LETTERS TO THE EDITOR

Magnetic resonance imaging and vertebral artery dissection

Since the advent of advanced radiological modalities such as MRI and magnetic resonance angiography (MRA), dissections of cervical arteries are increasingly recognised as a common cause of stroke in young adults. Auer et al.1 recently advocated MRA as the initial diagnostic tool for vertebral artery dissection. Conventional angiography might be avoided altogether in subjects with a suspicious history and MRA images suggestive of a dissection (double lumen or mural haematoma).2 The sensitivity of MRA for the diagnosis of vertebral artery dissection was only 20% in one study, but the specificity was excellent (100%).2 The sensitivity was considerably better in the hands of Auer et al., but in this study the specificity (true negative rate in subjects free of disease) was not considered because all patients had vertebral artery dissection. The following case report illustrates that care must be taken to avoid false positive results when using MRA for the diagnosis of vertebral artery dissection.

A 47 year old male pilot suddenly experienced clumsiness and slight loss of strength in the right arm and leg during a long distance flight, while he steered forward. During the following hours, he developed a global headache without irradiation to the neck, but the other symptoms gradually diminished. Prior history was unremarkable, except for a 3 hour period of horizontal diplopia which suddenly developed 3 months earlier. He had never smoked. Family history was negative for cardiovascular disorders. The patient later confessed that he had recently picked up the habit of gargling his throat with toothpaste twice a day, always with his neck in extreme retroflexion.

General physical examination (8 hours after onset of symptoms) was normal. Neurological examination showed minimal paresis and impaired dexterity of the right hand, mild circumduction of the right leg, and an insecure tandem gait. An MRI (including T1 weighted spin echo images with and without fat suppression, and proton density and T2 weighted fast spin echo sequences, performed on a 1.5 Tesla whole body MRI system) performed several hours later visualised both a fresh and an old right sided cerebellar infarct (figure A). In addition, MRI showed an irregular right vertebral artery in which a patent lumen was partially surrounded by a semilunar area of high signal intensity on T1 and T2 weighted images. On fat suppressed images, this area’s high signal intensity persisted, excluding the possibility that it originated from perivascular fat. This image was suggestive of mural haematoma due to vertebral dissection (figure B). Because we were reluctant to base any treatment decisions (anticoagulants) merely on MRI findings, digital subtraction angiography was performed on the day of admission. This examination was normal (figure C). Shortly after this procedure, the patient developed vertigo and nystagmus which disappeared after 3 hours. Because we were puzzled by the discrepant findings on conventional angiography and MRI, we performed an MRA 4 days later. At this examination, the semilunar area of high signal intensity was found again (figure D), despite saturation of craniofugal and craniopetal flow respectively, which was applied to exclude the possibility that the high signal originated from flow in the perivascular venous plexus. Therefore, this examination was again suggestive of right vertebral artery dissection. An extensive search for other causes of stroke showed no abnormalities. Hence, due to the continuing discrepancy between conventional angiography and MRA, and due to the absence of any other cause of stroke, no certain diagnosis could be established.

In this patient, a diagnosis of right vertebral artery dissection was initially made given the clinical course with repeated episodes of ischaemia restricted to the verteobasilar system, as well as the suggestive MRI findings.1 We speculated that habitual gargling was a potential underlying cause, as neck retroflexion can cause cervical dissections. However, we had to reject this diagnosis in view of the normal conventional angiography, which remains the gold standard for diagnosing cervical artery dissection. In one series, conventional angiography was never falsely negative in patients with clinical signs or symptoms of vertebral artery dissection. The possibility that conventional angiography had nevertheless yielded a false negative result seems highly unlikely. In dissected arteries, MRI/MRA can detect intimal flaps, mural haematomas, or aneurysmal dilatations that are sometimes missed by conventional angiography, but even in such patients conventional angiography is never completely normal in the acute stage. Follow up examinations of patients with proven vertebral artery dissection indicate that the appearance of a dissected artery on conventional angiography can normalise in a substantial proportion of patients, but always after an interval of at least 1 to (usually) several weeks.2 Conventional angiography in our patient was performed on the day of admis-
Catatonia due to central pontine and extrapontine myelinolysis: case report

Central pontine and extrapontine myelinolysis (CPEM) are recognised complications of hyponaema and its overly rapid correction. CPEM usually presents with spastic tetraparesis and pseudobulbar palsy. We describe a patient with CPEM in whom behavioural manifestations overshadowed corticospinal tract signs. A 64 year old Chinese speaking woman with a history of episodic psychotic depression that had never required admission to hospital was admitted to a hospital because of vomiting and diarrhoea. Her general and neurological examination were normal. On admission she had a sodium concentration of 105 meq/l. An infusion of 3% saline at a rate of 150 ml/hour was given during 6 hours. Ten hours later her sodium was 134 meq/l and she was mute and tetraparetic. She seemed catatonic with motor perseveration. Transfer to our hospital was requested.

On admission her vital signs were normal. She was mute without any spontaneous volitional movements except for visual pursuit. She was tetraparetic and hyperreflexic with increased tone and bilateral Babinski’s signs. Admission MRI, EEG, and spinal fluid examination were normal. Over the next 2 days the reflexes normalised and the Babinski’s signs disappeared but she continued to have mild diffuse weakness. She had waxy flexibility and bilateral Hoffman’s sign and assumed bizarre non-physiological postures consistent with catatonia. Psychogenic unresponsiveness was suspected and she was started on risperidone and sertraline. There was no benefit. Electroconvulsive therapy was proposed by a psychiatry consultant but was refused by the patient’s family. The clinical picture was dominated by an akinetic mutism with marked catatonia. Catatonia due to CPEM was considered. A repeat MRI 12 days after the onset of symptoms showed high intensity areas in thepons, caudate, and putamen consistent with CPEM (figure A, B). Physical and occupational therapy were instituted and she gradually recovered over the next 2 weeks. She was transferred to a rehabilitation hospital where she recovered completely and returned to live independently. She has been followed up at the neurology clinic and has not shown any residual deficits.

CPEM usually presents with tetraparesis and pseudobulbar palsy. Unusual clinical presentations include extrapyramidal symptoms, ataxia, and neurobehavioural syndromes. Although psychiatric manifestations of CPEM have been recognised they usually manifest as an agitated delirium, or a pseudobulbar state with pathological laughing and crying. When present, neuropsychiatric symptoms are usually overshadowed by florid signs of brainstem and pyramidal tract dysfunction. Behavioural changes such as inappropriate affect, emotional lability, personality changes, paranoia, poor judgement, emotional incontinence, and disinhibition have been reported. Price and Mesulam described a case of pontine myelinolysis in which transient pyramidal signs were followed by confusion, restless behaviour, pressured tangential speech, and disinhibition. Our patient also had transient long tract signs but they were followed by a catatonic state.

The extensive extrapontine myelinolysis present in our patient may explain the behavioural symptoms we encountered.

CPEM may present with unusual behavioural symptoms. At the onset of neurological deterioration MRI may be normal but subsequent imaging studies usually disclose the lesions. CPEM presenting with neuropsychiatric symptoms in patients with normal initial imaging studies might suggest a psychogenic aetiology. Corticospinal tract signs may be temporary. A strong index of suspicion for CPEM is required when patients with recent

B R BLOEM
G J LAMMERS
Department of Neurology

M A VAN BUCHEM
Department of Radiology, Leiden University Medical Centre, The Netherlands

Correspondence to: Dr Bastiaan R Bloem, Department of Neurology, Leiden University Medical Centre, PO Box 9600, 2300 RC Leiden, The Netherlands. Telephone 0301 71 5262134; fax 0301 71 5248253; email bloem@rullf2.medfac.leidenuniv.nl

Association between butyrylcholinesterase K variant and the Alzheimer type neuropathological changes in apolipoprotein E ε4 carriers older than 75 years

Apolipoprotein E (ApoE) ε4 has a strong influence on the development of sporadic Alzheimer’s disease in many ethnic populations. However, ApoE ε4 is neither necessary nor sufficient for the development of Alzheimer’s disease, suggesting that other genes increase the risk of Alzheimer’s disease. One such new candidate is the butyrylcholinesterase (BCHE) gene (BCHE). BCHE is associated with senile plaques (SPs) and neurofibrillary tangles (NFTs). Lehmann et al. recently reported that the K variant of BCHE (BCHE-K) was associated with the development of Alzheimer’s disease, especially in ApoE ε4 carriers older than 75 years.1,2 Possible mechanisms to how BCHE-K is related to Alzheimer’s disease under the influence of ApoE ε4 is the acceleration of Alzheimer type neuropathological changes. If BCHE-K has an effect on the development of Alzheimer’s disease in ApoE ε4 carriers, the formation of Alzheimer type neuropathological changes may be accelerated by BCHE-K in the ApoE ε4 carriers. We have examined genotypes of BCHE and ApoE, and densities of the senile plaques (SPs), with dystrophic neurites (NPs), and neurofibrillary tangles (NFTs) in the brains from 51 patients with Alzheimer’s disease and 90 non-demented subjects from a postmortem series of Japanese. Clinical and postmortem diagnosis of Alzheimer’s disease was carried out as described previously. The densities of Alzheimer type neuropathological changes were quantified by averaging the counts of those in the hippocampus and superior temporal gyrus. Genotypes of BCHE and ApoE in all patients were determined as described elsewhere.3 Genotypic and allelic distributions of BCHE were analysed by χ² test. The densities of the SPs, NPs, and NFTs, and ages at onset and durations of illness were compared among BCHE genotypes with the Kruskal-Wallis test or Mann-Whitney U test in total subjects, those with Alzheimer’s disease, and non-demented subjects. We also examined these relations in the subgroups divided by the ApoE ε4 status or the age of 75 years. Statistical significance was defined as two tailed probabilities of <0.05.

There were no significant differences in the frequency of BCHE-K genotypes or alleles between patients with Alzheimer’s disease (0.16 in allele frequency) and non-demented subjects (0.18), and in the total subjects, ApoE ε4 carriers or non-ApoE ε4 carriers, although a strong association of ApoE ε4 alleles with Alzheimer’s disease was found in this population (p=0.004). Genetic association of BCHE-K genotypes with sporadic Alzheimer’s disease was non-significant in all subjects older than 75 years, the ApoE ε4 carriers older than 75 years, and non-ApoE ε4 carriers older than 75 years. There was no genetic association of BCHE-K with the densities of the SPs, NPs, or NFTs in the hippocampus and superior temporal gyrus in the total subjects, in the Alzheimer’s disease, or non-demented groups, or with ages at onset or duration of illness in Alzheimer’s disease. However, when we divided total subjects into two subgroups with different ApoE ε4 status, there was significant association between BCHE-K and the density of the SPs in the hippocampus and superior temporal gyrus (STG) in the ApoE ε4 carriers (SPs, p=0.04; NPs, p=0.03, data not shown). Further, we analysed the correlation between BCHE-K and the densities of the SPs, NPs, and NFTs in the hippocampus and superior temporal gyrus in the ApoE ε4 carriers older than 75 years and non-ApoE ε4 carriers older than 75 years. There was a decrease of severity of Alzheimer type neuropathological changes in subjects with BCHE-K. A similar trend was seen in the hippocampus though this did not reach significance.

Our results showed that BCHE-K might have an effect on the development of sporadic Alzheimer’s disease even in the ApoE ε4 carriers or subjects older than 75 years. By contrast with a significant genetic association in patients confirmed at postmortem in the British population,4 there was no correlation in the Japanese population. Although our sample size was small, there were not even trends for a positive association in our study, suggesting that the lack of association was not due to small sample size. The frequency of BCHE-K in our Japanese control population was 0.18. This was not significantly different from that in the British population examined by et al.5 However, the frequency of BCHE-K in the British control population reported by et al. was 0.09, which was significantly lower than our results (p=0.04). These findings indicate that the frequency of BCHE-K and its genetic linkage with the development of Alzheimer’s disease would be different among sample populations.

Our neuropathological study disclosed a significant association of BCHE-K with Alzheimer type neuropathological changes in the ApoE ε4 carriers older than 75 years, but not in the non-ApoE ε4 carriers. Lehmann et al. showed that BCHE-K was strongly associated with the development of Alzheimer’s disease in the ApoE ε4 carriers older than 75 years.6 Analyses of the same subgroup of ApoE ε4 carriers older than 75 years increased statistical significance in both our studies and that of Lehmann et al. This suggests that BCHE-K as a genetic marker was linked with formation of Alzheimer type neuropathological changes or development of Alzheimer’s disease in the ApoE ε4 carriers older than 75 years. However, a decrease of the severity of Alzheimer type neuropathological changes with BCHE-K in our study was not expected because Lehmann et al. showed an increase in frequency of BCHE-K allele in Alzheimer’s disease.7 Singleton et al. also reported that BCHE-K was not associated with the densities of the SPs and NFTs, even in the ApoE ε4 carriers.8 In addition, BCHE-K was not related to the development of Alzheimer’s disease in the ApoE ε4 carriers in our study.9

Values are medians (25th percentile, 75th percentile). The density represents the average counts in 2.56 mm² for the SPs and NPs, and in 0.64 mm² for the NFTs. BCHE=butyrylcholinesterase gene; ApoE=apolipoprotein E; K=the K variant allele of butyrylcholinesterase gene; N=the normal allele of butyrylcholinesterase gene; SPs=senile plaques; NPs=senile plaques with dystrophic neurites; NFTs=neurofibrillary tangles.

Table 1. BCHE genotypes and the densities of the SPs, NPs and NFTs in the hippocampus and superior temporal gyrus in ApoE ε4 carriers older than 75 years and non-ApoE ε4 carriers older than 75 years

<table>
<thead>
<tr>
<th>BCHE genotype</th>
<th>ApoE ε4 carriers over 75 years (n=28)</th>
<th>non-ApoE ε4 carriers over 75 years (n=95)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K/K (n=8)</td>
<td>K/N (n=20)</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Hippocampus:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPs</td>
<td>3.0 (0.0, 17.2)</td>
<td>12.2 (4.5, 28.7)</td>
</tr>
<tr>
<td>NPs</td>
<td>0.7 (0.0, 11.9)</td>
<td>11.0 (3.9, 25.3)</td>
</tr>
<tr>
<td>NFTs</td>
<td>1.1 (0.4, 23.1)</td>
<td>17.3 (2.5, 59.6)</td>
</tr>
<tr>
<td>Superior temporal gyrus:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPs</td>
<td>0.2 (0.0, 22.8)</td>
<td>49.7 (12.1, 83.8)</td>
</tr>
<tr>
<td>NPs</td>
<td>0.2 (0.0, 8.8)</td>
<td>10.7 (3.6, 19.0)</td>
</tr>
<tr>
<td>NFTs</td>
<td>0.0 (0.0, 0.2)</td>
<td>0.9 (0.0, 4.9)</td>
</tr>
</tbody>
</table>

Values are medians (25th percentile, 75th percentile). The density represents the average counts in 2.56 mm² for the SPs and NPs, and in 0.64 mm² for the NFTs. BCHE=butyrylcholinesterase gene; ApoE=apolipoprotein E; K=the K variant allele of butyrylcholinesterase gene; N=the normal allele of butyrylcholinesterase gene; SPs=senile plaques; NPs=senile plaques with dystrophic neurites; NFTs=neurofibrillary tangles.
The patient was a 71 year old, retired physician with a 3 to 4 year history of memory impairment. Neuropsychological evaluation disclosed a high average to superior general intellectual functioning, with mild impairment in naming to confrontation and episodic memory for visual memory. His visuospatial ability remained relatively unimpaired and was rated as average for his age. His comprehension for verbal and written instruction was normal. At the present time he is still well oriented to time and place and is somewhat independent in activities of daily living. He is, remarkably, not depressed, but does, repeatedly, raise concern regarding when he has become to his wife." Moreover, high hypofusion in the frontotemporal lobes bilaterally was seen on SPECT investigation and no evidence of pathognomonic laboratory results were found. Taken together, the pattern of episodic memory and naming impairments and functional imaging findings was thought to be consistent with the early stages of dementia of the Alzheimer's type (DAT) in keeping with National Institute of Neurological and Communicative Disorders Association-Alzheimer's Disease and Related Disorders Association criteria. The patient was consequently referred to our department for "prospective memory book training" and we follow up assessments to index progression of disease.

During our sessions his wife had stated that the patient could no longer "act." The patient, that he had "lost his enthusiasm to act" consequent to his new found memory loss and an "understandable depressive reaction." It became clear, however, that the patient was remarkably not depressed and that he maintained normal prosodic speech during conversation. When asked to use prosody to command when reading script, however, this once garrulous actor spoke without melodic, loudness, stress, or accent, with inappropriate pauses. To quantify this patient's peculiar deficit, the patient was required to read and repeat words and sentences to prosodic command and imitation. Observation revealed five single words and four sentences as that the patient still lost his ability to "act." The patient's use of affective language in the right hemisphere was analogous to the organisation of propositional language in the left (non-dominant) hemisphere. Consequently, evidence of poor affective prosody to command yet normal spontaneous affective prosody, and good affective prosodic repetition and comprehension would suggest a "transcortical motor apraxia." However, the patient's spontaneous prosody was unaffected whereas spontaneous speech is affected by a transcortical motor aphasia. Hence, we might place the critical lesion for prosodic apraxia in the right dorsolateral frontal lobe, extending into the deep frontal

1. Honey PLEASE!
2. Are you hungry?
3. You know...there was a time when I could recite all the streets in my neighborhood
4. Holy COW!
5. YUP, yup, yup, yup, yup...
6. La da da da...
7. O Canada, our home and native land...
8. SHIT!
9. Thank you
10. May I go to the bathroom, I really need to go quite badly...

Script to be read
1. Honey PLEASE!
2. Are you hungry?
3. You know...there was a time when I could recite all the streets in my neighborhood
4. Holy COW!
5. YUP, yup, yup, yup, yup...
6. La da da da...
7. O Canada, our home and native land...
8. SHIT!
9. Thank you
10. May I go to the bathroom, I really need to go quite badly...

Type of emphasis
1. Accented PLEASE!
2. Rise in pitch
3. Pause after "You know"
4. With surprise
5. With melody
6. With proper tempo, as if you were singing
7. As if you were frustrated and upset
8. As if you were embarrassed
9. As if you really meant it, accentuating the word "REALLY"
Stridor due to paralysis has been found to be more prominent in sleep than during wakefulness; whereas stridor by non-paralytic dysfunction has been found both during the daytime and during sleep. We suspect that the VCAP in patients with SCA1 may be dominantly paralytic, because the nucleus ambiguus is sometimes pathologically involved in SCA1 and because stridor in our patients with SCA1 was more marked in sleep.

Our laryngofibroscopic findings suggested that severe VCAP caused breathing difficulty on inspiration in the patients with SCA1 by obstructing the airway. Moreover, the stridor during wakefulness as well as sleep indicated it to be very serious. The important question concerns when tracheostomy should be carried out after the diagnosis of VCAP to prevent respiratory abnormalities leading to sudden death. Although we consider tracheostomy at the stage when breathing difficulty on inspiration or stridor during wakefulness is noted, it awaits further study with a large number of patients to decide which stage is best for tracheostomy.

Furthermore, we now consider endoscopic cord lateralisation as another possible management for VCAP.

Vocal cord abductor paralysis in spinocerebellar ataxia type 1

Vocal cord abductor paralysis (VCAP) is considered a sign of a poor prognosis in neurodegenerative diseases, because severe laryngeal dysfunction by VCAP may result in acute airway obstruction and require emergency tracheostomy. Although VCAP is a cardinal feature in multiple system atrophy (MSA), it has not been reported in several types of spinocerebellar ataxia with dominant inheritance. We evaluated the movements of the vocal cords of seven patients with SCA1 by laryngofibroscopy.

Seven unrelated patients with SCA1 who had unmasked CAG repeat of ataxin-1 were investigated. There were two men and five women ranging in age from 27 to 67 years old (mean 44.5 years). Spouses and other family members, in addition to the patients, were questioned about events of stridor, dysphagia, and dyspnoea. Vocal cord movement was examined by laryngofibroscopy and recorded during inspiration and phonation.

The rating scale used to evaluate maximal abduction of the vocal cords during laryngofibroscopy was as follows: (+) = normal; (+) = median position; (+++) = paramedian position; (++++) = midline position. For the evaluation of VCAP, we tried the respiratory flow volume loop study as well as in one patient (patient 2) in whom maximal abduction of the vocal cords was slightly limited (+) on laryngofibroscopy.

The correlations between VCAP and CAG repeat length or duration of illness were analysed with the non-parametric Mann-Whitney U test.

Vocal cord abduction paralysis

<table>
<thead>
<tr>
<th>Patient</th>
<th>Age/sex</th>
<th>Onset (y)</th>
<th>Disease duration (y)</th>
<th>Vocal cord paralysis</th>
<th>Stridor at Night</th>
<th>Stridor during wakefulness</th>
<th>Dysphagia</th>
<th>Breathing difficulty</th>
<th>Tracheostomy</th>
<th>(CAG)n of mutant allele</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30/M</td>
<td>29</td>
<td>2</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>53</td>
</tr>
<tr>
<td>2</td>
<td>32/F</td>
<td>39</td>
<td>3</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>53</td>
</tr>
<tr>
<td>3</td>
<td>27/F</td>
<td>20</td>
<td>7</td>
<td>++</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>59</td>
</tr>
<tr>
<td>4</td>
<td>34/M</td>
<td>23</td>
<td>11</td>
<td>++</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>52</td>
</tr>
<tr>
<td>5</td>
<td>56/F</td>
<td>46</td>
<td>9</td>
<td>+++</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>47</td>
</tr>
<tr>
<td>6</td>
<td>67/F</td>
<td>51</td>
<td>14</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>46</td>
</tr>
<tr>
<td>7</td>
<td>50/F</td>
<td>41</td>
<td>8</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>46</td>
</tr>
</tbody>
</table>

*(-) = normal, (+) = median position, (+++) = paramedian position, (++++) = midline position.

Lateral gaze synkinesis on downward saccade attempts with paramedian thalamic and midbrain infarct

The symptoms of paramedian thalamic and midbrain infarct include ocular motor disturbances mainly in the vertical plane. We here describe a patient with the additional feature of an unusual horizontal eye movement synkinesis. A 60 year old overweight man, with diabetes and mild hypertension, suddenly fell into a coma that lasted for 4 hours and was followed by slight right hemiparesis, recent memory impairment, hypersomnia, and vertical gaze impairment.

On admission to our centre, about 10 days after symptom onset, the patient still presented fluctuating drowsiness from which he could be easily aroused, normal cognitive functions with mild attention disturbance, slight right facial weakness, and mild incoordination at the finger-to-nose test with his right arm.

The most important findings involved ocular motor function. Both pupils were normal in diameter and reacted normally both to light and to convergence. The cover test did not disclose any eye misalignment. During attempted fixation, the patient showed saccade oscillations (usually square and macrosquare wave jerks)—that is, back to back involuntary horizontal saccades with an amplitude ranging from about 2 to about 10 degrees and with an intersaccadic interval of about 200 ms, that brought the eyes away from and back to the fixation point, at an approximate rate of three every 2 seconds. Clinical examination of eye movements in the horizontal plane and visually guided reflexive saccades recorded by the infrared reflection technique were both normal, whereas the amplitude range of vertical saccade and smooth pursuit eye movements covered only a few degrees of upward gaze. Vertical amplitude range was slightly greater for the vestibulo-ocular reflex in the pitch (yes-yes) plane. Moreover, when the patient attempted to make a downward saccade, he showed a gaze deviation to the left (figure). This synkinesis was more evident when the examiner lifted the patient’s lids, thus preventing lid synkinesis during downgaze. Attempted upward saccades did not produce any horizontal gaze deviation. Finally, the patient showed normal Bell’s phenomenon. An EEG showed frontal, bilateral theta and theta/delta activity and sporadic drowsiness, and MRI (figure) disclosed a bilateral thalamomesencephalic infarct which involved predominantly the right side.

Horizontal gaze deviation on attempted downward saccades disappeared after about 15 days, whereas vertical gaze impairment and hypersomnia were unchanged 1 year later. Subsequent polysomnographic testing disclosed sleep apnoea.

The clinical features of our patient are those reported for thalamic infarct involving the rostrointerstitial nucleus of the medial longitudinal fasciculus (riMLF). By contrast, the leftward gaze deviation elicited by the attempt to make a downward saccade is at variance with all previous descriptions.

The triggering of a saccade requires not only the activation of the excitatory burst neurons (EBNs), but also the deactivation of the omnipause neurons (OPNs), which provide tonic inhibition of both horizontal and vertical EBNs.

Accordingly, any attempt to activate a lesioned riMLF should be associated with maximal OPN inhibition. However, OPNs discharge for saccade in any direction and are not strictly direction selective, as shown by horizontal oscillations during vertical saccades detectable in normal subjects. These oscillations suggest that during vertical saccades the inhibition of OPNs disinhibits both vertical and, to a lesser extent, horizontal EBNs.

In our patient, the horizontal gaze deviation was always directed to the left rather than in both directions as during oscillations. Many ocular motor structures, including those located in the midbrain, trigger a purely vertical (downward) saccade only when stimulated bilaterally, so as to nullify horizontal components with different direction depending on the stimulation side. This probably occurs for the riMLF too, as it shows ipsilateral projections to the abducens nucleus. In our patient, the projections to the left nucleus were probably spared by the fact that the lesion predominantly affected the right side.

Overall, our patient’s horizontal ocular motor synkinesis is unusual, and probably derives from a strong inhibition of OPNs, which in turn frees the horizontal EBNs, and from an unbalanced activation of the left abducens neurons via riMLF projections spared from the lesion, although it is not possible to exclude the possibility that the unbalanced activation of abducens neurons originated from frontal or parietal cortical areas or from the superior colliculus rather than from riMLF projections.

This hypothesis is strengthened by the reinforcement of the leftward eye deviation when the examiner kept the patient’s lids lifted. Since this manoeuvre prevents lid synkinesis, it results in what resembles an attempted forced lid closure which, on the basis of blink induced eye oscillations, is likely to be an additional stimulus for OPN inhibition. Moreover, although they occur in various conditions, saccade oscillations during fixation are in keeping with a reduction of OPN inhibition level.

In conclusion, our patient presented an ocular motor synkinesis that should be listed among those occurring in thalamomesencephalic infarcts. This sign is unusual and it is likely to be overlooked, but it is fully explicable both by neurophysiology and...
by anatomical connections of the saccade system.

M. VERSINO M. SIMONETTI M. G. EGITTO M. CERONI P. F. COSTI
Fondazione IRCCS Istituto Neuropatico C. Mondino, Pavia, Italy. Correspondence to: Dr Maurizio Versino, Dipartimento di Medicina Neurologica, Università di Pavia, Fondazione IRCCS, Via Palestro 3, 27100 Pavia, Italy. Telephone 0039 0382 380340; fax 0039 0382 380286; e-mail mversino@unipv.it

Botulinum toxin is a useful treatment in excessive drooling of saliva

Excessive drooling of saliva or hypersialorrhea is a common problem in neurodegenerative disorders such as motor neuron disease or Parkinson’s disease. It is usually caused by swallowing dysfunction and can facilitate choking, aspiration, and chest infections. Socially it is embarrassing and disabling. There are not many treatment options. Anticholinergic drugs are sometimes tried but are insufficient. They are sometimes used to treat conditions such as Parkinson’s disease and idiopathic hyperhidrosis of the palm.

Cholinergic drugs are sometimes tried but are socially embarrassing and disabling. Systemic sclerosis (scleroderma) is a multi-system connective tissue disease of unknown aetiology, characterised by progressive fibrosis of the skin and internal organs including the lungs and gastrointestinal tract. Pathological calcification of soft tissues (ribonucleic acidosis) is a common feature in the REST syndrome of scleroderma (calcinosis, Raynaud’s phenomenon, oesophageal dysmotility, sclerodactyly, serositis). Contrary to contrast, internal organ calcification is rare and isolated cases of spinal calcification and calcific constrictive pericarditis have been reported. We report here the cases of two patients with systemic sclerosis whose CT examination disclosed extensive brain calcifications.

Case 1, a 48 year old man was referred to hospital because of polyarthalgia involving the wrists and ankles, Raynaud’s phenomenon, and dysphagia. His patient’s wife had noticed that during the previous months, he had a slowed mentation and a depressive mood. Physical examination disclosed a scleroderma hand, telangiectasia, and calcification of the lungs and gastrointestinal tract. Routine haematological tests were normal. Antinuclear antibodies were positive at 1/2000 dilution with nucleolar fluorescence. Rheumatoid factors, antinuclear antibodies, and antiphospholipid antibodies were negative. There was no cryoglobulinaemia. Complement was normal. Lung function tests showed a restrictive syndrome (forced vital capacity 75% predicted). Chest radiography was normal, as were oesophageal manometry and cardiac ultrasonographic examination. A diagnosis of systemic sclerosis was made and the patient was given diltiazem (180 mg/day) and ketoprofen (150 mg/day). Six months later the patient’s status had worsened. He complained of memory loss, poor concentration, and insomnia. On neurological examination he was anxious and very slow in answering questions. The patient’s Mini mental state examination score was 22/30. The patient was oriented to place, but not to time. Anterograde amnesia was noted. Agenesis, apraxia, and aphasia were absent. There was no muscle weakness and muscle tone was normal, with mixed plantar reflexes. Plantar responses were both flexor. There was no sensory loss or impairment of cranial nerves. Systemic sclerosis signs were unchanged. Routine hematological tests were normal. Results of blood chemical tests were also unremarkable (serum electrolytes, urea, creatinine, iron), including phosphorus and calcium metabolism (serum parathyroid hormone concentration, blood calcium and phosphorus, 25-hydroxyvitamin D, 1,25-dihydroxyvitamin D, calcium, and phosphaturia). Serum concentrations of free trioctyldithroxyamine, free thyroxine, and thyroid stimulating hormone were normal. Serological tests for syphilis, HIV-1, 2, and hepatitis B were negative. Brain CT showed bilateral extensive calcification in the dentate nuclei (figure 1A), basal ganglia, and subcortical white matter (figure 1B). On MRI T1 weighted images and T2 weighted images, calcification was visible as a low intensity signal. The patient was given fludrocortisone (20 mg/day) and bremazepam (6 mg/day). At follow up, 1 year later, the patient’s clinical status was unchanged, as was CT.

Case 2, a 64 year old right handed woman was admitted to hospital for evaluation of a Raynaud’s phenomenon which had lasted for more than 10 years. At physical examination, sclerodactyly and tightness of the facial skin were observed. Systemic sclerosis (scleroderma) is a multi-system connective tissue disease of unknown aetiology, characterised by progressive fibrosis of the skin and internal organs including the lungs and gastrointestinal tract. Pathological calcification of soft tissues (ribonucleic acidosis) is a common feature in the REST syndrome of scleroderma (calcinosis, Raynaud’s phenomenon, oesophageal dysmotility, sclerodactyly, serositis). Contrary to contrast, internal organ calcification is rare and isolated cases of spinal calcification and calcific constrictive pericarditis have been reported. We report here the cases of two patients with systemic sclerosis whose CT examination disclosed extensive brain calcifications.

were noted. Telangiectasias were present on the face, hands, and palate. The patient complained of pyrosis. Oesophageal manometry showed abnormalities of oesophageal motility. Hand radiography disclosed soft tissue calcifications. Anticentromere antibodies were positive at a 1/1000 dilution. A CREST syndrome was diagnosed and the patient was given buflomedil (600 mg/day) and prednisone (25 mg/day).

One year later she was admitted for the evaluation of recent transient ischaemic attacks (TIAs). During the previous week she had experienced three bouts of expressive aphasia and right hemiplegia, each lasting about 10 minutes. She never smoked and did not have diabetes, hypertension, or dyslipidaemia. The neurological examination was normal. Routine blood chemical tests were normal (serum electrolytes, urea, creatinine) including phosphorus and calcium metabolism (serum parathyroid hormone concentration, blood calcium and phosphorus, 25-hydroxyvitamin D, 1,25-dihydroxyvitamin D, calcitriol, and phosphate concentrations are increased) and dystrophic (occurring in undamaged tissues when extracellular calcium and phosphate concentrations are normal) calcification. In our patients, as in others mentioned in the letter of Linden and Berlit, the brain calcifying process may be related to primary cerebrovascular changes induced by systemic sclerosis.

Routine brain CT examination in systemic sclerosis could help to determine the true incidence of basal ganglia calcifications and their clinical relevance.

PATRICK BLANCO
JEAN-FRANÇOIS VIALLARD
EMMANUEL ELLIE
ISabelle FAURE
PATRICK MERCIE
JEAN-Luc PELLEGRIN
BERNARD LENg
Clinique de Médecine Interne, Hôpital Haut-Lévêque, avenue de Magellan, 33604 Pessac, France
Correspondence to: Dr Jean-François Viallard, Clinique de Médecine Interne, Hôpital Haut-Lévêque, Centre François Magendie, 33604 Pessac, France. Telephone 0033 556556483; fax 0033 556556484.

CORRESPONDENCE

All tibial foot: an electrophysiological artifact

Yamashita et al claim they have proved an “all tibial foot” for the motor innervation, an anomalous dual innervation of the tibialis anterior muscle by the deep peroneal and posterior tibial nerve, and a sensory conversion of the skin between the first and second toes by the tibial and deep peroneal nerve in a patient. To support their view they quote the letters of Linden and Berlit and of Glocker et al, ignoring our letter and that of Magistris and Truffert, both considering the conclusions of Linden and Berlit and Glocker et al to be wrong. I point out that the mentioned letter of Linden and Berlit and our response to it were published in the same issue.

We have recorded a compound muscle action potential (CMAP) with a negative initial deflection on tibial nerve stimulation in 83% of 50 subjects, using a surface electrode over the extensor digitorum brevis. In the same subjects no potential was recorded by means of a concentric needle electrode inserted in the extensor digitorum brevis. In our view, this proves that the CMAP recorded by surface electrode over the extensor digitorum brevis is a remote potential originated in the plantar muscles (volume conducted potential). Furthermore, we consider that the CMAP recorded over the tibialis anterior muscle by surface electrode on tibial nerve stimulation in the popliteal fossa, as reported by Yamashita et al, represents a volume conduction potential originating in the foot and toe flexors. The sensory nerve action potential recorded dorsally in the space between the first and the second toes on tibial nerve stimulation could also be a volume conducted potential originating in the first common plantar digital nerve, as the distance between this nerve and the recording electrode is short. Such volume conduction phenomena are known to occur on surface recordings from the median nerve at the wrist in severe carpal tunnel syndrome, when the forth finger is stimulated. It is unclear why Yamashita et al could not record a CMAP over the extensor digitorum brevis bilaterally on deep peroneal nerve stimulation in their young patient who did not have neuropathy. A probable explanation is a bilateral aplasia of the tibial extensor digitorum brevis, comparable with the known aplasia of the thenar.

BOOK REVIEWS

If it moves - measure it. Such is the trend in psychiatry and this has led to a proliferation of assessment scales of variable utility; from the esoteric to the ubiquitous. This book has therefore not only been very genuinely, one of the most useful volumes I have seen for a very long time. It covers everything from the AMTS through the MMSE to the KEW cognitive test. Each scale is presented in full together with a short commentary, critical references and, usefully, an estimated time taken to perform the test together with an address to contact the original author.

The scales presented are divided into those covering depression, neuropsychiatric assessments, activities of daily living, global assessments, visible assessments, delirium, caregiver assessments and scales for memory function. This organisation, together with a useful and functional index, will make the task of selecting an appropriate scale much easier in the future. Some of these scales are covered by patent law and my only quibble is that the esoteric to the ubiquitous. This book has

Professor Franco Postacchini is an orthopaedic surgeon at the University “La Sapienza” in Rome and is a well known widely respected spinal surgeon. He is to be congratulated on the production of this book which is wide ranging, comprehensive, and beautifully illustrated. The management of lumbar disc disease is fraught with uncertainty and there are many diagnostic and therapeutic pitfalls. The author has succeeded in addressing most of these controversies in a clear and logical fashion. He occasionally blurs the distinction between theories and established scientific facts, forgetting that the practice of medicine and in particular the management of spinal disorders is full of paradoxes. For example, he states that large extruded disc fragments are unlikely to resolve spontaneously and usually require surgical treatment. This seems a logical proposition but my experience is that many of these large extrusions undergo complete clinical and radiological resolution within 2 or 3 months. Paradoxically, it is often the smaller contained disc prolapses which fail to improve with conservative measures. Like many orthopaedic surgeons he is persuaded by the alluring theories of discogenic low back pain and worships at the altar of segmental microinstability. However, I agree with much that he has written and differences of emphasis are inevitable in a field that is strong on dogma and short of established truths.

I would have no hesitation in recommending the text to trauma surgeons as the book is very readable and makes a good introduction to the management of lumbar disc disease. Nearly all aspects of diagnosis and treatment are covered but I was disappointed with the chapter discussing results of surgery. There is no mention of the use of objective validated disability and quality of life instruments in the assessment of outcome. For a text that aims to be comprehensive this constitutes a serious omission. It is because practitioners have failed to use objective outcome measures to establish the natural history of lumbar disc disease and the effects of therapeutic interventions that there remains so much uncertainty about management. These uncertainties cover (among others) physiological manipulation, timing of radiology, timing of surgery, whether spinal fusion is ever indicated, and what treatments are clinically and cost effective. Despite these drawbacks, surgeons who manage lumbar disc disorders will want to have a copy of this book, either on their own or their departmental library’s shelf.

RODNEY LAING

My first sensation is that such a book is long overdue. There is a paucity of books written by clinicians on this subject with many gloom and doom tracts written by sufferers who have apparently been ill with CFS/PVS/ME for 20 years and which depress the hell out of the patients that I see. Why this lack? I’m sure because relatively few doctors want to put their heads above the parapet and profess to a great expertise or desire to see patients with it. It is a condition for which there is no test, no objective monitoring of progress, whose symptoms are so vague that they repeatedly defy classification and can only be catalogued. Among those patients with a genuine postinfectious fatigue (who mainly get better relatively quickly) one would think it is a large book with those hospital records measured by the kilogram who arrive with sheaves of self compiled additional notes and occupy huge periods in the clinic to little effect other than frustration for both doctor and patient. Why they do this is a different story.

So what about the book? Firstly I must say it comes armoured plated against criticism with a pack of glowing references from ennobled and famous psychiatrists on the back. Presumably the authors chose these referees whose major feature in common is distinction in fields other than chronic fatigue syndrome. So, for whatever reason they were chosen the result is also to make this a poisoned chalice to review if one has the temerity to disagree with such a company.

Chronic fatigue and its syndromes is written by three psychiatrists. That in itself is a little odd as although psychiatric illness is quite common in the chronic fatigue syndrome group, most patients with chronic fatigue syndrome are very reluctant to be seen on first presentation by psychiatrists. One would usually expect them that one is not dismissing their symptoms as psychiatric if one does suggest such a referral. What proportion of patients I wonder go to psychiatrists as their first hospital referral? I would guess very few.

The book is very comprehensive. As a source of references on the subject of fatigue it is encyclopaedic. It begins with a nice history of the syndrome. Of a total of 426 pages, nearly 300 are devoted to treatment. It is written by Sir Humphrey Appleby might have described as “courageous” they have ventured way outside their own areas of expertise into subjects with which they are not familiar. The result is a collection of comprehensively referenced and unscrupulously selected facts from the literature, many of which are very useful, such as the collected data on enterovirus and chronic fatigue syndromes. There is no objective test, no objective monitoring of progress, of which is of uncertain value—for example, “divorced and separated women have higher titres of EBV-VCA antibodies” quoted out of context but not unrepresentativly. To glean interesting and important information from this book requires a fair degree of skill in distinguishing timber from forest.

When in their own field of psychiatry there is, unsurprisingly, a much more confident and informative air to the book. It is
disappointing and somewhat introspective that they do not think that subjects such as neurobiology, microbiology, and immunology might justify equally expert contributors. Is it easy read? There is no easy way to write on a subject such as this, bedevilled by lack of objective facts and the writers have chosen a discursive, debating style which when not tightly controlled can slip towards verbosity. This, however, is not a standard medical text book and it would be unfair to make direct comparisons.

Is this a useful book? As a source of references, yes. As a guide to clinicians I am less convinced. The two commonest questions publically mentioned, “How long does the illness last?” and “What are my chances of recovery?” Cognitive behavioural therapy is concisely and usefully summarised. There is a single page on complementary treatment, which again is often an area of considerable interest to patients notwithstanding the lack of controlled evidence for or against it.

On that note it is perhaps appropriate to quote one very intelligent patient with chronic fatigue syndrome I saw who became ill during his PhD. “I’ve done a lot of reading and internet searching about the causes and possible cures of this, before I came to see you” he said “It seems to me that most people I know have had a bit like that which you commonly see after glandular fever and nobody seems to think it odd that after glandular fever you can feel unwell for quite a long time” he continued “If most people get better from this” (and many do) and if you try all sorts of other treatments like homeopacy, acupuncture, meditation then the one you were doing when you got better will be the one you think you cured”. He had of course discovered the maxim of entertaining the patient while nature gets them better. One could do worse perhaps than keep patients with chronic fatigue syndrome occupied, if not necessarily always entertained for quite a while, by recommending this book for them to read. They might end up with a greater understanding of fatigue and they would certainly find little really is known and how the search for an instant cure (which drives many of them) is futile.

New information about how and why migraine happens continues to break on us in a dizzying succession of waves coming from various journals in different disciplines. We need an accessible, understandable, and up-to-date vehicle to collect, organise, and present this information. Journals, the Internet, and the abstracting services have their place, but for this purpose nothing beats the book. How well does Lars Edvinsson’s Migraine and Headache Pathophiology meet this need?”

This book has several attractive features. Recognising that some of the world’s best science is now being done in the laboratories of industry, it has enlisted as authors several leading researchers from the major pharmaceutical manufacturing companies, in addition to “the usual suspects” from academia. Not only has this introduced some exciting writers to the “review book” audience, but it has provided a particular insight into the science of determining why drugs work, or don’t work, in migraine. The book is up to date, containing many 1998 references. Another strong point of the book is its comprehensiveness; though only 184 pages long, it covers every major aspect of the pathophysiology of migraine. There are chapters on cranial blood vessels, receptor physiology, neurotransmitters, 5-hydroxytryptamine receptor subtypes, cortical spreading, depression, neurogenic inflammation, arterovenous shunts, cerebral haemodynamics, and animal modelling. This is achieved at the expense of some pretty terse prose at times, which can make it difficult for the non-expert to follow. It should be noted that, the title notwithstanding, the book deals almost exclusively with the pathophysiology of migraine, and the reader who buys it to get some insight into the mechanisms of tension-type headaches, or other kinds of headache, is going to be disappointed.

Who should read this book? Certainly the migraine researcher should. Though much of it will be familiar to those who have kept up with the literature, it is nevertheless an attractive and handy reference book for the men and women of basic science. But I got through it all in about 6 hours, and found I knew more about migraine coming out than I did going in—which makes reading it a very worthwhile exercise.

JOHN EDMEADS

There is something about the anarchistic binding of the Handbook of Clinical Neurology series that is rather reassuring. Surely if classic phenomenological neurology is to be found anywhere, it will be between these fake leather embossed covers. This volume, the second of three on the neurology of systemic diseases, does nor disappoint. Here, in 450 pages of close type and few illustrations, are covered the neurology of orthopaedic, endocrine, gastrointestinal, and metabolic disorders. Goetz and Aminoff, the volume editors, have assembled an authoritative panel of authors that equitably straddle the Atlantic. There are detailed reviews of familiar territory such as diabetes, orthopaedic trauma, thyroid diseases, and porphyria. Cole’s historical survey of B12 deficiency is particularly fine. In addition there are excellent chapters on more arcane topics for instance the neurology of pancreatic transplantation and intestinal pseudo-obstruction. Perhaps the movement disorders associated with coeliac disease could have been mentioned and a chapter on the neurology of inflammatory bowel disorders is certainly lacking. But these are trifling complaints against a text that, with its twin volumes, is significantly more comprehensive than any other account of the neurology of systemic diseases. It is hard to imagine a practicing neurologist requiring (or easily affording) a personal copy of all three volumes, but the local medical library should certainly buy them; both neurologists and general physicians will work better the better for having them close to hand.

ANDREW LEVER

Advances and Technical Standards In Neurosurgery is sponsored by the European Association of Neurosurgeons (EANS). The intention is to publish reviews of topics in which recent advances have been made, and to invite acknowledged experts to present in depth accounts of established knowledge in various fields of neurosurgery.

The advances under review in this volume are the contribution of the septal region to memory, the in vivo metabolic investigation of cerebral glomas with PET, and the use of image guidance in neurosurgery. In the technical standards society, Professors Vulvany and Yasargil discuss the endovascular treatment of arterovenous malformations, Dr Guglielmi reports on the interventional neuroradiological treatment of intracranial aneurysms and Dr Stoesser describes the management of benign intracranial hypertension.

This book is aimed primarily at young neurosurgeons, but is an excellent source of reference for those who are already trained. Of fact that is in its 24th volume is a testament to its success in achieving this objective.

ROBERT MACFARLANE

It seems that there is a new specialty in North American neurology, hospitalists. The drive to promote managed care has apparently resulted in hospitals “filled to overflowing with more acutely ill patients requiring a pace of evaluation unprecedented anywhere in the world”. Employ the hospitalist, neurologist. Unencumbered by the duties of outpatient neurology, he or she stumbles through the wards of the general hospital “faced with a dizzying array of neurologic problems”. Most British neurologists have a ward referral practice and will not be impressed by its elevation to the status of a specialty and still less by the agrammatical title Martin Samuels has chosen for it. Which is a shame, because this book deserves a wide readership. One in the Butterworth Heinemann series of Blue Books of Practical Neurology, it is attractively produced and reasonably well illustrated. Its place on your bookshelf is earned by collating the neurological aspects of diverse medical specialties: to name a few, organ transplantation, orthopaedics, oncology, and urology. A quick glance here before a ward referral might well be rewarding. However, the chapters on more conventional neurological topics, such as neuro-ophthalmology, stroke, and seizures are probably briefer than most neurologists would require. So, for those made dizzy by the delirious patient after bypass, the encephalopathic flapping of the transplant ward, or the weak and wasted on intensive care units, this is for you. And remember: you are a hospitalist neurologist.

ALASTAIR COLES

PROOF

This is one of a new type of medical textbook written to meet the needs of an increasingly informed patient population. Aimed very much at those with multiple sclerosis, their families, and care-workers, it is simple and clearly written with jargon and technical terms kept to a minimum but without patronising. Chronic diseases, and especially multiple sclerosis, are not always well managed by the physician. Too many of us think that there is no cure and feel helpless in a busy clinic faced with the patient with a long list of complaints. There are too few specialty multiple sclerosis clinics in which neurologists, pain specialists, urologists, physiotherapists etc liaise.

Patients often feel left in the dark, unaware which of their symptoms can be attributed to their multiple sclerosis and whether it is “worth bothering a busy doctor”. Many can cite bad experiences in their past when they have been fobbed off with well meaning reassurance but without practical help. Dysaesthesia, sexual problems, and urinary incontinence are only a few of the symptoms that can bring misery to the lives of patients and their families and which are poorly addressed by doctors. This book, in a language accessible to most (and with a glossary to explain some unavoidable jargon), explains multiple sclerosis, its symptoms, and what might realistically be obtained in terms of symptom control. All aspects are covered and nothing considered too trivial; constipation or cold feet might be extremely trying for an individual patient and each is considered.

The old idea that it doesn’t help a patient to know too much about his disease (“it will only make him introspective and hypochondrial”) is outdated. Multiple sclerosis can hit anyone and patients now want, and deserve, to be informed. While doctors find it challenging to be faced with a patient equipped with the latest information downloaded from the internet or well informed having read a book such as this, this is a challenge to which we must be ready to rise. This textbook provides the information patients want and fills the gap left by busy doctors. It should be marketed appropriately and we must be ready to respond to the reaction of patients. Perhaps someone with multiple sclerosis should have been invited to write this review.

GILLIAN HALL

During printing, the figure in this paper (p 164) was made darker than the original. The correct version appears below.

(A) T1 weighted MRI of the lesion. (B) Anatomical scheme of the centre of the lesion, corresponding to the leftmost image of the bottom row of the MRI. The right side of the figures corresponds to the left side of the brain. GP=globus pallidus; Cd=caudate nucleus; Acb=nucleus accumbens; CI=capsula interna; DB=diagonal band.