold agglutinins has been described, however, details of its pathomechanism are unclear. Here, we report the clinical, electroneuropsychological, and pathological findings of a mononeuropathy multiplex in a patient with cold agglutinins, who responded very well to plasmapheresis. A 72 year old man was admitted with a 1 month history of progressing dysaesthesia and weakness of the limbs. He had no anaemia, jaundice, hepatosplenomegaly, or lymphadenopathy. Cranial nerves and the cerebellum were not involved. There was severe weakness and atrophy of bilateral thenar, interossei, and plantar muscles with severe dysaesthesia of both palms and plantaris. Pin prick and light touch were reduced as well as position and vibratory sensation in both hands and feet. Deep tendon reflexes were hyporeactive. Babinski’s sign was negative.

Laboratory investigation showed a raised erythrocyte sedimentation rate: 52 mm/hour (normal <10) and serum C reactive protein: 1.8 mg/dl (normal; < 0.5). Blood cell counts were within normal limits. The following were normal or negative: IgG, IgA, IgE, IgM,
myelinated fibres were markedly decreased. The densities of large and small blood vessels were also diminished compared to normal. The small vessels in the endoneurium were surrounded by mononuclear cell infiltrates. (bar=30 µm).

(A) Sural nerve (toluidine blue staining) showing epineurial vessel surrounded by mononuclear cell infiltrates. Note fibrin deposition (arrow) and necrosis.

Characteristics of the present case:

1. **Subacute onset of mononeuropathy multiplex:** (2) necrotising vasculitis with marked vessel wall thickening; (3) probable conduction block in the median nerve; (4) increased concentrations of serum titres of cold agglutinin; and (5) marked response to plasmapheresis. Extensive investigations for other causes of neuropathy were negative except for an increased serum concentration of cold agglutinins, which strongly suggests that cold agglutinins may play an important part in the induction of neuropathy in this case.

Six patients with neuropathy associated with cold agglutinins have been reported including our patient. Cold agglutinins are cold reactive autoantibodies that react with the antigenic determinant termed I/i or Pr present on glycoproteins and glycolipids in erythrocyte membranes. Ara et al. reported a case of polyneuropathy and IgM M-proteinemia with anti-Pr2 CA activity. IgM-M-protein cross-reacted with sialosyl paragloboside, GT1b, GD1a, GD1b, GM3, and GD3 present in myelin and in endothelial cells of the peripheral nervous system. It has been speculated that anti-Pr2 IgM protein induced immune mediated damage to vascular endothelium and peripheral nervous system myelin. A similar pathomechanism has been postulated in the other cases. However, necrotising vasculitis has never been reported in neuropathy with cold agglutinins. This is the first demonstration of vasculitic neuropathy with cold agglutinins. Although the mechanism for neuropathy with cold agglutinins is unknown, mechanisms similar to those in cryoglobulinaemic neuropathy have been postulated. The hypotheses are (1) immunologically mediated demyelination; (2) ischaemic injury secondary to sluggish or agglutination of red blood cells in the vasa nervorum; and (3) an associated vasculitis.

In the present case, we have confirmed the necrotising vasculitis and probable conduction block. Pathophysiological explanations for association of vasculitis and conduction block may be as follows. Firstly, conduction block may occur as a consequence of nerve ischaemia due to small vessel occlusion. There have been reports of conduction block occurring in vasculitic neuropathy which support this possibility. Secondly, humoral factors including cold agglutinins may induce immunologically mediated demyelination in the peripheral nervous system. Taken together, neuropathy with cold agglutinins may involve immunologically mediated demyelination, microcirculation occlusion, and vasa nervorum vasculitis. The diversity of pathomechanisms may come from the difference target antigens recognised by cold agglutinins. Plasmapheresis proved effective in all cases. These findings strongly suggest that humoral factors including cold agglutinins may play an important part in the induction of neuropathy with cold agglutinins. We recommend plasmapheresis as first choice treatment for neuropathy associated with cold agglutinins.

We thank Dr Gerard Salazar for critical reading of the manuscript, Ms M Teshima and N Hirata for their technical assistance, Dr S Kusunoki (Department of Neurology, Institute for Brain research, University of Tokyo) for analyses of antibodies to gangliosides, and Mr H Moug (Division of Blood Transfusion Medicine, University of Kagoshima) for characterization of cold agglutinin.
The cholinergic hypothesis of Alzheimer's disease: a review of progress

I read with interest the review of Francisc et al regarding the progress of the cholinergic hypothesis of Alzheimer's disease. They mentioned that donepezil produced improvement or no deterioration in more than 80% of patients, and that such responses should be viewed positively considering the progressive, degenerative nature of the disease. Various donepezil manufacturer's medical representatives presenting data from a clinical study also commonly use this statement. However, this only partially reveals the truth. In fact, the same study produced improvement or no deterioration in 59% patients on placebo. I think that the beneficial effect of donepezil in particular clinical trials should always be critically reviewed in comparison with placebo. In addition, as both 24 week placebo controlled donepezil trials performed so far excluded patients with behavioural disturbances, my impression is that the positive effect of donepezil on the symptoms of behavioural disturbances still remains controversial. In fact there are reports that donepezil might induce behavioural disturbances in patients with Alzheimer's disease.

The authors reply: We thank Professor Babic for the letter, which raises several interesting points. We agree that it may be more helpful to put the results attributed to treatment with donepezil in the context of the placebo response. In general, looking at this as a class effect in relation to several compounds, the picture emerging is that about twice as many people obtain a response to active treatment as to that with placebo. The high placebo response is a common factor in most studies in this field and is worthy of some exploration in its own right. Although it seems that these studies compare drug treatment with that of a placebo (one treatment against no treatment), the reality is that it is a comparison of patients receiving two treatments against other patients who are receiving one form of treatment. The additional treatment regime is, of course, the care and attention that they receive by being part of the clinical study, which often seems to have an impact, not just on the patient but also on their main carer or carers.

As far as behavioural disturbances are concerned, however, our review was making the point that evidence from trials showing a reduction in hallucinations, agitation, and delusions in a 6 month randomised double blind placebo controlled, parallel group trial. In addition, Cummings and Kauffer have shown that the cholinesterase inhibitor, metrifonate, was also shown to reduce the number of hallucinations in a 26 week randomised, double blind, placebo controlled safety and efficacy study in patients with Alzheimer's disease. Further support for a link between cholinolysis and psychosis derives from postmortem data showing that the activity of choline acetyltransferase in the temporal cortex of patients with Lewy body dementia was lower in those patients with hallucinations than in patients without this feature. Finally, in animals the partial M/M, agonist (5R,6R)-6-(3-propylthio-1,2,5-thiadiazol-4-yl)-1-azabicyclo[3.2.1]octane produced a preclinical profile suggestive of antipsychotic efficacy and that the psychomimetic NMDA receptor antagonist ketamine (when administered at subanaesthetic doses) reduced brain concentrations of acetylcholine. Thus, on the basis of both clinical and preclinical data, a clear rationale is emerging for prescribing cholinomimetic agents for treating the non-cognitive behavioural symptoms associated with dementia, particularly psychosis.

Professor Babic is also correct in identifying the nature of psychological symptoms associated with dementia. In particular, understanding of this complication both in clinical and pathological terms, as well as with regard to treatment, lags far behind that of the other classic diabetic complications, nephropathy and retinopathy. Even its classification presents problems and attempts to do so are found in four different chapters, describing four classifications. Reproduction is an unfortunate feature of this book and—one quite apart from the confusion over classification—aspects of pathogenesis, structural changes, epidemiology, diagrams, and some reference to treatment (for example, that of pain) appear repeatedly in different chapters in greater or lesser detail.

The authors reply: We are grateful to your correspondent for providing us with the opportunity to clarify these points.

PAUL T FRANCIS
Neuroscience Research Centre, GKT School of Biomedical Science, King’s College London, London
SEI 9RT, UK
ALAN M PALMER
MICHAEL SNAP
Cerebrus Pharmaceuticals Ltd, Wimborne, Wimborne, RG41 5UA, UK
GORDON K WILCOCK
Department of Care of the Elderly, Frensham Hospital, Bishops, BS16 2EW, UK

BOOK REVIEWS

The neuropathies of diabetes are common (as the chapters in this book repeatedly remind us) and can be very disagreeable. Symptomless neuropathy underlies foot ulceration and sepsis as the commonest clinical consequence of diabetic neuropathy but patients with more unpleasant disorders range from exceptionally severe pain to the whole range of problems resulting from autonomic failure. This book comprehensively covers every aspect of the subject, systematically (and at times exhaustively) from its epidemiology and pathogenesis (exhaustingly) to structural, functional, and clinical problems and their treatment. Most of the authors are well known in the field and their accounts are up to date and authoritative.

Unfortunately, struggle as they might, all authorities have difficulty in defining what they mean by diabetic neuropathy, in regard, understanding of this complication both in clinical and pathological terms, as well as with regard to treatment, lags far behind that of the other classic diabetic complications, nephropathy and retinopathy. Even its classification presents problems and attempts to do so are found in four different chapters, describing four classifications. Reproduction is an unfortunate feature of this book and—one quite apart from the confusion over classification—aspects of pathogenesis, structural changes, epidemiology, diagrams, and some reference to treatment (for example, that of pain) appear repeatedly in different chapters in greater or lesser detail.
This is certainly a book for the specialist and not at all (as the preface suggests) for the family practitioner. There are good reviews of nerve structure, causation, and treatment of painful neuropathies and focal neuropathies. The comprehensive survey of the Diabetes Control and Complications Trial (DCCT) shows in detail the only treatment which is truly effective (diabetic control); and the lengthy description of aldose reductase inhibitor trials establishes that, even after more than two decades of investigation, further trials are still needed.

Clinical evaluation of somatic and autonomic neuropathies are useful and also, to some extent, comprehensive but lack specificity—that is, normal values for simple tests are difficult to find. The huge subject of the diabetic foot is covered in these chapters and “the impact of micro and macrovascular disease” is compressed into the last nine pages of the book.

The bibliography is important and often very up to date with references ranging from 33 to 283 per chapter. If this book is at times confusing, this reflects the confusion regarding the nature and treatment of the diabetic neuropathies as much as the overlap and repetition found in its different chapters. It is a book of reference for the specialist who will be well served by the comprehensiveness of some of its reviews and their assembly of the appropriate literature.

ROBERT MACFARLANE

The title and back cover of the latest addition to *Neurology Lite* texts contains the usual proclamations: “Concise, key topics, revision aid, essential, review”... the well trailed soundbites demanded by the consumer in the increasingly competitive market of “read less, learn more” books. This book, however, is unusual and distinct. Unlike many rivals it is not an A5 facsimile of a superior parent A3 reference tome. Brevity, so essential to the success of an overview work, has sacrificed neither clarity nor clinical relevance. The strength of *Key Topics in Neurology* owes much to the author’s ability to negotiate skilfully the compromises necessary for a successful distillation of a large and complex field. He has not shied from wholesale culling of neurological ballast. The allied ability to distinguish and highlight the salient and relevant from the obscure and historical allows this small book to be surprisingly thorough in its coverage and topicality. There is sufficient up to date information on most areas of neurology such that this book would be useful for specialist registrars albeit without the detail or embellishment they seek. In terms of the aims of this book such observations must be regarded as complimentary.

My limited criticisms relate to details of layout and presentation. I found the exclusive alphabetical arrangement of chapters mildly disorientating in that, for example, *History taking in Neurology* is to be found at p 151. Similarly, the absence of diagrams and tables is an unexpected omission as I would imagine that this would have complemented the overall style of the book. These are minor gripes of what in print largely matches the sleeve printing. The book will be welcomed by undergraduates through to specialist registrars.

SIDDHARTHAN CHANDRAN