LETTERS TO THE EDITOR

Behavioural status during the intracarotid amobarbital procedure (Wada test): relevance for surgical management

Presurgical evaluation in many epilepsy programmes often includes the intracarotid amobarbital procedure (IAP). Sodium amytal is injected into the internal carotid artery to produce a temporary “pharmacological paralysis” of hemispheric function. Traditionally, the IAP has been employed in patients with refractory temporal lobe epilepsy being considered for anterior temporal lobectomy. In these cases it is used to determine cerebral dominance for language,1 to assess the risk of severe postsurgical amnesia, and to predict postsurgical hemispheric specific memory changes.2 More recently, the use of the IAP has been extended to complement EEG localisation and radiological data by lateralisng temporal lobe dysfunction.

In the clinical situation described here, there has been a hitherto unrecognized role in patients with refractory frontal lobe epilepsy being considered for frontal lobectomy. Specifically, observation of behavioural function during the period of the ablation may provide useful information about the integrity of the contralateral frontal lobe. This is particularly relevant in those candidates with a history of cerebral trauma in whom damage to the bifrontal lobe is known or suspected. A review of the IAP studies performed on patients with temporal lobe epilepsy in our comprehensive epilepsy programme (1991–8) suggests that the emergence of frontal lobe behavioural features is common in patients in whom the astology leads to the suspicion of bifrontal compromise (for example, a history of traumatic head injury). By contrast, these features rarely occur in cases of non-traumatic astology, in which the integrity of frontal lobe systems is presumed. Although it remains an incidental finding in the context of determining the suitability of a candidate for anterior temporal lobectomy, this outcome may have potential implications for the selection of patients for frontal lobectomy.

We report a case of frontal lobe epilepsy secondary to a traumatic head injury. Out of concern for untoward postoperative behavioural change, we employed the IAP in an attempt to predict the risk of a frontal lobe syndrome. A 39 year old man had a 23 year history of severe refractory epilepsy. The seizures postdated a road traffic accident at the age of 12 years when he sustained a head injury with an ill defined period of loss of consciousness. Seizures commenced within months of that injury and, although initially well controlled, became refractory within a few years. The seizure types included staring spells, violent tonic-clonic seizures, and tonic drop attacks. He had complications from his epilepsy including a fractured jaw, two episodes of severe burning due to seizures while showering, multiple episodes of postictal confusion and probable postictal psychosis, a lung abscess secondary to aspiration, and episodes of status epilepticus. Interictal EEG recordings showed bilateral generalised spike and wave discharges at around 2 Hz-2.5 Hz with some mild increase in bilateral slow activity and no convincing evidence of electrographic focalisation. Video EEG monitoring showed apparent generalised seizures without any focal onset on scalp EEG. Brain MRI disclosed a well defined atriotic lesion involving the left frontal lobe thought likely to be post-traumatic in origin. Interictal FDG PET and HMPO SPECT disclosed hypoperfusion in the left anterior frontal region commensurate with the abnormality shown on MRI. Although his electroclinical pattern was suggestive of symptomatic generalised epilepsy, because of the left frontal lesion, seizure onset from that region was considered likely.

On neuropsychological examination, his general cognitive function was normal. At a behavioural level, however, he presented as very peurile in manner with a very rigid, inflexible cognitive style. The neuropsychological opinion was of a mild frontal lobe syndrome consistent with the history of traumatic head injury. There was no current evidence of psychiatric disorder. Although having successfully passed his final year of secondary school (together with several courses of advance education), he had remained unemployable due to his seizures. He was socially isolated and his interpersonal relationships were limited.

He had severe life threatening epilepsy with the surgical outcome being dependent upon accurate treatment. However, as surgical management would involve resection of the left frontal lobe against a background of traumatic head injury and the possibility of more generalised frontal lobe dysfunction, a left hemispheric IAP was performed. Sodium amytal (125 mg) was administered via a slow hand injection. Of relevance, no crossflow into the contralateral anterior cerebral artery via the anterior communicating artery was present (as assessed by a separate injection of contrast medium). The injection was accompanied by a dense right hemiplegia and global aphasic arrest. Resolution of language was characterised by a dense perseveration of counting which could not be influenced by the examiner. Despite normal comprehension, he showed severely impaired capacity for motor regulation (as opposed to those in whom a more conservative approach is warranted). This limitation notwithstanding, the IAP does seem to have a role in separating out those patients in whom more extensive frontal lobe resections could be considered opposed to those in whom a more conservative approach is warranted.

This case report forms only the basis for a novel hypothesis that clearly requires more rigorous scientific evaluation, before its clinical utility can be reliably established. Nonetheless, we think that it is worth drawing the attention of the epileptological community to the potential application of the IAP in the surgical management of extratemporal cases.

MARIE F O'SHEA
MICHAEL M SALING
Department of Neurology
SAMUEL F BERKOVIC
Department of Neuropathology, Austin and Repatriation Medical Centre, Melbourne, Australia; and Department of Medicine, University of Melbourne, Grattan Street, Parkville 3052, Australia.

Correspondence to: Dr Marie F O'Shea, Department of Neuropathology, Austin and Repatriation Medical Centre (Austin Campus), Studley Road, Heidelberg, Victoria 3084, Australia. Telephone 613 3 03 9486 5913; Fax 613 3 03 9457 2654

Reversal of tetrabenazine induced depression by selective noradrenaline (norepinephrine) reuptake inhibitor

Tetrabenazine (TBZ), a synthetic benzoxazinolizine, was first introduced as a neuroleptic agent in 1960, and is now widely used in the treatment of hyperkinetic movement disorders such as chorea, tics, or tardive dyskinesia. The side effect profile is mainly characterised by the triad of drowsiness/fatigue, parkinsonism, and depression; depression is found in about 15% of patients treated with TBZ. We here report on the rapid reversal of depressive symptoms in a patient treated with TBZ for orofacial dystonia by administering the new and highly selective noradrenaline (norepinephrine) reuptake inhibitor (SNRI) reboxetine.1

On admission, the 64 year old woman presented with perioral and lingual hyperkinesias as well as intermittent and involuntary movements of her lower jaw, which had lasted for about 2 years, causing her a considerable impairment of her dietetic and speech articulation. No history of neuroleptic treatment or Parkinson’s disease was evident. Her cranial CT and blood chemistry were normal. We diagnosed a segmental dystonia, which improved dramatically after a tetrabenazine medication (60 mg a day). This successful treatment response, however, was accompanied by a severe depressive syndrome, which was characterized by a mixed anxious-depressive mood, low self esteem, a complete loss of drive, and intermittent suicidal ideations. After switching from TBZ to tiapride, the patient recovered from depression, but her neurological status worsened substantially after re-exposure to TBZ again ameliorated hyperkinesia, but provoked a depressive relapse. A comedication with reboxetine (6 mg/day), a new and selective noradrenaline reuptake inhibitor, finally led to a stable remission of the depressive symptoms within a week, without any worsening of the dystonic syndrome.

Tetrabenazine (TBZ) is known to act as a monoaminergic and dopaminergic receptor blocking drug.1 In more detail, TBZ binds to and inhibits significantly the human vesicular monoamine transporter isoform 2 (hVMAT2). Whereas the indolamine serotoninergic system forms a similar affinity for both hVMAT1 and hVMAT2, catecholamines such as noradrenaline exhibit a threefold higher affinity for hVMAT2.2 As these specific transporters are responsible for packaging monoamine neurotransmitters into presynaptic secretory vesicles for release by exocytosis, the inhibition of hVMAT2 by compounds such as tetrabenazine thus results in consecutive noradrenaline depletion.3

Alterations of noradrenergic neurotransmission—that is, a neuronal noradrenaline depletion—can therefore be postulated to form one major origin of TBZ induced depressive symptoms.4 With this assumption, brain-specific catecholaminergic activity enhancers (CAEs) such as phenylethylamine have been shown to antagonise TBZ induced depression-like behaviour in rats.5 Modulating this altered noradrenergic neurotransmission pattern by the administration of selective noradrenaline reuptake inhibitors such as reboxetine may thus provide a new, specific, and fast acting tool in the management of depression caused by TBZ and related (neuroleptic) compounds.

WOLFGANG SCHREIBER
JÜRGEN-CHRISTIAN KRIEG
Department of Psychiatry and Psychotherapy, Philippus-University, Rudolf-Bultmann-Straße 8, D-35033 Marburg/Lahn, Germany

TOBIAS EICHHORN
Department of Neurology, Philippus-University, Rudolf-Bultmann-Straße 8, D-35033 Marburg/Lahn, Germany

Correspondence to: Dr Wolfgang Schreiber, Department of Psychiatry and Psychotherapy, Philippus-University, Rudolf-Bultmann-Straße 8, D-35033 Marburg/Lahn, Germany. Telephone 0049 6421 285229; fax 0049 6421 285229; schreiber@mail.uni-marburg.de

Spinal sulcal artery syndrome due to spontaneous bilateral vertebral artery dissection

In young adults vertebral artery dissection (VAD) is an important cause of brain infarction.1 A known mechanism is micro-trauma due to abrupt head movements for example, chiropractic manoeuvres. In addition a pathogenic role of connective tissue diseases, cystic media necrosis, fibromuscular dysplasia, migraine, and inflammatory diseases has been postulated.2 In VAD initial neck pain is often reported, which may be slight. Lesions caused by VAD are cerebellar or brainstem infarcts, unilateral or bilateral thalamic infarcts (top of the basilar syndrome), or infarctions in the posterior cerebral artery territory due to intra-arterial embolism or haemodynamic compensation when Collins are insufficient.3 Lesions of the cervical spinal cord are rare because of its good collateral supply.4 We report on a patient with a syndrome of the spinal sulcal artery (incomplete Brown-Séquard syndrome) caused by spontaneous bilateral VAD.

A 43 year old man with a history of arterial hypertension presented with left sided numbness sparing the face, which had evolved suddenly while he was walking. In addition, he reported on dull right sided neck pain irradiating into the occiput, which had been initiated by a head rotation while he was working at a computer 2 weeks before. The neck pain had spontaneously ceased 6 days later. Neurological examination disclosed dissociated sensation defect on the left with an indistinct level around C4 to C6. Below this level on the left he had a marked hypalgesia and nearly a loss of temperature sense. The right limbs were warmer than the left ones. In addition, we found mild right sided motor system deficits. Cranial nerve function was intact, despite a right sided Horner’s syndrome. According to chest radiography phrenic nerve function was preserved. Routine laboratory findings including CSF analysis were normal. The hemiplegia and the different temperature sensation in the limbs resolved completely within 3 weeks.

Tibial nerve somatosensory evoked potentials (SSEPs) had regular N22 and P40 latencies and amplitudes. Central motor conduction time (CMCT) was normal. Transcranial magnetic stimulation was prolonged to the right abductor digiti minimi (9.2 ms) and tibialis anterior (23.1 ms). The CMCT to the left target muscles was normal. Duplex sonography showed increased flow velocity on the level of the cervical vertebrae 3 to 5 with a maximum of 214 cm/s in the right and 197 cm/s in the left vertebral artery. Colour mode showed irregular narrowings of the lumen indicating dissections.

Cervical MRI showed a spinal cord infarction at the level C2 (figure). The circumference and dorsal part of the cord were not affected. In digital subtraction angiography (DSA) both vertebral arteries had string signs in the V1 and V2 segments with collateral flow to the distal V2–4 segments via the thyrocervical trunk (cervical ascendent artery) and the costocervical trunk also. The anterior spinal artery was incompletely contrasted by unilateral spinal branch of the right vertebral artery. They originated at the level of dissection.

The intradural origins of the anterior spinal artery (A2 segment) and the vertebral arteries (V4 segment) were not visible.

Bilateral spontaneous VAD is not rare, but often missed. In most cases, microtrauma preceding the dissection can be recalled by the patients. Due to the mild mechanical impact, the action of predisposing factors might be postulated. Among these may be changing in type III collagen, migraine, fibromuscular dysplasia, infections in the near past, and inflammatory vasculopathy.5 Magnetic resonance imaging with typical semilunar mural haematoma and in addition magnetic resonance angiography (MRA) with complementary documentation of an incomplete or tapering occlusion have a high sensitivity and specificity in cases of internal carotid artery dissection.6 By contrast, mural haematomas of the VA especially in the V1 and the V3 segments are often not detectable by MRI. In cases of unclear non-invasive findings, DSA is still the method of choice.7

In addition to consecutive brain infarctions, cervical spinal cord infarctions and nerve root compression syndromes may occur in cases of unilateral or bilateral VAD. Probably as a result of the pial collateral network and the dual posterior spinal artery, spi-
nal cord infarction is often located in the anterior spinal artery territory with the grey matter of the anterior horns exhibiting the highest vulnerability to ischaemia. This mechanism may lead to a typical “snake eye” configuration of medullary infarction. Besides the supply via VA spinal branches, which is found in 19% only unilaterally, there are branches originating from the ascending cervical artery (thoracocervical trunk) and the costocervical trunk supplying the spinal cord. DSA findings in the present case suggest that spinal branches originating from the right V2 segment were dominant feeders of the anterior spinal artery whereas there was no evidence of direct communication between vertebral and spinal arteries from the V4 segment. The dissection involved the V2 segment from which these spinal branches originate. A transient occlusion of these spinal branches is a likely consequence. This unusual type of arterial medullary supply may explain why VAD causes spinal cord infarction. Contrary to Pullicino, who described upper limb atrophies due to cervical spinal cord infarction involving the anterior horns, the present case shows a unilateral involvement of commissural, spinothalamic, pyramidal, and vasocostructor tracts. To our knowledge sulcal spinal artery syndrome caused by bilateral spontaneous VAD has not yet been described. In conclusion, differential diagnosis of acute spinal symptoms in young adults should include spontaneous unilateral or bilateral VAD with cervical spinal cord ischaemia.

S WEIDAUER
D CLAUS
Department of Neurology
M GARTENSCHLAGER
Institute for Radiology, Klinikum Darmstadt,
Teaching Hospital University Frankfurt, Germany
Correspondence to: Professor D Claus, Department of Neurology, Klinikum Darmstadt, Teaching Hospital University Frankfurt, Heddelsberger Landstrasse 379, 64297 Darmstadt, Germany.

Spanish families with cavernous angiomas do not share the Hispano-American CCM1 haplotype

Cerebral cavernous malformations are vascular malformations mostly located in the CNS. Their frequency is estimated close to 0.5% in the general population. Cerebral cavernous malformations occur as a sporadic or hereditary condition. From the Hispano-American population, familial forms were reported with a high frequency. CCM1, a hitherto unidentified gene mapping on chromosome 7 was shown to be involved in all families with cerebral cavernous malformations of Hispano-American descent with a strong founder effect.12 Around 50% of non-Hispano-American families showed linkage to CCM1 but no common haplotype was found.13 A recent study showed linkage of cerebral cavernous malformations to two additional loci. No Spanish family with cerebral cavernous malformations has been analysed so far.

We report herein a genetic linkage analysis conducted on nine Spanish families with cerebral cavernous malformations. All procedures were approved by an ethics committee. The families were unrelated and originated from different regions of Spain (south west (CVE2, 3, 4, 10, 17, 25), central (CVE24), south east (CVE28), and north east (CVE29). Seventy seven subjects including 55 potentially informative meioses and 12 spouses gave their informed consent. They were examined by a board certified neurologist, underwent cerebral MRI, and blood samples were taken. Magnetic resonance imaging was used to establish status for linkage analysis. Thirty four members had MRI diagnosis of cavernomas and were considered as affected. Among them, 14 experienced neurological symptoms (cerebral haemorrhage n=6, seizures n=8). Nineteen members with normal cerebral MRI were considered as healthy. Twelve members without MRI investigation had an unknown status. Analysis of pedigrees was consistent with an American descent with a strong founder effect. Around 50% of non-Hispano-American families showed linkage to CCM1 but no common haplotype was found. A recent study showed linkage of cerebral cavernous malformations to two additional loci. No Spanish family with cerebral cavernous malformations has been analysed so far.

We report herein a genetic linkage analysis conducted on nine Spanish families with cerebral cavernous malformations. All procedures were approved by an ethics committee. The families were unrelated and originated from different regions of Spain (south west (CVE2, 3, 4, 10, 17, 25), central (CVE24), south east (CVE28), and north east (CVE29). Seventy seven subjects including 55 potentially informative meioses and 12 spouses gave their informed consent. They were examined by a board certified neurologist, underwent cerebral MRI, and blood samples were taken. Magnetic resonance imaging was used to establish status for linkage analysis. Thirty four members had MRI diagnosis of cavernomas and were considered as affected. Among them, 14 experienced neurological symptoms (cerebral haemorrhage n=6, seizures n=8). Nineteen members with normal cerebral MRI were considered as healthy. Twelve members without MRI investigation had an unknown status. Analysis of pedigrees was consistent with an American descent with a strong founder effect. Around 50% of non-Hispano-American families showed linkage to CCM1 but no common haplotype was found. A recent study showed linkage of cerebral cavernous malformations to two additional loci. No Spanish family with cerebral cavernous malformations has been analysed so far.

(A) Pedigrees of the nine families with cerebral cavernous malformations. Black symbols=symptomatic patients with cavernous angiomas on MRI; half filled symbols=asymptomatic members with cavernous angiomas on MRI; empty symbols=asymptomatic members with normal MRI; question mark=members with unknown status. (B) Comparison of the Hispanic-American CCM1 haplotype and the haplotypes segregating with the disease phenotype within Spanish families. Polymorphic markers are shown on the left. Numbers indicate the sizes in base pairs. Primers used to amplify D7S2409 were different from those in the Hispano-American families resulting in a different size of the amplified fragment. M65B was not studied in the Hispano-American families. Family CVE24 was not informative for D7S646. For families CVE17 and CVE29, the two haplotypes of the affected siblings are indicated. ND=not determined.
cerebral cavernous malformations, this haplo-
type is more likely not predominant in Span-
and the strong founder effect seen in all
published Hispanic-American families with
cerebral cavernous malformations might be
specific for this population.

HJ is supported by the Schweizerische Stiftung für
medizinisch-biologische Stipendien (Switzerland),
SL, by the Fonds de Recherche en Santé (Canada),
P, by the Collège des Enseignants de Neurologie
and ZENÉCA pharmaceutical group. The work was
founded by INSERM, Ministère de l’Enseignement
Supérieur et de la Recherche, CSIC, and the
Fondo de Investigacion de la Seguridad Social (Fiss:
900407).

H H JUNG
P LABAUGE
S LABERGE
E MARECHAL
E TOURNIER-LASSERVE

INSERM U25, Faculté de Médecine Necker, Paris, France

M LUCAS
Laboratorio de Biología Molecular
J M GARCIA-MORENO
M A GAMERO
I GIZQUIERDO
Macarena, Avenida Dr Fedriani, 41071 Sevilla, Spain

E TOURNIER-LASSERVE
Hôpital Lariboisière, Paris, France

Correspondence to: E Tournier-Lasserve, INSERM U25, Faculté de Médecine Necker, 156 Rue de Vaugirard, 75015 Paris, France
Telefon 0033 1 45 67 25 97; fax 0033 1 45 56 01 02; email: tournier@necker.fr

Hydrocephalus caused by metastatic brain lesions: treatment by third ventriculostomy

Metastasis to the brain occurs in 20%-40% of cancer patients. About 20% of these metastases are located in the posterior fossa, cerebellum, and brainstem. Metastatic disease to periventricular brain tissue can obstruct a normally functioning cerebral spinal fluid (CSF) produced in the ventricles to the subarachnoid space where it is normally absorbed by arachnoid granulations. This typically causes an obstructive or non-communication hydrocephalus, which can be specific for this population. 1

1. Otten P, Pizzolato GP, Riliet B, et al. A propo de 131 cas d’anomaies caverneuses (cavern-
omenes) du SNC, repérés par l’analyse retrospective
2. Gunel M, Award IA, Finberg K, et al. A founder
mutation as a cause of familial cavernous malfor-
1996;334:946-51.
des 131 cas d’anomaies caverneuses (cavern-
omenes) du SNC, repérés par l’analyse retrospective

Hydrocephalus caused by metastatic brain lesions: treatment by third ventriculostomy

Metastasis to the brain occurs in 20%-40% of cancer patients. About 20% of these metastases are located in the posterior fossa, cerebellum, and brainstem. Metastatic disease to periventricular brain tissue can obstruct a normally functioning cerebral spinal fluid (CSF) produced in the ventricles to the subarachnoid space where it is normally absorbed by arachnoid granulations. This typically causes an obstructive or non-communication hydrocephalus, which can be specific for this population. 1

1. Otten P, Pizzolato GP, Riliet B, et al. A propo de 131 cas d’anomaies caverneuses (cavern-
omenes) du SNC, repérés par l’analyse retrospective
2. Gunel M, Award IA, Finberg K, et al. A founder
mutation as a cause of familial cavernous malfor-
1996;334:946-51.
des 131 cas d’anomaies caverneuses (cavern-
omenes) du SNC, repérés par l’analyse retrospective

Hydrocephalus caused by metastatic brain lesions: treatment by third ventriculostomy

Metastasis to the brain occurs in 20%-40% of cancer patients. About 20% of these metastases are located in the posterior fossa, cerebellum, and brainstem. Metastatic disease to periventricular brain tissue can obstruct a normally functioning cerebral spinal fluid (CSF) produced in the ventricles to the subarachnoid space where it is normally absorbed by arachnoid granulations. This typically causes an obstructive or non-communication hydrocephalus, which can be specific for this population. 1

1. Otten P, Pizzolato GP, Riliet B, et al. A propo de 131 cas d’anomaies caverneuses (cavern-
omenes) du SNC, repérés par l’analyse retrospective
2. Gunel M, Award IA, Finberg K, et al. A founder
mutation as a cause of familial cavernous malfor-
1996;334:946-51.
des 131 cas d’anomaies caverneuses (cavern-
omenes) du SNC, repérés par l’analyse retrospective
as 50%, with the highest failure rate in the
first few months after shunt placement. The
complication rates for both procedures are
low. Third ventriculostomy and shunting can
potentially cause a stroke, bleeding, ventricu-
laritis, meningitis, a subdural haematoma, CSF
leak, diabetes insipidus, and SIADH. How-
ever shunting has additional risks of mechanici-
mal malfunction, complications associated
with implanting a foreign body, and over-
drainage syndrome.

Because third ventriculostomy restores
near normal CSF dynamics, overdrainage is
prevented. The procedure is also minimally
invasive and safe. The procedure’s low
morbidly, high efficacy, and potentially short
hospital stay are well suited as a palliative
treatment for patients suffering from obstruc-
tive hydrocephalus from unresectable

tumours.

Neuronal activity alters local blood flow
in the brain tumour adjacent to the
activating cortex.

Characteristics of blood flow in brain tu-
mours have been studied extensively; these
studies are important for diagnosis of mali-
gnancy and therapy monitoring. Our study is
the first to consider how activity dependent
changes of regional cerebral blood flow
(rCBF) alter tumour blood flow in the brain
tumour adjacent to the activating cortex.

Such an interaction between cortical blood
flow and tumour blood flow may be of value
for evaluating mechanisms of neurological
symptoms associated with brain tumours.

Neuronal activation causes an increase of
regional cerebral blood flow (rCBF) in the
activating cortical area. Near infrared spec-
troscopy (NIRS) demonstrates the increase
in rCBF during neuronal activity as increases
in oxygenated haemoglobin (oxy-Hb) and
total haemoglobin (total-Hb) with a decrease
in deoxyhaemoglobin (deoxy-Hb). NIRS is
an optical method to measure concentration
changes of oxy-Hb, deoxy-Hb, and total-Hb
(oxy-Hb+deoxy-Hb) in cerebral vessels by
means of the characteristic absorption spect-
ra of haemoglobin in the near infrared range.

In the present study, we measured changes
of oxygenation and haemodynamics in the
brain tumour adjacent to the activating
cortex by means of NIRS. We found transient
decreases in oxy-Hb and total-Hb in the
tumour during neuronal activation, suggest-
ing that the local blood flow of the tumour
was decreased by a transient increase of rCBF
induced by neuronal activation.

The patient was a 35 year old right handed
man who presented with complaints of head-
ache and dizziness. A neurological examina-
tion showed no abnormalities and a decline in
language functions. A postcontrast CT
showed a well defined large enhancing
tumour (4×5 cm) compressing the left frontal
lobe. Computed tomographic angiography
showed that the branches of the left middle
cerebral artery supplied the tumour (figure
A). The patient underwent a left frontal
craniotomy for removal of the tumour; the
pathological diagnosis was meningioma. The
NIRS measurement was performed before the
operation.

We measured haemodynamic changes in the
brain tumour during neuronal activation
in the left frontal lobe induced by cognitive

![A](http://jnnp.bmj.com/)

Table 1 Clinical characteristics of patients who underwent third ventriculostomy for obstructive hydrocephalus

<table>
<thead>
<tr>
<th>Case No</th>
<th>Age (y)</th>
<th>Sex</th>
<th>Diagnosis</th>
<th>Result</th>
<th>Postoperative stay in hospital (days)</th>
<th>Survival time (weeks)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>70,M</td>
<td></td>
<td>Lung mixed adenocarcinoma and squamous cancer metastasis to thalamus</td>
<td>Improved</td>
<td>17</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>46,F</td>
<td></td>
<td>Ovarian adenocarcinoma metastasizes to cerebrum and medulla</td>
<td>Improved</td>
<td>9</td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td>38,F</td>
<td></td>
<td>Breast ductal carcinoma metastases to brainstem and cerebellum</td>
<td>Improved</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>75,M</td>
<td></td>
<td>Rectal adenocarcinoma metastasis to cerebellum</td>
<td>Failed</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>39,F</td>
<td></td>
<td>Breast adenocarcinoma metastasis to cerebellum</td>
<td>Improved</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>60,M</td>
<td></td>
<td>Lung adenocarcinoma metastasis to thalamus</td>
<td>Failed</td>
<td>6</td>
<td>6+†</td>
</tr>
<tr>
<td>7</td>
<td>64,M</td>
<td></td>
<td>Osteopagal carcinoma metastatic to cerebellum</td>
<td>Improved</td>
<td>7+</td>
<td>1+†</td>
</tr>
</tbody>
</table>

*Results are considered improved if the patient had resolution of symptoms and follow up imaging showed hydrocephalus improved or resolved.
†Patient is currently alive.
tasks. We monitored concentration changes of oxy-Hb, deoxy-Hb, and total-Hb, using an NIRO-500 instrument (Hamamatsu Photonics KK, Japan). The optodes were placed at an interoptode distance of 3.5 cm on the left forehead so that the centre of the two optodes was placed at the centre of the tumour. With an optode distance of 4 cm, correlations of oxy-Hb and total-Hb measured by NIRS and rCBF measured by PET suggested that the reliable penetration depth of near infrared light into brain tissue is about 1.3 cm; thus the present NIRS measurement area was restricted in the tumour. The patient was seated and had his eyes open during the NIRS measurement. Informed consent was obtained from the patient.

To activate the left frontal lobe, we used the following four tasks: (1) semantic verbal fluency, which entails naming as many items in a semantic category (for example, animals) as possible; (2) confrontation naming, which involves naming ordinary items presented by the tester; (3) backward digit span, a working memory task which involves reporting of digits (2 to 8) in the reverse order; (4) speech, which entails reading a short descriptive passage aloud. The speech responses of the patient to the tasks were normal.

Figure 2 shows an example of changes in NIRS during the naming task. After the beginning of the task, oxy-Hb and total-Hb decreased to negative values during the task, and deoxy-Hb also decreased. These changes returned to the control level gradually after the task. The other tasks also caused similar changes of oxy-Hb, total-Hb, and deoxy-Hb.

The rCBF in the left frontal lobe is generally increased by all the tasks used in the present study. Indeed, our NIRS activation study using the cognitive tasks showed increases in oxy-Hb and total-Hb in the left frontal lobe in normal adult subjects—indeed, increases in oxy-Hb and total-Hb were found in 92.3% of young adult subjects (mean SD) (28.8 ± 4.4 years) during the word fluency task (unpublished data). Therefore, although we could not measure the changes in rCBF in the left frontal lobe of the patient, the difference from our previous studies strongly suggests that the tasks caused an increase in rCBF in the left frontal lobe of the patient.

A decrease in oxy-Hb and total-Hb recorded from the brain tumour indicates a decrease of local blood flow in the tumour because the NIRS measurement area was restricted to the brain tumour. The decreases in oxy-Hb and total-Hb were found only during the tasks; consequently, these changes were probably not due to changes in systemic blood pressure, which can alter tumour blood flow. Based on these assumptions, we suggest that the increase in rCBF in the left frontal lobe induced by the tasks stole the local blood flow of the brain tumour through the cortical branches, leading to the decrease of local blood flow in the tumour.

We suggest that this report supports the hypothesis that a stealing of blood flow is one of the mechanisms. The present report supports this hypothesis.

KAORU SAKATANI HUANCONG ZOU YENG WANG Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, China

WEMARA LICHTY Group of Detection and Analysis of Human Body Movement, Program of BIME, Department of Electrical Engineering, Yanshan University, Japan

KIYOMI YABU Department of Rehabilitation, Takahashi Neurosurgical Hospital, Hino, Japan

Correspondence to: Dr Kaoru Sakatani, Department of Neurosurgery, China-Japan Friendship Hospital, Yining East Rd., Hepingxi, Beijing 100029, People’s Republic of China. Telephone (fax) 0086 10 64202346; email sakatani@ public.east.cn.net

Migraine aura masquerading as Balint’s syndrome

Migraine is a common neurological disorder with a prevalence of 0.5% to 2% in the general population. In one fourth of total migraineurs, headache is preceded by an aura. 1 We describe a patient with recurrent episodes of migraine in whom headache was preceded by a constellation of visual symptoms which constituted salient components of Balint’s syndrome. This syndrome, consisting of a triad of simultagnosia, optic ataxia, and oculomotor apraxia, is seen with a prevalence of 0.5% to 2% in the general population.

The patient would not lose contact with the patient during the episode. Occasionally these visual symptoms were not followed by headache. The patient would not lose contact with the environment during or after the visual symptoms. Her mother and two younger sisters were also having paroxysmal episodes of common migraine.

Her physical and neurological examination in between the episodes was unremarkable. Neurological examination during the aura symptoms disclosed that she was unable to see simultaneously all the objects in the visual field (simultagnosia). She did omit several words while reading a paragraph. However, she could comprehend and read each and every word individually. On being shown a complex picture comprising multiple subunits she was not able to comprehend and perceive the entire picture but was able to perceive the elements of the picture individually (seeing in piecemeal). These aforementioned features were consistent with simultagnosia. Besides simultagnosia, she had optic ataxia as evidenced by her inability to coordinate hand and eye movements. Optic ataxia was tested as follows: each eye was tested separately and the hand ipsilateral to the eye being tested was used. The target stimulus was a 5 mm long pin with a white head placed at preselected locations. The patient was asked to touch this pin with her index finger without shifting her gaze from the fixation point. The patient had difficulty in performing this test but had no problems in reaching out to her own body parts or an auditory stimulus with her eyes closed. These features were consistent with optic ataxia. Moreover, gaze apraxia was evident by her inability to look at an object on command. However, she could do it spontaneously. In addition, she had impaired smooth pursuit and voluntary saccades in all directions. Reflex eye movements were normal. Visual acuity during the episode was 6/6 bilaterally. Visual field was normal during the episode as demonstrated by the confrontation method. Ophthalmological examination, including perimetry performed during a symptom free period, was normal.

There was no clinical evidence of Gerstmann syndrome, prosopagnosia, object agnosia, or colour agnosia. Her cranial CT and magnetic resonance angiography were unremarkable.

Electroencephalography was also non-contributory. The frequency of visual aura symptoms and headache decreased considerably after the patient was started on flunarazine at a daily dosage of 10 mg at bed time. The visual impulses, after being recognized by the primary visual cortex (Brodmann area 17), are interpreted and integrated in visual association areas 18 and 19. Brodmann area 19, in turn, is connected with the angular gyrus and frontal eye field through visual association fibres. Any lesion in the visual association areas or their connections would result in impaired integration of visual impulses despite normal visual acuity.

The visual symptom complex in this case possibly represents an aura of migraine. The pathogenesis of migraine aura has been a debatable issue.2 In this case it is suggested that the parasympathetic process of migraine aura results in a disconnection syndrome by

Letters, Correspondence, Book reviews, Correction

J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.67.4.558 on 1 October 1999. Downloaded from http://jnnp.bmj.com/ on December 3, 2021 by guest. Protected by copyright.
neurological reactions, including postvaccination encephalomyelitis, in up to 1 in 12,000 courses, with a 3% mortality. Clinical forms include a reversible mononeuropathy multiplex, and meningoencephalitic and encephalomyelitis reactions. Myelin basic protein and related neural proteins from the nervous tissue of the animal on which the virus was cultivated stimulate an autoimmune reaction in the human nervous system.

Tolerance has been improved by the development of the suckling mouse brain vaccine (SMBV). The attenuated virus is cultured on immature mouse brain tissue, which contains little myelin, thus reducing the risk of complications. SMBV is inexpensive (US$1.5 per treatment course) and easily manufactured locally; it is the most widely used postvaccination vaccine in Vietnam. Rare neurological reactions do occur with SMBV, Complications of the CNS have been reported to occur after vaccination with an incidence of 1:27000 treated people, with a 22% mortality. The mortality was particularly high (over 50%) if there was extensive CNS involvement. The third type of vaccine available is the human diploid cell tissue culture vaccine (HDCV), which is both safe and efficacious. However, the recommended regimen is not affordable in most developing countries.

When we approached the Rabies Laboratory, Ministry of Agriculture and Fisheries, United Kingdom for advice in this case their comment was “why do you use the SMBV, can’t you use another vaccine”. Worldwide about 10 million people each year receive rabies vaccine after exposure; at the Centre for Tropical Diseases we treat 3000 people with dog bites annually. The cost of an HDCV in Vietnam, administered in its present regimen (1ml given for 5 days on days 0, 3, 7, 14, and 28 with an optional booster on day 90) is US$ 125, making the use of this vaccine unaffordable.

This is the first report to show the demyelinating CNS lesions on MRI, and their resolution after steroid therapy. It is relatively rare for patients to survive if they develop severe CNS effects after postexposure rabies vaccination. Although the incidence of reactions to SMBV is very much lower than with STV, this report confirms that it does still occur. Both SMBV and STV are widely used throughout the developing world, and would be the vaccine administered to travellers exposed to animal bites in such countries.

This case stresses the need for high dose steroids in postexposure vaccine encephalitis and the urgent need for the development and deployment of a safe, and critically, affordable postexposure vaccine regimen. The economic low dose multisite intradermal regimen using the HDCV provides an example of how this goal may be achieved although it is not yet widely accepted. Such a vaccine regimen (0.1 ml HDCV given at multisite injections on days 0, 7, 28, and 90) could be made affordable, and offers excellent protection without the risks of postexposure immune mediated encephalitis.1

N V Y CHAU
TT PHUONG
Centre for Tropical Diseases, 190 Ben Han Tu, District 5, Ho Chi Minh City, Vietnam

R SELLR
Department of Clinical Neurosciences, Western General Hospital, Edinburgh, UK

R KNEEN
J FARRAR

Brain MRI in May 1997. (A) T2 weighted image showing multiple areas of high signal in the cerebral white matter. Bilateral subcortical and periventricular lesions are seen. (B) Brain MRI in July 1997. T2 weighted image shows resolution of the white matter lesions.
The leaves are also chewed by and throughout Saharan and sub-Saharan (also qat and kat) are chewed by a large pro-

Correspondence to: Dr J J Farrar, Wellcome Trust Clinical Research Unit, Centre for Tropical Diseases, 190 Ben Ham Tu, District 5, Ho Chi Minh City, Vietnam

5 Warrell MJ, Nicholson KG, Warrell DA, et al. Ecomonical multiple-site intradermal immuni-

The likely precipitant of this man’s illness seems to be his use of khat. A drug screen on admission was negative, and his family denied misuse of other drugs. It remains possible that the sample of khat chewed by this patient was contaminated. We are unaware of any previous reports of khat misuse with severe neurological deterioration; previous cases may not have been investigated or reported. In reporting this case our intention is to alert others to a possible complication of the misuse of this drug. Evidence of other cases would provide a powerful argument for the restriction of import and sale of khat.

Necrotising vasculitis with conduction block in mononeuropathy multiplex with cold agglutinins

Cold agglutinins are cold reactive autoanti-

body that have haemolytic effects on red blood cells mediated via complement fixation. A mononeuropathy multiplex with cold agglutinins has been described, however, details of its pathomechanism are unclear. Here, we report the clinical, electrophysiological, and pathological findings of a mononeuropathy multiplex in a patient with cold agglutinins, who responded very well to plasmapheresis. A 72 year old man was admitted with a 1 month history of progressing dysesthesia and weakness of the limbs. He had no anaemia, jaundice, hepatosplenomegaly, or evidence of leuco-

Cranial MRI 3 months after onset of symptoms showing diffuse signal abnormality in the deep white matter of both cerebral hemispheres. There is also marked cortical atrophy.
M-protein, direct and indirect Coombs tests, cryoglobulin, antibodies to mycoplasma, myelin associated glycoprotein, gangliosides (GM1, GD1b, asialo-GM1, GT1b, GQ1b, Gal-C), P-ANCA, and C-ANCA. The CSP was normal. Titre of cold agglutinins was detectable at 1:256 at 4°C (normal <1:256). The patient’s serum agglutinated adult group O red blood cells, but not O red blood cells or human cord red blood cells, signifying cold agglutinins with 1 specificity. Immunoelectrophoresis of the eluate confirmed IgM composition.

The initial nerve conduction study showed severe diminution or absence of compound motor and sensory potential at both upper and lower extremities. The SNAPs in median, ulnar, and sural nerves bilaterally were not evoked. Electromyographic studies of the affected muscles showed moderate neurogenic changes, but there were no fibrillation potentials except in the left anterior tibial muscle. Sural nerve biopsy was performed. Epineurial vessels were surrounded by mononuclear cell infiltrates (figure A). Some vessels had focal necrosis of their wall. The small vessels in the endoneurium were markedly decreased (50 mg/day) with tapering of steroid. He was discharged on prednisolone (20 mg/day). In the subsequent 4 years, he has had mild exacerbation of dysaesthesia that responded to intermittent steroid therapy.

Characteristic features of the present case are as follows: (1) subacute onset of mononeuropathy multiplex; (2) necrotising vasculitis with damaged axons and myelin fibres; (3) probable conduction block in the median nerve; (4) increased concentrations of serum titres of cold agglutinin; and (5) marked response to plasmapheresis. Extensive investigations for other causes of neuropathy were negative except for an increased serum concentration of cold agglutinins, which strongly suggests that cold agglutinins may play an important part in the induction of neuropathy in this case.

Six patients with neuropathy associated with cold agglutinins have been reported1-4 including our patient. Cold agglutinins are cold reactive autoantibodies that react with the antigenic determinant termed I/i or Pr present on glycoproteins and glycolipids in erythrocyte membranes. Ari et al5 reported a case of polyneuropathy and IgM M proteinemia with anti-Pr2 CA activity. IgM protein cross reacted with sialoyl paragloboside, GT1b, GD1a, GD1b, GM3, and GD3 present in myelin and in endothelial cells of the peripheral nervous system. It has been speculated that anti-Pr2 IgM protein induced immune mediated damage to vascular endothelium and peripheral nervous system myelin. A similar pathomechanism has been postulated in the other cases.6 However, necroting vasculitis has never been reported in neuropathy with cold agglutinins. This is the first demonstration of vasculitic neuropathy with cold agglutinins. Although the mechanism for neuropathy with cold agglutinins is unknown, mechanisms similar to those in cryoglobulinaemic neuropathy have been postulated.7 The hypotheses are (1) immunologically mediated demyelination; (2) ischaemic injury secondary to sludging or agglutination of red blood cells in the vasa nervorum; and (3) an associated vasculitis. In the present case, we have confirmed the necrotising vasculitis and probable conduction block. Pathophysiological explanations for association of vasculitis and conduction block may be as follows. Firstly, conduction block may occur as a consequence of nerve ischaemia due to small vessel occlusion. There have been reports of conduction block occurring in vasculitic neuropathy which support this possibility. Secondly, humoral factors including cold agglutinins may induce immune mediated demyelination in the peripheral nervous system. Taken together, neuropathy with cold agglutinins may involve immunologically mediated demyelination, microcirculation occlusion, and vasa nervorum vasculitis. The diversity of pathomechanisms may come from the difference target antigens recognised by cold agglutinins. Plasmapheresis proved effective in all cases. These findings strongly suggest that humoral factors including cold agglutinins may play an important part in the induction of neuropathy with cold agglutinins. We recommend plasmapheresis as first choice treatment for neuropathy associated with cold agglutinins.

We thank Dr Gerard Salazar for critical reading of the manuscript, Ms M Teshima and N Hirata for their technical assistance, Dr S Kusunoki (Department of Neurology, Institute for Brain research, University of Tokyo) for analyses of antibodies to gangliosides, and Mr H Moung (Division of Blood Transfusion Medicine, University of Kagoshima) for characterization of cold agglutinin.

R OTSUKA F TUTIKA K ARIMURA Y MARUYAMA Y ARIMURA M OSHIKA

The Third Department of Internal Medicine, Kagoshima University School of Medicine, Kagoshima 890-851, Japan Correspondence to: Dr R Otsuka, The Third Department of Internal Medicine, Kagoshima University School of Medicine, Sakuragaoka 8–35–1, Kagoshima, Japan

CORRESPONDENCE

The cholinergic hypothesis of Alzheimer’s disease: a review of progress

I read with interest the review of Francis et al regarding the progress of the cholinergic hypothesis of Alzheimer’s disease. They mentioned that donepezil produced improvement or no deterioration in more than 80% of patients, and that such responses should be viewed positively considering the progressive, degenerative nature of the disease. Various donepezil manufacturer’s medical representative’s presenting data from a clinical study also commonly use this statement. However, this only partially reveals the truth. In fact, the same study produced improvement or no deterioration in 59% patients on placebo. I think that the beneficial effect of donepezil in particular clinical trials should always be critically reviewed in comparison with placebo. In addition, as both 24 week placebo controlled donepezil trials performed so far excluded patients with behavioural disturbances, my impression is that the positive effect of donepezil on the symptoms of behavioural disturbances still remains controversial. In fact there are reports that donepezil might induce behavioural disturbances in patients with Alzheimer’s disease. Therefore, I would be extremely cautious about prescribing donepezil to patients with Alzheimer’s disease accompanied by behavioural disturbances.

Finally, donepezil was never investigated in a 36 week randomised double blind study as was mentioned in the review. The authors are probably referring to the randomised 24 week double blind placebo controlled trial with an additional 6 week single blinded placebo phase.

We are grateful to your correspondent for providing us with the opportunity to clarify these points.

The authors reply: We thank Professor Babic for the letter, which raises several interesting points. We agree that it may be more helpful to put the results attributed to treatment with donepezil in the context of the placebo response. In general, looking at this as a class effect in relation to several compounds, the picture emerging is that about twice as many people obtain a response to active treatment as to that with placebo. The high placebo response is a common factor in most studies in this field and is worthy of some explanation in its own right. Although it seems that these studies compare drug treatment with that of a placebo (one treatment against no treatment), the reality is that it is a comparison of patients receiving two treatments against other patients who are receiving one form of treatment. The additional treatment regime is, of course, the care and attention that they receive by being part of the clinical study, which often seems to have an impact, not just on the patient but also on their main carer or carers.

As far as behavioural disturbances are concerned, however, our review was making the point that evidence from both clinical trials and other factors from clinical trials to suggest that cholinomimetic drugs as a whole may have a beneficial effect on some non-cognitive behavioural symptoms. This has now been reported for at least two cholinesterase inhibitors, and two muscarinic agonists. In particular, a clear link is emerging between psychotic symptoms and cholinergic dysfunction. Thus, Bodick et al have shown that the M4 agonist xanomeline causes a dose dependent reduction in hallucinations, agitation, and delusions in a 6 month randomised double blind placebo controlled, parallel group trial. In addition, Cummings and Kaufer have shown that the cholinesterase inhibitor rivastigmine is effective in reducing psychotic features than cognitive disturbances; tacrine also reduces or abolishes hallucinations in Parkinson’s disease. Another cholinesterase inhibitor, metrifonate, was also shown to reduce the number of hallucinations in a 26 week randomised, double blind, placebo controlled safety and efficacy study in patients with Alzheimer’s disease. Further support for a link between acetylcholine and psychosis derives from postmortem data showing that the activity of choline acetyltransferase in the temporal cortex of patients with Lewy body dementia was lower in those patients with hallucinations than in patients without this feature. Finally, in animals the partial M3, agonist (5SR,6R)-6-(3-propylthio-1,2,5-thiadiazol-4-yl)-1-azabicyclo[3.2.1]octane produced a preclinical profile suggestive of antipsychotic efficacy and that the psychomimetic NMDA receptor antagonist ketamine (when administered at subanesthetic doses) reduced brain concentrations of acetylcholine. Thus, on the basis of both clinical and preclinical data, a clear rationale is emerging for prescribing cholinomimetic agents for treating the non-cognitive behavioural symptoms associated with dementia, particularly psychosis.

Professor Babic is also correct in identifying two of the studies referred to as the 30 week randomised multicentre placebo controlled parallel group studies, which included a 24 week double blinded treatment phase.

BOOK REVIEWS

The neuropathies of diabetes are common (as the chapters in this book repeatedly remind us) and can be very disagreeable. Symptomless neuropathy underlies foot ulceration and sepsis as the commonest clinical consequence of diabetic neuropathy but other unpleasant disorders range from exceptionally severe pain to the whole range of problems resulting from autonomic failure. This book comprehensively covers every aspect of the subject, systematically (and at times exhaustively) from its epidemiology and pathogenesis (exhaustingly) to structural, functional, and clinical problems and their treatment. Most of the authors are well known in the field and their accounts are up to date and authoritative.

Unfortunately, struggle as they might, all authorities have difficulty in defining what they mean by diabetic neuropathy, in regard, understanding of this complication both in clinical and pathological terms, as well as with regard to treatment, lags far behind that of the other classic diabetic complications, nephropathy and retinopathy. Even its classification presents problems and attempts to do so are found in four different chapters, describing four classifications. Repetition is an unfortunate feature of this book and—quite apart from the confusion over classification—aspects of pathogenesis, structural changes, epidemiology, diagrams, and some reference to treatment (for example, that of pain) appear repeatedly in different chapters in greater or lesser detail.
This is certainly a book for the specialist and not at all (as the preface suggests) for the family practitioner. There are good reviews of nerve structure, causation, and treatment of painful neuropathies and focal neuropathies. The comprehensive survey of the Diabetes Control and Complications Trial (DCCT) shows in detail the only treatment which is truly effective (diabetic control); and the lengthy description of aldose reductase inhibitor trials establishes that, even after more than two decades of investigation, further trials are still needed.

Clinical evaluation of somatic and autonomic neuropathies are useful and also, to trials are still needed.

hibitor trials establishes that, even after more than two decades of investigation, further trials are still needed.

The title and back cover of the latest addition to *Neurology* Lite texts contains the usual proclamations: "Concise, key topics, revision aid, essential, review..." the well trailed soundbites demanded by the consumer in the increasingly competitive market "of wider - learn more" books. This book, however, is unusual and distinct. Unlike many rivals it is not an A5 facsimile of a superior parent A3 reference tome. Brevity, so essential to the success of an overview work, has sacrificed neither clarity nor clinical relevance. The strength of *Key Topics in Neurology* owes much to the author's ability to negotiate skilfully the compromises necessary for a successful distillation of a large and complex field. He has not shied from wholesale culling of neurological ballast. The allied ability to distinguish and highlight the salient and relevant from the obscure and historical allows this small book to be surprisingly thorough in its coverage and topicality. There is sufficient up to date information on most areas of neurology such that this book would be useful for specialist registrars albeit without the detail or embellishment they seek. In terms of the aims of this book such observations must be regarded as complimentary.

My limited criticisms relate to details of layout and presentation. I found the exclusive alphabetical arrangement of chapters mildly disorientating in that, for example, *History taking in Neurology* is to be found at p 131. Similarly, the absence of diagrams and tables is an unexpected omission as I would imagine that this would have complemented the overall style of the book. These are minor gripes of what in print largely matches the sleeve hype and with a price tag of just £27.50 the book will be welcomed by undergraduates through to specialist registrars.

SIDDHARTHAN CHANDRAN

Readers may be interested in:

