LETTERS TO
THE EDITOR

Behavioural status during the intracarotid amobarbital procedure (Wada test): relevance for surgical management

Presurgical evaluation in many epilepsy programmes often includes the intracarotid amobarbital procedure (IAP). Sodium amytal is injected into the internal carotid artery to produce a temporary “pharmacological paralysis” of hemispheric function. Traditionally, the IAP has been employed in patients with refractory temporal lobe epilepsy being considered for anterior temporal lobectomy. In these cases it is used to determine cerebral dominance for language, to assess the risk of severe post-surgical auditory deficits, and to predict post-surgical material specific memory changes. More recently, the use of the IAP has been extended to complement EEG localisation and radiological data by lateralisation temporal lobe dysfunction.

We report a case of frontal lobe epilepsy in our comprehensive epilepsy programme (1991–8) that suggests the emergence of frontal lobe behavioural features common in patients in whom the IAP leads to the suspicion of bifrontal compromise (for example, a history of traumatic head injury). By contrast, these features remain less pronounced in cases of non-traumatic aetiology, in which the integrity of frontal lobe systems is presumed. Although it remains an incidental finding in the context of determining the suitability of a candidate for anterior temporal lobectomy, this outcome may have potential implications for the selection of patients for frontal lobectomy.

We report a case of frontal lobe epilepsy secondary to a traumatic head injury. Out of concern for untoward postoperative behavioural change, we employed the IAP in an attempt to predict the risk of a frontal lobe syndrome. A 39 year old man had a 23 year history of severe refractory epilepsy. The seizures consisted of staring spells, two episodes of severe burning due to seizures while showering, multiple episodes of postictal confusion and probable postictal psychosensory, a lung abscess secondary to aspirated brain. MRI disclosed a well defined atrophic lesion involving the left anterior frontal region considered likely to be post-traumatic in origin. Interictal FDG PET and HMPO SPECT disclosed hyperfusion in the left anterior frontal region commensurate with the abnormality shown on MRI. Although his electroclinical pattern was suggestive of symptomatic generalised epilepsy, because of the left frontal lesion, seizure onset from that region was considered likely.

On neuropsychological examination, his general cognitive function was normal. At a behavioural level, however, he presented as very peevish in manner with a very rigid, inflexible cognitive style. The neuropsychological opinion was of a mild frontal lobe syndrome consistent with the history of traumatic head injury. There was no current evidence of psychiatric disorder. Although having successfully passed his final year of secondary school (together with several courses of advanced education), he had remained unemployed due to his seizures. He was socially isolated and his interpersonal relationships were limited.

He had severe life threatening epilepsy with the surgical criteria of only retaining survival a few weeks following treatment. However, as surgical management would involve resection of the left frontal lobe against a background of traumatic head injury and the possibility of more generalised frontal lobe compromise, a left hemispheric IAP was performed. Sodium amytal (125 mg) was administered via a slow hand injection. Of relevance, no crossflow into the contralateral anterior cerebral artery via the anterior communicating artery was present (as assessed by a separate injection of contrast medium). The injection was accompanied by a dense right hemiplegia and global aphasic arrest. Resolution of language was characterised by a dense perseveration of counting which could not be influenced by the examiner. Despite normal comprehension, he showed severely impaired capacity for motor regulation (gait and fine motor function), together with marked behavioural disinhibition (agitation, swearing, verbosity, childishness). Although seemingly aware of some aspects of his behaviour (apologies for swearing), he seemed unable to control his responses. The overall impression was of a pronounced frontal lobe syndrome, suggesting that the right frontal lobe had incurred some damage secondary to the documented head trauma and that he must have been reliant on some left frontal contribution.

On the basis of the IAP findings, a selective cortical resection (as opposed to more extensive frontal lobectomy) was performed, the resection extending to the region of damage was advised. Intraoperative electrocorticography showed active focal epileptic discharges maximal in the inferior frontal lobe in the electrodes closest to the lesion. A cortical resection was performed with frameless stereotaxy guidance excision of the frontal lobe. Histopathology on the resected tissue showed an old post-traumatic cyst involving the cortex and white matter. His postoperative course was unremarkable. When reviewed several months after surgery he was seizure free. His performance on neuropsychological evaluation remained commensurate with presurgical status. There were no novel subjective complaints. Mood, behaviour, and temperament remained stable.

Despite its undeniable value in many individual cases of temporal lobe epilepsy, the IAP has remained a controversial assessment instrument. Amidst this controversy its potential utility in other patient groups seems to have been overlooked. A primary criticism of its use in temporal lobe epilepsy has been the question of irrigation and whether the medial temporal lobe is adequately “disabled” during the procedure. This particular limitation is not applicable to the patient with frontal lobe epilepsy, as the region of interest is clearly ablated via supply from the carotid arterial system. Caution must, however, be exercised with respect to possible crossflow into the anterior communicating artery via the anterior communicating artery. When such crossflow is present, the ability to assess validity the integrity of contralateral frontal lobe function will be compromised by the potential induced bilateral frontal lobe syndrome. As with the use in cases of temporal lobe epilepsy, only a restricted form of assessment is possible with the frontal lobe patient during the period of ablation. An understanding the implications of issues of behavioural regulation would seem most useful.

It should be borne in mind that the degree of frontal lobe dysfunction induced by the IAP represents the “worst case scenario” for the patient. These findings were confounding. The left anterior temporal lobe is adequately “disablated” during the procedure. This particular limitation is not applicable to the patient with frontal lobe epilepsy, as the region of interest is clearly ablated via supply from the carotid arterial system. Caution must, however, be exercised with respect to possible crossflow into the anterior communicating artery via the anterior communicating artery. When such crossflow is present, the ability to assess validity the integrity of contralateral frontal lobe function will be compromised by the potential induced bilateral frontal lobe syndrome. As with the use in cases of temporal lobe epilepsy, only a restricted form of assessment is possible with the frontal lobe patient during the period of ablation. An understanding the implications of issues of behavioural regulation would seem most useful.

This case report forms only the basis for a novel hypothesis that clearly requires more rigorous scientific research before its clinical utility can be reliably established. Nonetheless, we think that it is worth drawing the attention of the epileptological community to the potential application of the IAP in the surgical management of extratemporal cases.

MARIE F O’SHEA
MICHAEL M SALING
Department of Neurology, Austin and Repatriation Medical Centre, Melbourne, Australia; and Department of Medicine, University of Melbourne, Grattan Street, Parkville 3052, Australia.

Correspondence to: Dr Marie F O’Shea, Department of Neuropsychology, Austin and Repatriation Medical Centre (Austin Campus), Studley Road, Heidelberg, Victoria 3084, Australia. Telephone 613 3 03 9496 5913; Fax 613 3 03 9457 2654.

Department of Neurology, Austin and Repatriation Medical Centre, Melbourne, Australia; and Department of Medicine, University of Melbourne, Grattan Street, Parkville 3052, Australia.

Correspondence to: Dr Marie F O’Shea, Department of Neuropsychology, Austin and Repatriation Medical Centre (Austin Campus), Studley Road, Heidelberg, Victoria 3084, Australia. Telephone 613 3 03 9496 5913; Fax 613 3 03 9457 2654.
Reversal of tetrabenazine induced depression by selective noradrenaline (norepinephrine) reuptake inhibition

Tetrabenazine (TBZ), a synthetic benzoxazinolizine, was first introduced as a neuroleptic agent in 1960, and is now widely used in the treatment of hyperkinetic movement disorders such as chorea, tics, or tardive dyskinesia. The side effect profile is mainly characterised by the triad of drowsiness/fatigue, parkinsonism, and depression; depression is found in about 15% of patients treated with TBZ. We here report on the rapid reversal of depressive symptoms in a patient treated with TBZ for orofacial dystonia by administering the new and highly selective noradrenaline (norepinephrine) reuptake inhibitor (SNRI) reboxetine.1

On admission, the 64 year old woman presented with perioral and lingual hyperesthesias as well as intermittent and involuntary movements of her lower jaw, which had lasted for about 2 years, causing her a considerable impairment in articulation. No history of neuroleptic treatment or Parkinson’s disease was evident. Her cranial CT and blood chemistry were normal. We diagnosed a segmental dystonia, which improved dramatically after a tetrabenazine medication (60 mg a day). This successful treatment response, however, was accompanied by a severe depressive syndrome, which was characterized by a mixed anxious-depressive mood, low self esteem, a complete loss of drive, and intermittent suicidal ideations. After switching from TBZ to tiapride, the patient recovered from depression, but her neurological status worsened significantly under the re-exposure to TBZ again, ameliorated hyperkinetics, but provoked a depressive relapse. A comediaction with reboxetine (6 mg/day), a new and selective noradrenaline reuptake inhibitor, finally led to a stable remission of the depressive symptoms within a week, without any worsening of the dystonic syndrome.

Tetrabenazine (TBZ) is known to act as a monoamine depleting and dopamine receptor blocking drug.1 In more detail, TBZ binds to and inhibits specifically the human vesicular monoamine transporter isoform 2 (hVMAT2). Whereas the indolamine serotonin forms a similar affinity for both hVMAT1 and hVMAT2, catecholamines such as noradrenaline exhibit a threefold higher affinity for hVMAT2.2 As these specific transporters are responsible for packaging monoamine neurotransmitters into presynaptic secretory vesicles for release by exocytosis, the inhibition of hVMAT2 by compounds such as tetrabenazine thus results in consecutive noradrenaline depletion.3

Alterations of noradrenergic neurotransmission—that is, a neuronal noradrenaline depletion—can therefore be postulated to form one major origin of TBZ induced depression. In this assumption, brain-specific catecholaminergic activity enhancers (CAEs) such as phenylethylamine have been shown to antagonise TBZ induced depression-like behaviour in rats.1 Modulating this altered noradrenergic neurotransmission pattern by the administration of selective noradrenaline reuptake inhibitors such as reboxetine may thus provide a new, specific, and fast acting tool in the management of depression caused by TBZ and related (neuroleptic) compounds.

WOLFGANG SCHREIBER
JURGEN-CHRISTIAN KRIEG
Department of Psychiatry and Psychotherapy, University of Heidelberg, D-69120 Heidelberg, Germany

TOBIAS EICHHORN
Department of Neurology, Philipps-University, Rudolf-Bultmann-Straße 8, D-35033 Marburg/Lahn, Germany

Correspondence to: Dr Wolfgang Schreiber, Department of Psychiatry and Psychotherapy, Philipps-University, Rudolf-Bultmann-Straße 8, D-35033 Marburg/Lahn, Germany. Telephone 0049 6421 28620, Fax 0049 6421 28529, email schreibe@mail.uni-marburg.de

Spinal sulcal artery syndrome due to spontaneous bilateral vertebral artery dissection

In young adults vertebral artery dissection (VAD) is an important cause of brain infarction.1,2 A known mechanism is micro-trauma due to abrupt head movements, for example, chiropractic manoeuvres. In addition a pathogenetic role of connective tissue diseases, cystic media necrosis, fibromuscular dysplasia, migraine, and inflammatory diseases has been postulated.3 In VAD initial neck pain is often reported, which may be slight. Lesions caused by VAD are cerebellar or brainstem infarcts, unilateral or bilateral thalamic infarcts (top of the basilar syndrome), or infarctions in the posterior cerebral artery territory due to intra-arterial embolism or haemodynamic decomposition when collaterals are insufficient.4 Lesions of the spinal cord are rare because of its good collateral supply.5 We report on a patient with a syndrome of the spinal sulcal artery (incomplete Brown-Séquard syndrome) caused by spontaneous bilateral VAD.

A 43 year old man with a history of arterial hypertension presented with left sided numbness sparing the face, which had evolved suddenly while he was walking. In addition, he reported on dull right sided neck pain irradiating into the occiput, which had been initiated by a head rotation while he was working at a computer 2 weeks before. The neck pain had spontaneously ceased 6 days later. Neurological examination disclosed dissociated sensation defect on the left with an indistinct level around C4 to C6. Below this level on the left he had a marked hypalgesia and nearly a loss of temperature sense. The right limbs were warmer than the left ones. In addition, we found mild right sided motor system deficits. Cranial nerve function was intact, despite a right sided Horner’s syndrome. According to chest radiography phrenic nerve function was preserved. Routine laboratory findings including CSF analysis were normal. The hemiparesis and the different temperature sensation in the limbs resolved completely within 3 weeks.

Tibial nerve somatosensory evoked potentials (SSEPs) had regular N22 and P40 latencies and amplitudes. Central motor conduction time (CMCT) and transcranial magnetic stimulation was prolonged to the right abductor digiti minimi (9.2 ms) and tibialis anterior (23.1 ms). The CMCT to the left target muscles was normal. Duplex sonography showed increased flow velocity on the level of the cervical vertebral 3 to 5 with a maximum of 214 cm/s in the right and 197 cm/s in the left vertebral artery. Colour mode showed irregular narrowings of the lumen indicating dissections.

Cervical MRI showed a spinal cord infarction at the level C2 (figure). The circumference and dorsal part of the cord were not affected. In digital subtraction angiography (DSA) both vertebral arteries had string signs in the V1 and V2 segments with collateral flow to the distal V2–4 segments via the threecervical trunk (cervical ascendent artery) and the costocervical trunk also. The anterior spinal artery was incompletely contrasted by unilateral spinal branches of the right vertebral artery. They originated at the level of dissection. The intradural origins of the anterior spinal artery or brainstem infarcts, unilateral or bilateral spinal sulcal artery (V4 segment) were not visible.

Bilateral spontaneous VAD is not rare, but often missed. In most cases, microtrauma preceding the dissection can be recalled by the patients. Due to the mild mechanical impact, the action of predisposing factors might be postulated. Among these may be changing in type III collagen, migraine, fibromuscular dysplasia, infections in the near past, and inflammatory vasculopathy.2 Magnetic resonance imaging with typical semilunar mural haematoma and in addition magnetic resonance angiography (MRA) with complementary documentation of an occlusion or tapering occlusion have a high sensitivity and specificity in cases of internal carotid artery dissection.6 By contrast, mural haematomas of the VA especially in the V1 and the V3 segments are often not detectable by MRI. In cases of unclear non-invasive findings, DSA is still the method of choice.7

In addition to consecutive brain infarctions, cervical spinal cord infarctions and nerve root compression syndromes may occur in cases of unilateral or bilateral VAD. Probably as a result of the pial collateral network and the dual posterior spinal artery, spi-
American descent with a strong founder effect. Around 50% of non-Hispano-American families showed linkage to CCM1 but no common haplotype was found. A recent study showed linkage of cerebral cavernous malformations to two additional loci. No Spanish family with cerebral cavernous malformations has been analysed so far.

We report herein a genetic linkage analysis conducted on nine Spanish families with cerebral cavernous malformations. All procedures were approved by an ethics committee. The families were unrelated and originated from different regions of Spain (south west (CVE2, 3, 4, 10, 17, 25), central (CVE24), south east (CVE28), and north east (CVE29). Seventy seven subjects including 55 potentially informative meioses and 12 spouses gave their informed consent. They were examined by a board certified neurologist, underwent cerebral MRI, and blood samples were taken. Magnetic resonance imaging was used to establish status for linkage analysis. Thirty four members had MRI diagnosis of cavernomas and were considered as affected. Among them, 14 experienced neurological symptoms (cerebral haemorrhage n=6, seizures n=8). Nineteen members with normal cerebral MRI were considered as healthy. Twelve members without MRI investigation had an unknown status. Analysis of pedigrees was consistent with an

Spanish families with cavernous angiomas do not share the Hispano-American CCM1 haplotype

Cerebral cavernous malformations are vascular malformations mostly located in the CNS. Their frequency is estimated close to 0.5% in the general population. Cerebral cavernous malformations occur as a sporadic or hereditary condition. From the Hispano-American population, familial forms were reported with a high frequency. CCM1, a hitherto unidentified gene mapping on chromosome 7 was shown to be involved in all families with cerebral cavernous malformations of Hispano-
autosomal dominant pattern of inheritance (figure A).

Eight polymorphic microsatellite markers spanning the CCM1 interval were selected for linkage analysis. Four were chosen from the Genethon linkage map (D7S2410, D7S2409, D7S597, and D7S480), and three from the Cooperative Human Linkage Center (D7S1813, D7S1789, D7S558). The last one (M65B) was identified by SL in a family with a real cM-based interval [D7S2410, D7S2409, D7S1813, D7S1789, D7S558], and D7S689 have been estimated to be 2.2 cM, and 1.8 cM, respectively. Oligonucleotide sequences are available through the Genome Data Bank (John Hopkins University, Baltimore). Genotyping and linkage analysis (LINEAGE package version 5.1) were performed as previously described.

Lod scores were calculated in the five families having a sufficient number of potential meioses—that is, E1 (eight), CVE4 (16), CVE10 (seven), CVE25 (five), and CVE28 (seven). Lod scores higher than 1 were obtained for three families (CVE3, 4, and 28) for at least one marker. D19S444 was informative for two of the three markers within family CVE4, lod scores did not reach the level of 3. In family CVE10, lod scores were close to 1 for four markers (D7S2410, D7S1789, D7S598, D7S689). For family CVE28, patients had a lod score close to 0 for all markers. In this family, two affected and one asymptomatic sibling with normal standard MIR inherited the same haplotype as their affected father. The data of a large number of markers explained most of the genetic heterogeneity in the family CVE28. The two affected siblings inherited the same haplotypes from their mother and father whose status was unknown.

None of the families shared a common haplotype (figure B). In addition, the extended Hispanic-American haplotype was not segregating with the disease phenotype in any of the nine families including the four families with suggestive linkage to CCM1. However, two out of five families (CVE2 and 3), the D7S646 (185bp) and D7S598 (107bp) alleles segregating with the disease phenotype were identical to the ones observed in the Hispanic-American haplotype. Consequently, we analysed the frequency of this combination of alleles within a panel of 80 haplotypes of 40 healthy white subjects. Frequency was 17% compared with 22% in our Spanish sample. Therefore, this finding might be attributed to a random distribution of these alleles.

In conclusion, linkage analysis of Spanish families with cerebral cavernous malformations did not show any evidence for Hispanic-American haplotype sharing or a founder effect. Although our sample was limited in size and does therefore not formally exclude the possibility, the shared Hispanic-American haplotype in additional Spanish families with cerebral cavernous malformations, this haplotype is more likely non dominant in Spain, and the strong founder effect seen in all published Hispanic-American families with cerebral cavernous malformations might be specific for this population.

HJ is supported by the Schweizerische Stiftung für medizinisch-biologische Stipendien (Switzerland), and by the Fonds de Recherche en Sante (Canada), through the Coopérative d'Enseignement de Neurologie et ZENÉCA pharmaceutical group. This work was founded by INSERM, Ministère des Enseignement Supérieur et de la Recherche, CSIC, and the Fondo de Investigacion de la Seguridad Social (Fiss: 9904067).

Correspondence to: E. Tournier-Lasserve, INSERM U25, Faculté de Médecine Necker, Paris, France.

E. Tournier-Lasserve
E. Marechal
M. Lucas
Laboratoire de Biologie Moléculaire
J. M. Garcia-Moreno
M. A. Gamo
G. Izquierdo
Servicio de Neurología, Hospital Universitario Virgen Macarena, Aveenda Dr Fedriani, 41071 Sevilla, Spain.
E. Tournier-Lasserve
Hôpital Lariboisière, Paris, France.

Hydrocephalus caused by metastatic brain lesions: treatment by third ventriculostomy

Metastasis to the brain occurs in 20%–40% of cancer patients. About 20% of these metastases are located in the posterior fossa, cerebellum, and brainstem. Metastatic disease to the brain is one of the most common causes of death in cancer patients. Even though previous radiotherapy may seem to have a protective role against cerebral spinal fluid (CSF) obstruction, this is not always the case. In some patients, the obstructive hydrocephalus that is caused by metastatic disease may be a contraindication for third ventriculostomy.

In conclusion, linkage analysis of Spanish families with cerebral cavernous malformations did not show any evidence for Hispanic-American haplotype sharing or a founder effect. Although our sample was limited in size and does therefore not formally exclude the possibility, the shared Hispanic-American haplotype in additional Spanish families with cerebral cavernous malformations, this haplotype is more likely non dominant in Spain, and the strong founder effect seen in all published Hispanic-American families with cerebral cavernous malformations might be specific for this population.

HJ is supported by the Schweizerische Stiftung für medizinisch-biologische Stipendien (Switzerland), and by the Fonds de Recherche en Sante (Canada), through the Coopérative d'Enseignement de Neurologie et ZENÉCA pharmaceutical group. This work was founded by INSERM, Ministère des Enseignement Supérieur et de la Recherche, CSIC, and the Fondo de Investigacion de la Seguridad Social (Fiss: 9904067).

Correspondence to: E. Tournier-Lasserve, INSERM U25, Faculté de Médecine Necker, 156 Rue de Vaugirard, 75015 Paris, France. Telephone 0033 1 45 67 25 97; fax 0033 1 40 56 01 07; email: tournier@necker.fr.

6. E TOURNIER-LASSERVE
E MARÉCHAL
P LABAUGE
M A GAMERO
M LUCAS
E TOURNIER-LASSERVE
Hôpital Lariboisière, Paris, France.

Hydrocephalus caused by metastatic brain lesions: treatment by third ventriculostomy

In conclusion, linkage analysis of Spanish families with cerebral cavernous malformations, this haplotype is more likely non dominant in Spain, and the strong founder effect seen in all published Hispanic-American families with cerebral cavernous malformations might be specific for this population.

HJ is supported by the Schweizerische Stiftung für medizinisch-biologische Stipendien (Switzerland), and by the Fonds de Recherche en Sante (Canada), through the Coopérative d'Enseignement de Neurologie et ZENÉCA pharmaceutical group. This work was founded by INSERM, Ministère des Enseignement Supérieur et de la Recherche, CSIC, and the Fondo de Investigacion de la Seguridad Social (Fiss: 9904067).

Correspondence to: E. Tournier-Lasserve, INSERM U25, Faculté de Médecine Necker, 156 Rue de Vaugirard, 75015 Paris, France. Telephone 0033 1 45 67 25 97; fax 0033 1 40 56 01 07; email: tournier@necker.fr.

Patient is currently alive.

Results are considered improved if the patient had resolution of symptoms and follow up imaging showed hydrocephalus improved or resolved.

Characteristics of blood flow in brain tumours have been studied extensively. Neuronal activity alters local blood flow in brain tumour adjacent to the activating cortex. Table 1 Clinical characteristics of patients who underwent third ventriculostomy for obstructive hydrocephalus

<table>
<thead>
<tr>
<th>Case No</th>
<th>Age (y), Sex</th>
<th>Diagnosis</th>
<th>Result*</th>
<th>Postoperative stay in hospital (days)</th>
<th>Survival time (weeks)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>70, M</td>
<td>Lung mixed adenocarcinoma and squamous cancer metastasis to thalamus</td>
<td>Improved</td>
<td>17</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>46, F</td>
<td>Ovarian adenocarcinoma metastases to cerebrum and medulla</td>
<td>Improved</td>
<td>9</td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td>38, F</td>
<td>Breast ductal carcinoma metastases to brainstem and cerebellum</td>
<td>Improved</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>75, M</td>
<td>Rectal adenocarcinoma metastasis to cerebellum</td>
<td>Failed</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>39, F</td>
<td>Breast adenocarcinoma metastasis to cerebellum</td>
<td>Improved</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>60, M</td>
<td>Lung adenocarcinoma metastasis to thalamus</td>
<td>Failed</td>
<td>6</td>
<td>6+†</td>
</tr>
<tr>
<td>7</td>
<td>64, M</td>
<td>Oesophageal carcinoma metastatic to cerebellum</td>
<td>Improved</td>
<td>7+</td>
<td>1+†</td>
</tr>
</tbody>
</table>

*Results are considered improved if the patient had resolution of symptoms and follow up imaging showed hydrocephalus improved or resolved.

†Patient is currently alive.

as 50%, with the highest failure rate in the first few months after shunt placement. The complication rates for both procedures are low. Third ventriculostomy and shunting can potentially cause a stroke, bleeding, ventricularitis, meningoitis, a subdural haematoma, CSF leak, diabetes insipidus, and SIADH. However, shunting has additional risks of mechanical malfunction, complications associated with implanting a foreign body, and overdrainage syndrome.

Because third ventriculostomy restores near normal CSF dynamics, overdrainage is prevented. The procedure is also minimally invasive and safe. The procedure’s low morbidity, high efficacy, and potentially short hospital stay are well suited as a palliative treatment of hydrocephalus for patients with an expected shortened life span. We propose that third ventriculostomy should be offered as a first treatment to patients suffering from obstructive hydrocephalus from unresectable tumours.

Neuronal activity alters local blood flow in brain tumour adjacent to the activating cortex. Such an interaction between cortical blood flow and tumour blood flow may be of value for evaluating mechanisms of neurological symptoms associated with brain tumours.

Neuronal activation causes an increase of regional cerebral blood flow (rCBF) in the activating cortical area. Near infrared spectroscopy (NIRS) demonstrates the increase in rCBF during neuronal activity as increases in oxygenated haemoglobin (oxy-Hb) and total haemoglobin (total-Hb) with a decrease in deoxygenated haemoglobin (deoxy-Hb). NIRS is an optical method to measure concentration changes of oxy-Hb, deoxy-Hb, and total-Hb (oxy-Hb+deoxy-Hb) in cerebral vessels by means of the characteristic absorption spectra of haemoglobin in the near infrared range.

In the present study, we measured changes of oxygenation and haemodynamics in the brain tumour adjacent to the activating cortex by means of NIRS. We found transient decreases in oxy-Hb and total-Hb in the tumour during neuronal activation, suggesting that the local blood flow of the tumour was decreased by a transient increase of rCBF induced by neuronal activation.

The patient was a 35 year old right handed man who presented with complaints of headache and dizziness. A neurological examination showed no abnormalities and a decline in language functions. A postcontrast CT showed a well defined large enhancing tumour (4×5 cm) compressing the left frontal lobe. Computed tomographic angiography showed that the branches of the left middle cerebral artery supplied the tumour (figure A). The patient underwent a left frontal craniotomy for removal of the tumour; the pathological diagnosis was meningioma. The NIRS measurement was performed before the operation.

We measured haemodynamic changes in the brain tumour during neuronal activation in the left frontal lobe induced by cognitive function (A) CT angiography of the brain tumour, Note that the tumour was supplied by the branches of the left middle cerebral artery. (B) Oxygenation changes in the brain tumour during the naming task measured by NIRS. The ordinates indicate concentration changes of oxy-Hb, deoxy-Hb, and total-Hb in arbitrary units (au). Horizontal thick bar indicates the period of the task.
Migraine aura masquerading as Balint’s syndrome

Migraine is a common neurological disorder with a prevalence of 0.5% to 2% in the general population. In one fourth of total migraineurs, aura is preceded by an aura. We describe a patient with recurrent episodes of migraine in whom headache was preceded by a constellation of visual symptoms, comprising distortion of visual images followed by inability to perceive simultaneously objects in the visual field and touch an object under direct visual guidance. However, she could see the component parts of objects during the episode.

Reference:
involved visual association areas and their association pathways. Optic ataxia, gaze apraxia, and simultagnosia seem to represent a dissociation of visual information from the frontal eye field and dorsal parietal regions.

PARVAIZ A SHAH
NAFEE Division of Neurology, Department of Medicine, Government Medical College and Associated SMHS Hospital, Srinagar, Kashmir, J and K 190001, India
Correspondence to: Dr Parvaiz A Shah, Firdousahemorrhage or mass lesions were bilateral, widely distributed, in the left hemisphere (figure A). These variably sized lesions in the basal ganglion and right cerebellar hemisphere involved visual association areas and their association pathways. Optic ataxia, gaze apraxia, and simultagnosia seem to represent a dissociation of visual information from the frontal eye field and dorsal parietal regions.

Brain MRI in May 1997. (A) T2 weighted image showing multiple areas of high signal in the cerebral white matter. Bilateral subcortical and periventricular lesions are seen. (B) Brain MRI in July 1997. T2 weighted image shows resolution of the white matter lesions.

“Can’t you use another vaccine”? postrabies vaccination encephalitis

A healthy 39 year old man was bitten on the ankle by his own apparently normal dog. After the incident the dog disappeared into the forest and was not seen again. Three days later the patient was seen at a provincial hospital in Vietnam and started on an alternate day regimen of suckling mouse brain postrabies exposure vaccine (SMBV). After the second dose, he felt unusually lethargic although he was still able to work. After the third dose, he became unresponsive, and was transferred to the Centre for Tropical Diseases, Ho Chi Minh City, the referral hospital for infectious diseases in southern Vietnam. On admission, he was afebrile, confused, had slurred speech, and his Glasgow coma score was 13. He had mild spastic weakness of his left face, left arm, and both legs. Full blood count and results from routine biochemistry and chest radiography were all normal. The CSF: blood glucose ratio was 0.47 (63/140 mg%), the protein content was raised (78 mg/dl), and there was one lymphocyte/ml in the CSF. Screens for malaria and syphilis were negative. The CSF was sterile after 2 weeks of culture. Brain MRI (Access Toshiba LPT 6.01p, 0.064 Tesla) showed areas of high signal throughout the white matter, and cystic-like change in the basal ganglion and right cerebel lar hemisphere (figure A). These varibably sized lesions were bilateral, widely distributed, asymmetrical, and showed no evidence of haemorrhage or mass effect.

As paralytic rabies could not be excluded he was managed conservatively and the SMBV course was continued. On the 4th day after admission he deteriorated with a Glasgow coma score of 10, and was incontinent of urine and faeces with generalised spastic paraparesis. Methylprednisolone (1000 mg/ day) was given for 5 days followed by a reducing course of prednisone for a presump tive diagnosis of postvaccination encephalitis. The SMBV was stopped. Within 72 hours of starting steroids there was a dramatic improvement in his neurological state. An MRI examination performed 4 weeks later showed a marked decrease in both size and number of brain lesions and no new lesions (figure B). After 6 weeks he was discharged talking, eating, walking, and continent but with some persistent emotional liability and mild memory impairment. A follow up MRI examination 5 weeks after discharge showed further improvement, apart from minor abnormalities in the basal ganglion, and generalised increase in ventricular size, consistent with residual cerebral atrophy.

Rabies is caused by a RNA virus, a member of the Rhabdoviridae family, it infects mammals and can be transmitted to humans by contact, generally from an animal excreting the virus in the saliva. Rabies manifests as an acute encephalomyelitis, the development of which is almost invariably fatal. The distinction between rabies and postvaccination encephalitis is difficult and may be helped by antigen detection via a skin biopsy; however, this technique is not available in Vietnam. Paralytic rabies could not be excluded in this patient and hence steroids were not used initially. Steroids have been reported to increase mortality in experimental animals with rabies, and it has been suggested that they may abrogate the immune response to the postvaccination vaccine, thus precipitating uncontrolled rabies.

There are three types of postexposure vaccine in use worldwide. The Semple type (STV) is obtained from inactivated virus prepared on adult rather than suckling mouse brain; the intradermal vaccine is affordable and relatively easy to produce. In India 3 million people receive postexposure courses of STV (phenolised sheep brain) antirabies vaccine each year. These produce neurological reactions, including postvaccination encephalomyelitis, in up to 1 in 100 courses, with a 3% mortality. Clinical forms include a reversible mononeuropathy multiplex, and meningoencephalitic and encephalomy elitic reactions. Myelin basic protein and related neural proteins from the nervous tissue of the animal on which the virus was cultivated stimulate an autoimmune reaction in the human nervous system.

Tolerance has been improved by the development of the suckling mouse brain vaccine (SMBV). The attenuated virus is cultured on immature mouse brain tissue, which contains little myelin, thus reducing the risk of complications. SMBV is inexpensive (US$1.5 per treatment course) and easily manufactured locally; it is the most widely used postexposure vaccine in Vietnam. Rare neurological reactions do occur with SMBV. Complications of the CNS have been reported to occur after vaccination with an incidence of 1:27000 treated people, with a 2% mortality. The mortality was particularly high (30%) if the patient was extensively immuno suppressed. The third type of vaccine available is the human diploid cell tissue culture vaccine (HDCV), which is both safe and efficacious. However, the recommended regimen is not affordable in most developing countries.

When we approached the Rabies Laboratory, Ministry of Agriculture and Fisheries, United Kingdom for advice in this case their comment was “why do you use the SMBV, can’t you use another vaccine”. Worldwide about 10 million people each year receive rabies vaccine after exposure; at the Centre for Tropical Diseases we treat 3000 people with dog bites annually. The cost of an HDCV in Vietnam, administered in its present regimen (1ml given for 5 days on days 0, 3, 7, 14, and 28 with an optional booster on day 90) is US$ 125, making the use of this vaccine unaffordable. This is the first report to show the demyelinating CNS lesions on MRI, and their resolution after steroid therapy. It is relatively rare for patients to survive if they develop severe CNS effects after postexposure rabies vaccination. Although the incidence of reactions to SMBV is very much lower than that for STV, this report confirms that it does still occur. Both SMBV and STV are widely used throughout the developing world, and would be the vaccine administered to travellers exposed to animal bites in such countries. This case stresses the need for high dose steroids in postexposure vaccine encephalitis and the urgent need for the development and deployment of a safe, and critically, affordable postrabies exposure vaccine regimen. The economic low dose multisite intradermal regimen using the HDCV provides an example of how this goal may be achieved although it is not yet widely accepted. Such a vaccine regimen (0.1 ml HDCV given at multisite injections on days 0, 7, 28, and 90) could be made affordable, and offers excellent protection without the risks of postexposure immune mediated encephalitis.1
Leukoencephalopathy associated with khat misuse

The leaves of the tree Catha edulis, or khat (also qat and kat) are chewed by a large proportion of the adult population of the Yemen, and throughout the Arabian Peninsula and sub-Saharan Africa. The leaves are also chewed by members of the Yemeni and Somali community in the United Kingdom. The psychoactive constituents of khat are cathin (d-noradrenaline), cathinone, and cathine (an alkaloid with a structure resembling ephedrine and amphetamine) and users report a mild euphoria similar to that of amphetamine. Khat is acknowledged as a block in mononeuropathy multiplex in a patient with cold agglutinins, who responded very well to plasmapheresis.

Cranial MRI 3 months after onset of symptoms showing diffuse signal abnormality in the deep white matter of both cerebral hemispheres. There is also marked cortical atrophy.

Necrotising vasculitis with conduction block in mononeuropathy multiplex with cold agglutinins

Cold agglutinins are cold reactive autoantibodies that have haemolytic effects on red blood cells mediated via complement fixation. Neutrophilic vasculitis associated with cold agglutinins has been described, however, details of its pathomechanism are unclear. Here, we report the clinical, electrophysiological, and pathological findings of a mononeuropathy multiplex in a patient with cold agglutinins, who responded very well to plasmapheresis. A 72 year old man was admitted with a 1 month history of progressing dysaesthesia and weakness of the hands. He had no macula, tinnitus, or hearing loss, which was constant and severe. Cranial nerves and the cerebellum were not involved. There was severe weakness and atrophy of the proximal and distal muscle groups. The symptoms were present in both hands and feet. The patient was wheelchair-bound. There was no ataxia. The patellar and Achilles reflexes were absent. The plantar responses were flexor. The sensation was reduced to pinprick and temperature in both hands and feet. The patient was not able to stand or walk. The patient was not able to stand or walk. The patient was wheelchair-bound. The patient was not able to stand or walk.

Full blood count, urea and electrolytes, glucose, liver function tests, thyroid function test, viral serology, and malaria screen all gave normal results. Tests for HIV antibody, serum angiotensin converting enzyme, white cell enzymes, and serum and urinary porphyrins were negative. Erythrocyte sedimentation rate on admission was 58 mm/h.

Examination of the CSF showed normal opening pressure, protein 4.27 g/l, glucose 4.3 mmol/l (blood glucose 6.1 mmol/l), and no cells. His initial EEG was abnormal with diffuse slow waves indicative of widespread cerebral dysfunction. A chest radiograph and ultrasound examination of the abdomen were normal. Cranial MRI, although complicated by movement artefact, showed diffuse abnormality in the deep cerebral white matter of both cerebral hemispheres. Fourteen days after admission he was witnessed to have a single brief adversee seizure with eye and head deviation to the right.

The patient was admitted to a rehabilitation unit. His mini mental state examination score and Barthel scores were zero. Feeding by percutaneous gastrostomy was started. A trial of intravenous methylprednisolone (1 g on 3 consecutive days) gave no benefit. Repeated EEGs (on four occasions) showed diffuse slow waves only. A second MRI (figure 3) 3 months after onset of symptoms showed the presence of a continuing diffuse extensive abnormality in the deep white matter of both cerebral hemispheres with marked cortical atrophy. Brain biopsy (via front right craniotomy) was performed 3 months after the onset of his illness. There was no evidence of acute inflammation, vasculitis, or infarction. While undergoing rehabilitation there has been slow improvement in his cognitive and locomotor function. After 1 year he is able to open and close his eyes, occasionally verbalise, localise pain, and obey simple commands. His plantars are flexor but he has persistent grasp and palmar reflexes. His nutrition is maintained by gastrostomy and he has an indwelling catheter.

The clinical presentation, EEG, and MRI findings suggest a rapidly progressive leukoencephalopathy. There are no previous reports of leukoencephalopathy in association with khat or amphetamine misuse; it has, however, been reported in association with other recreational drugs taken by mouth or inhalation. An alternative for this man's presentation is a necrotising vasculitis, a well described complication of oral amphetamine misuse. The clinical features, MRI appearance, brain biopsy, absence of haemorrhage, and lack of response to steroids make this unlikely. The likely precipitant of this man's illness seems to be the use of khat. A drug screen on admission was negative, and his family denied misuse of other drugs. It remains possible that the sample of khat chewed by this man was contaminated. We are unaware of any previous reports of khat misuse with severe neurological deterioration; previous cases may not have been investigated or reported. In reporting this case our intention is to alert others to a possible complication of the misuse of this drug. Evidence of other cases would provide a powerful argument for the restriction of import and sale of khat.
M-protein, direct and indirect Coombs tests, cryoglobulin, antibodies to mycoplasma, myelin associated glycoprotein, gangliosides (GM1, GD1b, asialo-GM1, GT1b, GQ1b, Gal-C), P-ANCA, and C-ANCA. The CSF was normal. Titre of cold agglutinins was detectable at 1:40 in serum at 4°C (normal <1:256). The patient's serum agglutinated adult group O red blood cells, but not O red blood cells or human cord red blood cells, signifying cold agglutinins with 1 specificity. Immunelectrophoresis of the eluate confirmed IgM composition.

The initial nerve conduction study showed severe diminution or absence of compound nerve action potentials (CNAPs) with mildly diminished conduction velocities. F wave latencies were mildly prolonged. There were no evoked sensory action potentials (SNAPs) in median, ulnar, and sural nerves bilaterally. Electrophoretic studies of the affected muscles showed moderate neurogenic changes, but there were no fibril-lation potentials except in the left anterior tibialis muscle. Sural nerve biopsy was performed. Epineurial vessels were sur-rounded by mononuclear cell infiltrates (figure A). Some vessels had focal necrosis of the inner myelinated fibres, rounded by mononuclear cell infiltrates (figure A). Sural nerve (toluidine blue staining) showing epineurial vessel surrounded by mononuclear cell infiltrates. Note fibrin deposition (arrows) and necrosis in media. (bar=20 µm). (B) Most of myelinated fibres are undergoing axonal degeneration. Many macrophages containing myelin debris infiltrate the endoneurium. (bar=50 µm).

These findings strongly suggest that humoral factors including cold agglutinins may play an important part in the induction of neuropathy with cold agglutinins. We recommend plasmapheresis as first choice treatment for neuropathy associated with cold agglutinins.

We thank Dr Gerard Salazar for critical reading of the manuscript, Ms M Teshima and N Hirata for their technical assistance, Dr S Kusunoki (Department of Neurology, Institute for Brain research, University of Tokyo) for analyses of antibodies to gangliosides, and Mr H Moug (Division of Blood Transfusion Medicine, University of Kagoshima) for characterization of cold agglutinin.

References

Data from a recent study by Dr. Arai et al. shows some interesting findings regarding the role of cold agglutinins in neuropathy. The study highlights the importance of cold agglutinins as a contributing factor in the development of neuropathy. The presence of cold agglutinins was confirmed by immunelectrophoresis, and the patient's serum agglutinated adult group O red blood cells but not O red blood cells or human cord red blood cells, indicating cold agglutinins with a specific type.

The initial nerve conduction study demonstrated severe diminution or absence of compound nerve action potentials (CNAPs) with mildly diminished conduction velocities. F wave latencies were mildly prolonged. There were no evoked sensory action potentials (SNAPs) in median, ulnar, and sural nerves bilaterally. Electrophoretic studies of the affected muscles showed moderate neurogenic changes, but there were no fibrillation potentials except in the left anterior tibialis muscle. Sural nerve biopsy was performed. Epineurial vessels were surrounded by mononuclear cell infiltrates (figure A). Some vessels had focal necrosis of the inner myelinated fibres, rounded by mononuclear cell infiltrates (figure A).

(A) Sural nerve (toluidine blue staining) showing epineurial vessel surrounded by mononuclear cell infiltrates. Note fibrin deposition (arrows) and necrosis in media. (bar=20 µm). (B) Most of myelinated fibres are undergoing axonal degeneration. Many macrophages containing myelin debris infiltrate the endoneurium. (bar=50 µm).

Data from a recent study by Dr. Arai et al. shows some interesting findings regarding the role of cold agglutinins in neuropathy. The study highlights the importance of cold agglutinins as a contributing factor in the development of neuropathy. The presence of cold agglutinins was confirmed by immunelectrophoresis, and the patient's serum agglutinated adult group O red blood cells but not O red blood cells or human cord red blood cells, indicating cold agglutinins with a specific type.

The initial nerve conduction study demonstrated severe diminution or absence of compound nerve action potentials (CNAPs) with mildly diminished conduction velocities. F wave latencies were mildly prolonged. There were no evoked sensory action potentials (SNAPs) in median, ulnar, and sural nerves bilaterally. Electrophoretic studies of the affected muscles showed moderate neurogenic changes, but there were no fibrillation potentials except in the left anterior tibialis muscle. Sural nerve biopsy was performed. Epineurial vessels were surrounded by mononuclear cell infiltrates (figure A). Some vessels had focal necrosis of the inner myelinated fibres, rounded by mononuclear cell infiltrates (figure A).

(A) Sural nerve (toluidine blue staining) showing epineurial vessel surrounded by mononuclear cell infiltrates. Note fibrin deposition (arrows) and necrosis in media. (bar=20 µm). (B) Most of myelinated fibres are undergoing axonal degeneration. Many macrophages containing myelin debris infiltrate the endoneurium. (bar=50 µm).
The cholinergic hypothesis of Alzheimer’s disease: a review of progress

I read with interest the review of Francis et al regarding the progress of the cholinergic hypothesis of Alzheimer’s disease. They mentioned that donepezil produced improvement or no deterioration in more than 80% of patients, and that such responses should be viewed positively considering the progressive, degenerative nature of the disease. Various donepezil manufacturer’s medical representative statements presenting data from a clinical study also commonly use this statement. However, this only partially reveals the truth. In fact, the same study produced improvement or no deterioration in 59% patients on placebo. I think that the beneficial effect of donepezil in particular clinical trials should always be critically reviewed in comparison with placebo. In addition, as both 24 week placebo controlled donepezil trials performed so far excluded patients with behavioural disturbances, my impression is that the positive effect of donepezil on the symptoms of behavioural disturbances still remains controversial. In fact there are reports that donepezil might induce behavioural disturbances in patients with Alzheimer’s disease.

Finally, donepezil was never investigated in a 36 week randomised double blind study as was mentioned in the review. The authors are probably referring to the randomised 24 week double blind placebo controlled trial with an additional 6 week single blinded placebo phase.

T BABIC
Department of Neurology, Medical School University of Zagreb, Klišina 12, 10000 Zagreb, Croatia. Telephone 00385 1 217280, fax 00385 1 217280, email tomislav.babic@zg.tel.hr

The authors reply:
We thank Professor Babic for the letter, which raises several interesting points. We agree that it may be more helpful to put the results attributed to treatment with donepezil in the context of the placebo response. In general, looking at this as a class effect in relation to several compounds, the picture emerging is that about twice as many people obtain a response to active treatment as to that with placebo. The high placebo response is a common factor in most studies in this field and is worthy of some explanation in its own right. Although it seems that these studies compare drug treatment with that of a placebo (one treatment against no treatment), the reality is that it is a comparison of patients receiving two treatments against other patients who are receiving one form of treatment. The additional treatment regime is, of course, the care and attention that they receive by being part of the clinical study, which often seems to have an impact, not just on the patient but also on their main carer or carers.

As far as behavioural disturbances are concerned, however, our review was making the point that evidence from current clinical trials is likely to emerge in future from clinical trials to suggest that cholinomimetics as a whole may have a beneficial effect on some non-cognitive behavioural symptoms. This has now been reported for at least two cholinesterase inhibitors, and two muscarinic agonists. In particular, a clear link is emerging between psychotic symptoms and cholinergic dysfunction. Thus, Bodick et al have shown that the M2/M4 agonist xanomeline causes a dose-dependent reduction in hallucinations, agitation, and delusions in a 6 month randomised double blind placebo controlled, parallel group trial. In addition, Cummings and Kaufer have shown that the cholinesterase inhibitor, metrifonate, was also shown to reduce the number of hallucinations in a 26 week randomised, double blind, placebo controlled safety and efficacy study in patients with Alzheimer’s disease. Further support for a link between acetylcholine and psychosis derives from postmortem data showing that the activity of choline acetyltransferase in the temporal cortex of patients with Lewy body dementia was lower in those patients with hallucinations than in patients without this feature. Finally, in animals the partial M/M agonist (5R,6R)-(3-propylthio-1,2,5-thiadiazol-4-yl)-1-propynylcyclo[3.2.1]octane produced a preclinical profile suggestive of antipsychotic efficacy and that the psychomimetic NMDA receptor antagonist ketamine (when administered at subanaesthetic doses) reduces brain concentrations of acetylcholine and produces a distinct preclinical profile suggestive of antipsychotic efficacy and that the psychomimetic NMDA receptor antagonist ketamine (when administered at subanaesthetic doses) reduces brain concentrations of acetylcholine and produces a distinct preclinical profile suggestive of antipsychotic efficacy and that the psychomimetic NMDA receptor antagonist ketamine (when administered at subanaesthetic doses) reduces brain concentrations of acetylcholine and produces a distinct preclinical profile suggestive of antipsychotic efficacy.

Professor Babic is also correct in identifying two of the studies referred to as the 30 week randomised multicentre placebo controlled parallel group studies, which included a 24 week double blind treated phase.

We are grateful to your correspondent for providing us with the opportunity to clarify these points.

PAUL T FRANCIS
Neuroscience Research Centre, GKT School of Biomedical Science, King’s College London, London SE1 9RT, UK
ALAN M PALMER
Cerebrus Pharmaceuticals Ltd, Womenwh, Wikiblogum, RG41 3UA, UK
GORDON K WILCOCK
Department of Care of the Elderly, Franchise Hospital, Bristol BS16 2EW, UK

This is certainly a book for the specialist and not at all (as the preface suggests) for the family practitioner. There are good reviews of nerve structure, causation, and treatment of painful neuropathies and focal neuropathies. The comprehensive survey of the Diabetes Control and Complications Trial (DCCT) shows in detail the only treatment which is truly effective (diabetic control); and the lengthy description of aldose reductase inhibitor trials establishes that, even after more than two decades of investigation, further trials are still needed.

Clinical evaluation of somatic and autonomic neuropathies are useful and also, to some extent, comprehensive but lack specificity—that is, normal values for simple tests are difficult to find. The huge subject of the diabetic foot is covered in these chapters and “the impact of micro and macrovascular disease” is compressed into the last nine pages of the book.

The bibliography is important and often very up to date with references ranging from 33 to 283 per chapter. If this book is at times confusing, this reflects the confusion regarding the nature and treatment of the diabetic neuropathies as much as the overlap and repetition found in its different chapters. It is a book of reference for the specialist who will be well served by the comprehensiveness of some of its reviews and their assembly of the appropriate literature.

PETER WATKINS

The quest for a means of accurate localisation of structures during neurosurgery has taxed the minds of clinicians from early in the history of the specialty, starting with Zernor’s encephalometer more than a century ago. Just as the solution to the mariners’ problem of determining longitude from which it partly takes its name, neuronavigation (“the surgeon’s sextant”) has relied on the advent of new technologies to provide solutions to an age old puzzle. Advances In Neuronavigation begins by tracing the history of stereotaxis from a Cartesian coordinate system devised by Clarke and Horsley at the beginning of this century, through ventriculography, stereotactic brain atlases, and CT/MR frame based stereotaxis. The final part of the first section discusses the roots of image guided frameless stereotaxis through the integration of high speed graphics computers, informatics, biotechnology, and robotics.

The remainder of the text is divided into four sections. The first concerns the creation of maps from CT, MRI, MRA, PET, and various types of functional imaging. The following section discusses clinical applications of stereotaxis, beginning with different authors’ experiences of their own favoured frames, the biopsy of difficult lesions such as those in the brainstem or posterior fossa, and finally experience with different image guidance systems and their integration with the operating microscope and endoscope. There then follows a series of chapters devoted to radiosurgery, and to image guidance in epilepsy and functional surgery. The final section is entitled Frontiers In Neurosurgical Navigation and considers, among other topics, intraoperative MRI, telepresence in neurosurgery, and robotics.

The incorporation of new technology is likely to alter surgical practice radically over the coming decade and equipment that seemed at the cutting edge of technology only a few years ago, such as the mechanical arm, has already passed into near obsolescence at a bewildering rate. This volume provides an excellent account of the developments which have occurred in neuronavigation, and a thought provoking insight into the wider applications of equipment of which many of us use only a fraction of the potential capability. The title of the book should perhaps have included the word cranial, as there is almost no discussion of the impact that this technology has had in surgery of the spine. This aside it is an excellent book although, like the technology it chronicles, one which is likely to date quite rapidly.

ROBERT MACPHERLANE

The title and back cover of the latest addition to Neurology Lite texts contains the usual proclamations. “Concise, key topics, revision aid, essential, review...” the well trailed soundbites demanded by the consumer in the increasingly competitive market of “read - learn more” books. This book, however, is unusual and distinct. Unlike many rivals it is not an A5 facsimile of a superior parent A3 reference tome. Brevity, so essential to the success of an overview work, has sacrificed neither clarity nor clinical relevance. The strength of Key Topics in Neurology owes much to the author’s ability to negotiate skilfully the compromises necessary for a successful distillation of a large and complex field. He has not shied from wholesale culling of neurological ballast. The allied ability to distinguish and highlight the salient and relevant from the obscure and historical allows this small book to be surprisingly thorough in its coverage and topicality. There is sufficient up to date information on most areas of neurology such that this book would be useful for specialist registrars albeit without the detail or embellishment they seek. In terms of the aims of this book such observations must be regarded as complimentary.

My limited criticisms relate to details of layout and presentation. I found the exclusive alphabetical arrangement of chapters mildly disorientating in that, for example, History taking in Neurology is to be found at p 131. Similarly, the absence of diagrams and tables is an unexpected omission as I would imagine that this would have complemented the overall style of the book. These are minor gripes of what in print largely matches the sleeve hype and with a price tag of just £27-30 the book will be welcomed by undergraduates through to specialist registrars.

SIDDHARTHAN CHANDRAN

Readers may be interested in:

