LETTERS TO THE EDITOR

Acute cauda equina syndrome caused by thrombosis of the inferior vena cava

Deep venous thrombosis of the lower limbs is the most common vascular disorder in hospital. Although the clinical features are not specific, the most important symptoms are oedema, local tenderness, and pain. Well known complications of deep venous thrombosis are pulmonary embolism and chronic venous insufficiency. Neurological complications are uncommon after deep venous thrombosis.

We report on a patient who presented with an acute cauda equina syndrome, which turned out to be caused by thrombosis of the inferior vena cava.

A 58 year old previously healthy white man presented at the emergency department of our hospital with acute severe low back pain radiating to both legs. The pain in the legs was severe and was located from the lower half of the upper legs down to the feet. He also had noted decreased strength as well as sensory disturbances of both legs. Spontaneous micturition was not possible.

On physical examination, blood pressure was 110 over 75 mm Hg. Heart, lungs, and abdomen were normal. Peripheral arterial pulsations were present. Both legs were slightly swollen and coloured red to purple and livido reticularis was present. On catheterisation of the bladder, there was no urine retention. Neurological examination showed weakness of both legs, and an immediate MRI of the thoracic and lumbar spine was performed. This MRI disclosed a strongly dilated anterior epidural venous plexus with compression of the cauda equina and nerve roots in the foramina (fig 1 A–C). Signal intensity of the thoracic spinal cord was normal. Ultrasound examination of the lower abdomen and legs showed thrombosis of the inferior caval vein. Abdominal CT confirmed the presence of thrombosis of the inferior caval vein (just below the insertion of the renal veins) extending into the iliac veins. No other abnormalities that could have caused the inferior vena cava thrombosis were seen on CT. Routine laboratory investigations (including coagulability testing) were unremarkable, except for slight increase in erythrocyte sedimentation rate.

The patient was diagnosed as having an acute cauda equina syndrome due to dilated anterior epidural veins secondary to thrombosis of the inferior vena cava. He was treated with intravenous heparin and acenocoumarol to prevent spread of thrombosis. In the next few days, the neurological disturbances gradually diminished. Despite exhaustive testing, no cause of the thrombosis was found.

We report on a patient with an acute cauda equina syndrome due to thrombosis of the inferior vena cava. An acute cauda equina syndrome is usually caused by a prolapsed intervertebral disc and less often by a tumour, trauma, or epidural bleeding.

Well known complications of deep venous thrombosis are pulmonary embolism and chronic venous insufficiency. To our knowledge, an acute cauda equina syndrome secondary to thrombosis of the inferior vena cava has not been reported previously.

The mechanism by which the neurological symptoms and signs were produced is probably twofold. Firstly, there is compression of cauda equina nerve roots in the spinal canal and foramen by the dilated anterior internal vertebral veins. Secondly, the symptoms and signs may be due to ischaemia of the cauda equina caused by stasis of the blood flow in the radicular veins. The mentioned anterior internal vertebral veins and radicular veins are part of the spinal venous plexus. This valveless plexus is connected by the intervertebral veins to the ascending lumbar veins which drain to the inferior caval vein (fig 2). The ascending lumbar veins, however, also communicate with the aygossy and the occipital and basilar sinuses. After occlusion of the inferior vena cava, this vertebrolumbar collateral pathway can function as an alternative route for venous blood from the lower limbs. Due to this bypass effect running parallel to the inferior caval vein, the anterior epidural veins are dilated by increased blood flow. In our case, the dilated veins have probably compressed the cauda equina and certainly compressed spinal roots in the intervertebral foramina, as can be seen on the MRI.

Vascular spinal neurological complications are also known as spinal arteriovenous malformations (AVMs) and spinal angiomas. More than half of the patients with AVMs have bladder dysfunction, paresis, and sensory change caused by the ischaemic effect of venous hypertension. In patients with spinal AVMs, an apoplectiform onset of clinical presentation, as presented in our patient, is described in 30%–50% due to thrombosis or haemorrhage. Neurological signs are also known as a related phenomena to spinal angiomas. Although ischaemia of the cord in these angiomas is mostly caused by stealing blood through a significant arteriovenous shunt, spinal compression by very large draining veins is also important in some patients. Besides cauda equina compression, dilated veins secondary to thrombosis of the inferior vena cava can also lead to destruction of pedicles of lumbar vertebral bodies and partial obstruction of the ureter.

In conclusion, an acute cauda equina syndrome may be rarely caused by a dilated venous spinal plexus secondary to thrombosis of the
inferior vena cava. The list of causes of the cauda equina syndromes should therefore also include inferior vena cava thrombosis.

Jille de Kruijk

Arthur Korten

Jelis Boiten

Department of Neurology

Jani Wilming

Department of Radiology, University Hospital Maastricht, The Netherlands

Correspondence to: Dr JR de Kruijk, Department of Neurology, University Hospital, Maastricht, P. Debyeplein 25, NL 6229 HX, Maastricht, The Netherlands. Fax 0031 43 3877055; email JDKr@SNEU.AZM.NL

Persisting rhinorrhoea and headache as the initial symptom of bilateral carotid artery dissection

Carotid artery dissection is a frequent non-atherosclerotic cause of stroke in young adults. In up to 20% of cases it is bilateral or associated with vertebral artery dissection. Common clinical features include unilateral pain on the side of the dissection, signs of cerebral ischaemia, ear bruits, and Horner’s syndrome, which is usually incomplete and sometimes transient. Horner’s syndrome is thought to result from a lesion of the periarterial sympathetic plexus caused by the dissection. Rhinorrhoea and nasal congestion have not yet been reported as symptoms of spontaneous carotid artery dissection but have been seen in patients undergoing cranial base surgery. We here describe a patient with spontaneous bilateral carotid artery dissection in whom rhinorrhoea, nasal congestion, and headache were the first symptoms, which preceded the development of incomplete Horner’s syndrome for several weeks.

A previously healthy 33 year old man was referred for evaluation of headache. He admitted to having had rhinorrhoea and nasal stuffiness for 7 weeks. Treatment with antibiotics and corticosteroids before admission had been unsuccessful. An infectious or allergic cause could not be determined. Four weeks later he developed severe periodical retro-orbital headache lasting for hours, and pulsatile tinnitus on the right side. Two weeks before admission he noted severe stabbing retro-orbital pain on the left side irradiating to the neck. This did not respond to aspirin. Pain attacks and vomiting occurred regularly during the afternoon, progressing during the night without fluctuations. Intake of alcohol and nicotine triggered the attacks. He had no history of cluster headache or migraine.

On examination he showed rhinorrhoea, increased lacrimation of the left eye without redness, left eyelid swelling, incomplete Horner’s syndrome on the left side, and ear bruits on the right side that were not detected by auscultation of the skull. There were no other focal neurological deficits, in particular no amyotrophic pericarotid lesions after infrequent bilateral internal carotid artery dissections whereas unilateral dissections may cause only a mild and clinically often inapparent irritation.

Cusimano and Sekhar described a syndrome they termed “pseudocerebrospinal fluid rhinorrhoea” with ipsilateral nasal hypersecretion and nasal stuffiness after surgery of the cranial base. In these patients, the pericarotid sympathetic plexus, the petrous or cavernous carotid artery parts, and the greater petrosal nerve had been removed or dissected. Experimental selective parasympathetic nerve activation in the nasal mucosa of the cat leads to an increase in nasal secretion and vascular congestion. Lung found nasal congestion to be related to a withdrawal of sympathetic discharge rather than to an overactivity of the parasympathetic nerves. Thus the nasal hypersecretion and stuffiness in our patient is in agreement with the assumption of a lesion of pericarotid sympathetic nerve fibres after carotid artery dissection.

In the differential diagnosis, cluster headache and paroxysmal hemicrania have to be considered. Our patient’s symptoms differed from typical cluster headache and paroxysmal hemicrania in that headache followed the beginning of autonomous symptoms after...
several days and pain was progressing over hours during bouts without fluctuations. We conclude that structural lesions of sympathetic nerve fibres should be considered when (1) the headache profile is not typical for cluster headache and paroxysmal hemicrania, and (2) autonomous symptoms precede and outlast headache.

KAI G KAHL
MARKUS NAUMANN
KLAUS V TOYKA
Department of Neurology
Julius-Maximilians-Universität, Würzburg, Germany

MONIKA WARMUTH-METZ
Department of Neuroradiology, Julius-Maximilians Universit"at, Würzburg, Germany

Correspondence to: Dr M Naumann, Neurologische Klinik, Julius-Maximilians-Universit"at Würzburg, Josef-Schneider Straße 11, 97080 Würzburg, Germany

3 White muscle disease in humans: myopathy caused by selenium deficiency in anorexia nervosa under long term total parenteral nutrition

Selenium is an essential trace element that is known to be a component of glutathione peroxidase, a scavenger of hydroperoxides. Its deficiency causes a decrease in glutathione peroxidase function, thereby resulting in oxidative damage to many organs. The two major clinical signs in patients with selenium deficiency are skeletal myopathy and cardiomyopathy. White muscle disease, named because of its characteristic acolouration of the muscle is a myopathy caused by selenium deficiency in animals in the areas where the soil is low in selenium. In humans, it was demonstrated that Keshan disease, dilated cardiomyopathy in the Keshan area in China, was caused by selenium deficiency. In addition, there are reports that selenium deficiency occurs in patients who are nourished by total parenteral nutrition alone for a long time because of inflammatory bowel disease or resection of the intestine due to various intestinal diseases. We experienced a case of anorexia nervosa with skeletal myopathy caused by selenium deficiency under long term parenteral nutrition.

A 28 year old woman was admitted to our hospital with a 7 year history of anorexia nervosa receiving parenteral nutrition intermittently. At admission, she complained of general fatigue, but had no muscle weakness or myalgia. On physical examination, she showed myopathic patterns. Motor power was normal. The forearm ischaemic exercise test showed a normal response. Cephalalgia 1988;8(suppl) 7:1–96.

Microscopic (A,B) and electron microscopic (C,D) findings of muscle biopsy from the left biceps of this patient. (A) Haematoxylin and eosin staining. There were many atrophic changes and intramyofibrillar vacuoles. bar=10 µm. (B) Routine ATPase reaction. Predominance of the type II fibre as well as many vacuoles in the fibres. bar=10 µm. (C) Subperimysial and intermyofibrillar clefts composed of amorphous matrix material were found in muscle fibres. Myofibrils showed thinning and interruption. bar=4 µm. (D) There were intermyofibrillar clefts, containing numerous small granules and enlarged mitochondria with normal cristae. bar=1 µm.
and sensory nerve conduction velocities were normal.

The biopsied muscle from her left biceps seemed pale. Histological studies showed severe atrophy of all muscle fibres examined, type II fibre predominance, increased extramyofibrillar fluid without fibrosis, and many vacuoles in the myofibrils (figure B). The vacuoles were unstrained by oil red O, periodic acid Schiff, or acid phosphatase, and were made up of subperimysial and intermyofibrillar clefs consisting of amorphous matrix material seen by electron microscopy. Myofibrillar architecture was destroyed and associated with loss and thinning of myofibrils. Some mitochondria were enlarged in size, but neither abnormal cristae nor inclusions were seen (figure C, D). These clefs and destroyed architecture of myofibrils would be caused by the intermyofibrillar and intramyofibrillar focal oedema that might be induced by unmetabolised hydroyperoxide.

Within several days after a simple change from total parenteral nutrition to oral diet alone, without selenium supplementation, her muscle pain gradually improved. The serum creatine kinase concentration gradually decreased and was normal in a month. Two months later, she was able to walk alone and stand up from a chair. The concentration of serum selenium and glutathione peroxidase tended to improve with oral diet alone.

Selenium is relatively abundant in meat, fish, and cereals, but there is very little in total parenteral nutrition or liquid formula diets. A patient nourished by total parenteral nutrition alone for a long period may risk selenium deficiency during total parenteral nutrition. A patient with a perforated small intestine and destroyed architecture of myofibrils would be caused by the intermyofibrillar and intramyofibrillar focal oedema that might be induced by unmetabolised hydroyperoxide.

The vacuoles were unstrained by oil red O, periodic acid Schiff, or acid phosphatase, and were made up of subperimysial and intermyofibrillar clefs consisting of amorphous matrix material seen by electron microscopy. Myofibrillar architecture was destroyed and associated with loss and thinning of myofibrils. Some mitochondria were enlarged in size, but neither abnormal cristae nor inclusions were seen (figure C, D). These clefs and destroyed architecture of myofibrils would be caused by the intermyofibrillar and intramyofibrillar focal oedema that might be induced by unmetabolised hydroyperoxide.

Sudden death occurs occasionally in patients with anorexia nervosa because of arrhythmia and heart failure. Because selenium deficiency can cause cardiomyopathy, a similar pattern of cardiac findings in patients with anorexia nervosa was noted.

Selective mutism, speech delay, dysmorphisms, and deletion of the short arm of chromosome 18: a distinctive entity?

Elective (or selective) mutism is a rare psychiatric disorder. Diagnostic criteria in both ICD-10 and DSM-IV include: (a) consistent failure to speak in specific social situations in which there is an expectation for speaking (for example, at school) despite speaking in other situations (for example, at home); (b) the disturbance interferes with educational or occupational achievement or with social communication; (c) it is not better accounted for by a communication disorder or by a lack of knowledge of the spoken language required in the social situation; (d) it has a duration of at least 1 month.

Typically it starts at preschool age, is more common in girls, and is seen in all social strata with shyness, withdrawal, sensitivity or resistance, and internalising behaviour problems as the most common personality features. We followed up a 7.5 year old girl who was the third child from non-consanguineous parents. She was born normally at 37 weeks' gestation, of a healthy 40 year old woman, at 38 weeks' gestation. She acquired head control at the 3rd month of life, sat at 7 months, and walked at 13 months. On the other hand, she presented speech delay as she used single words meaningfully as late as 3 years and was able to pronounce her first phrases at 3 years. Behavioural anomalies were first registered by her parents between 3 and 4 years, when they noted a reluctance to speak in front of other people. By the age of 4, she used to speak regularly only to one of her friends, and she did not talk to nursery staff or to other children. At home, she normally spoke to her parents and her sister but would not speak to them in front of other people. She first came under our care at the age of 6 years. Physical examination showed a pattern of facial dysmorphisms involving flattened nasal bridge, short upper lip, broad philtrum, and micrognathia. Short and broad fingers were also noted. Muscular tone and deep tendon reflexes were normal. No abnormal pyramidal, extrapyramidal, or cerebellar signs were present. She had no dyspraxia. Her height was below the 10th percentile, weight on the 15th percentile, and head circumference on the 10th percentile.

The autism diagnostic interview, administered by her mother, showed a score of 9 in the area of communication (cut off level of 8), but she scored 6 in the areas of qualitative impairments in reciprocal social interaction (cut off of 10), and 0 in repetitive behaviours and stereotyped patterns (cut off of 3). Social and imitative play seemed inadequate, but no language abnormalities, stereotypic behaviors, or odd behaviour patterns were present. Her social interactions were reciprocal although she usually only smiled at her parents, did not have easy peer relationships, and directed no language towards the hospital staff. However, she was able to engage in good eye contact. Clumsy attempts to interact with other children where made by the patient when she was not directly observed by medical staff.

The patient was also evaluated by the Wechsler intelligence scale for children which showed a performance IQ of 79, and verbal IQ of 70.

Bioclinical tests for aminoacidopathies, mucopolysaccharidosis, and lysosomal disorders were normal, as was selective screening for organic acidemia. An isoelectric focusing test for sialotransferrin was normal. Molecular tests for fragile X chromosome were negative. Brain MRI examination, EEG recording, and audiometric tests were normal. Karyotype analysis of blood cells showed an abnormal chromosomal pattern with deletion of the short arm of chromosome 18, 46XX, del(18), p(11.1).3 In all metaphases examined, karyotype analysis was normal in her parents.

Simons et al recently reported the first patient affected by elective mutism associated with deletion of the short arm of chromosome 18, del (18), p (11.1).3 Their patient had developmental abnormalities but these could not account for her social communication disorders, and peculiar dysmorphisms were present. We also had the opportunity to study a girl affected by elective mutism in whom karyotype analysis showed an identical deletion of the chromosome 18. Speech delay, facial dysmorphisms such as flattened nasal bridge, broad philtrum, and micrognathia were the main clinical findings. Auxological indices were in the low average range; particularly, skull circumference was on the 10th percentile, weight was below the 10th percentile, and head circumference was normal in her family, and short stature appeared when the height of our patient was compared with the midparental normal (data not shown). Brain MRI testing showed verbal skills and performance in the low range (table). We compared our patient with the one reported by Simons et al (table).4 With the exception of the round face, not seen in our patient, clinical findings of both patients overlapped. Moreover, both patients had speech delay, a similar neuropsychological profile, and the same 18 chromosome abnormality. All these findings allow us to hypothesise that the association of such signs is not by chance and it may be indicative of a distinct clinical entity.

Elective mutism is most probably a heterogeneous syndrome and several aetiological factors such as minimal brain dysfunction, somatic or psychological trauma, particularly during speech development, and a particular family structure especially the mother-child relationship, have been suggested. As a consequence clinical features are variable and speech delay and dysmorphisms can be found in a subgroup of patients only.9 Moreover, in most patients elective mutism is a transient disorder as it usually appears.
in a few months. By contrast, in our patient as well as in the one reported by Simons et al., elective mutism appears as a chronic disorder and it has been affecting our patient for about 4 years. Therefore, we think that in a substantial number of patients elective mutism is related to a genetic background. This hypothesis is further corroborated by the study of Steinhausen et al., who pointed out that genetic factors play a part in the aetiology of selective mutism, as they found that disorders of speech, language, and psychiatric illness were more common in the relatives of affected than in the control groups.

Deletion of the short arm of chromosome 18 has also been associated with several phenotypic expressions, mental retardation, and autism. However, in our patient diagnosis of elective mutism was firmly made as autism or a connected pervasive developmental disorder were ruled out because of social disorders which were highly specific and situational.

In conclusion, we confirm that the relation between elective mutism and deletion of the short arm of the chromosome 18 is not by chance, and think that their association with developmental disorders and dysmorphisms, occurring in these patients, may delineate a specific clinical entity.

SALVATORE GROSSO
MADEALENAC CHIO
LUCIA PUCCI
GUIDO MORGESE
PAOLO BALESTRI
Istituto di Clinica Pediatrca, Via M Bracci, Le Scorte, University of Siena, 53100 Siena, Italy

Correspondence to: Dr Salvatore Grosso, Istituto di Clinica Pediatrca, Via M Bracci, Le Scorte, University of Siena, 53100 Siena, Italy. Telephone 0039 0577 586540; fax 0039 0577 586143; email: grosso@unisi.it

CORRESPONDENCE

Relation between neuropsychological and neuroimaging findings in patients with late whiplash syndrome

R FERRARI

Radanov et al reply:

On the basis of our article, which may be interpreted as indicating that a car crash has caused brain injury after whiplash, Ferrari focuses on malingering as an alternative explanation for the cognitive problems of whiplash patients. This perhaps is a biased view and is in contrast with Ferrari’s statement that “the biopsychosocial (non-dichotomous) approach” to the problem may be required in these patients. The following points seem important: (1) It should be considered that there were results outside the context of litigation which suggest that overall there was an improvement of cognitive functions (for example, attention) in whiplash patients within the first months of injury. However, there was a relapse in cognitive functions in long term patients, which could be explained neither by brain damage nor by litigation. Data rather suggested that this relapse may be due to symptoms (mainly pain), adverse effects of medication, or symptoms related to change in psychological functioning. Comparable results were found in additional studies where litigation is unlikely to have played an important role. In this research similar problems in cognitive...
performance were found in patients who had had mild traumatic brain injury or only an injury to other parts of the body. Interestingly, in patients with more severe injuries to other parts of the body a higher impairment in cognitive functioning was found. These results may suggest that experience of symptoms (for example, pain) and the process of adjustment to the symptoms (for example, worry about achieving the pretraumatic level of functioning) may contribute to psychological changes as shown previously. Based on these changes, of which the prolonged experience of impaired wellbeing may be crucial, an inability for effort may follow, eventually leading to subtle problems in cognitive functioning. Assuming a dichotomous perspective with focus on malingering as the only basis for symptoms may certainly lead to an additional change in patients’ illness behaviour including an exaggeration of symptoms in some cases. Considering these issues may help to develop a therapeutic approach which should allow patients to adjust better to their problems and improve recovery. Previous results generally indicate a lack of morphological brain damage after whiplash or mild traumatic brain injury. However, functional brain damage, whatever the cause, cannot be fully excluded and further research may provide some additional insights. For example, using SPECT, short term disturbance to prefrontal structures was found in patients with mild traumatic brain injury, which probably indicated some sort of impaired functioning. Such a functional impairment may introduce a cascade of additional problems eventually contributing to a vicious circle on which basis the previously shown symptom augmentation may follow. This has to be prevented. Blaming patients for malingering is hardly logical changes as shown previously.

Secondary prevention after cerebral ischaemia of presumed arterial origin: is aspirin still the touchstone?

I agree that, for secondary prevention of ischaemic stroke, alternatives to aspirin have to be identified, not only because the scope for aspirin related therapeutic benefit is limited by the fact that aspirin blocks only one of at least eight potential pathways for activation of platelet aggregation, but also because some patients, initially sensitive to the inhibitory affect of aspirin on platelet aggregation, subsequently escape from this effect, with consequent risk of recurrence of ischaemic stroke. Glycoprotein IIb/IIIa receptor blockers might superficially seem to be the final solution to this problem, as they block the final common pathway of platelet aggregation, but enthusiasm for their use should be tempered by the acknowledgement that acute profound thrombocytopenia (platelet count < 20 000/mm³) may be an occasional side effect, with the consequence (at least in theory) of clinically significant intracranial haemorrhage in elderly patients who have ischaemic stroke coexisting with the type of small vessel disease predisposing to silent intracerebral microhaemorrhages, or coexisting with cerebral amyloid angiopathy, itself a risk factor for intracranial haemorrhage.

O M P JOLOBE
Department of Medicine for the Elderly, Tameside General Hospital, Fountain Street, Ashton-under-Lyne OL6 9BW, UK

Secondary prevention after cerebral ischaemia of presumed arterial origin: is aspirin still the touchstone?

In a recent editorial, Algra et al summarise the current state of knowledge of drug treatment in secondary prevention after ischaemic stroke or transient ischaemic attack (TIA). After review of aspirin, ticlidipine, clopidogrel, and anticoagulation with warfarin, and a critical discussion of recent relevant clinical trials, they speculate that antagonists of the platelet fibrinogen receptor glycoprotein IIb/IIIa may also have a preventive role in cerebral vascular disease in the near future and they indicate that clinical trials are planned. Unfortunately, the authors fail to mention the problem of β-hydroxy-β-methylglutaryl (HMG) coenzyra reductase inhibitors (statins) in preventing stroke and TIA in patients with established vascular disease. These are a novel group of compounds which lower serum cholesterol, and which have been shown to lower mortality in large randomised controlled trials. In secondary prevention in patients with known vascular disease, both with and without hypercholesterolaemia, and in primary prevention in those with hypercholesterolaemia without clinical vascular disease. In addition, these trials have demonstrated that statins reduce the risk of stroke by about 30% in patients with coronary artery disease. As well as reducing serum cholesterol, statins have been shown in various models to have a broad range of beneficial effects on vascular pathophysiology, including plaque stabilisation, and direct vasodilatory, antithrombotic, and antiplatelet effects. Some of these drugs are currently being tested in clinical trials in patients with a history of minor stroke or TIA. As statins do not exert their beneficial effects primarily through antiplatelet mechanism, the possibility that a statin combined with aspirin (or clopidogrel or both) could provide additive therapeutic effects is exciting and needs to be tested in patients with or at risk of cerebrovascular disease. As usual the academic community lags behind their cardiology colleagues in managing their cerebrovascular share of the systemic disease of the endothelium known as atherosclerosis.

NORMAN DELANTY
Department of Neurology, University of Pennsylvania, 3 West Gates, 3400 Spruce Street, Philadelphia, PA 19104, USA

6 Vaughan CJ, Murphy MB, Buckley BM. Statins do more than just lower cholesterol. Lancet 1996;348:1079–82.

The authors reply:
Speculation about the results of ongoing trials was not really the purpose of our review, but we agree we might have included the use of statins in patients with cerebrovascular disease. We note that Delanty has a poor opinion of the neurovascular research community. We shall have to live with it.

ALGRA
Department of Neurology, University Medical Center Utrecht, Utrecht, The Netherlands

ALGRA
Julius Center for Patient Oriented Research, University Medical Center Utrecht, Utrecht, The Netherlands

PJ KOUDESTAAL
Department of Neurology, University Hospital Rotterdam Dijkzigt, Rotterdam, The Netherlands

Prospective, population based studies of cavernous malformations are needed

In their welcome systematic review of supratentorial cavernous malformations and epilepsy, Moran et al illustrate the pitfalls of regarding the prognosis of a disease in selected case series as representative of its natural history. Studies of cavernous malformation prognosis have usually lacked clear inception cohorts with respect to mode of presentation and treatment. Referral filter bias has so often restricted ascertainment by tertiary referral centres, and further selection bias has made the prognosis seem worse than it really is, as demonstrated by the authors’ own series of 33 patients in which temporal lobe lesion location and intractable seizures predominated. Conversely, by leaving community mortality unaccounted for, the prognosis can seem better than it actually is. Completeness of follow up has been variable and not always prospective. Furthermore, authors have varied in their choice of outcome, in particular their definition of haemorrhage (clinical or radiological), choice of period at risk (from birth, time of diagnosis, or start of observation) and calculation of outcomes for each patient or for each lesion. Any analyses of such heterogeneous case series should be ruthlessly systematic, but even so it is necessary to be wary about drawing firm conclusions from them. The only existing population based study of cavernous malformations, albeit with a denominator of merely 50,000, was retrospective. The study spanned fundamental developments in the non-invasive diagnosis of cavernous malformations during the 1980s with magnetic resonance imaging, which led to increasing detection rates with time. There is, therefore, clearly a need for a large, population based, prospective, contemporary epidemiological survey of cavernous malformations to establish their frequency and prognosis. With a broad collaborative network, including the three other neurosciences centres in Scotland, the Scottish Intracranial Vascular Malformation Study (SIVMS) has been set up (www.dcn.ed.ac.uk/iwvm/ to do just this for all types of intracranial vascular malformation (IVM). Using multiple, overlapping sources of case ascertainment we are building an inclusion database of all incident cases of any type of IVM diagnosed after 1 January 1999 in the population of Scotland (5.1 million). With prolonged follow up of this cohort we hope to settle some of the uncertainties highlighted by Moran et al. Moreover we agree that, with such poor data available, a randomised controlled trial of surgical versus conservative treatment for cavernous malformations is overdue.

RUSTAM AL-SHAHI CHARLES P WARLOW
Department of Clinical Neurosciences, Western General Hospital, Crewe Road, Edinburgh EH3 2HX, UK
Correspondence to: Dr Rustam Al-Shahi, MRC Clinical Sciences Centre, Clinical Brain, Department of Clinical Neurosciences, Brunswell Dott Building, Western General Hospital, Crewe Road, Edinburgh EH3 2UX email ras@skull.dcn.ed.ac.uk

Neurological stamp: Adam Politzer (1835-1920)

Recently I found an interesting manuscript in your journal about Adam Politzer under the section on neurological stam. I was mildly disappointed by the presence of some inaccuracies concerning the biography of Adam Politzer, and write to you to correct these impressions.

Adam Politzer published in 1878 the first volume of his textbook of otology under the original German title: Lehrbuch der Ohrenheilkunde für praktische Ärzte und Studierende. The second edition was published in 1882 to complete his work.1 Since the second edition, this textbook of otology was printed in one volume.

The finding that ossicles vibrate to sound stimuli was not made by Politzer but by Hermann von Helmholtz with his resonance theory published in 1863 completed by the mechanism of ossicles and tympanic membrane in 1868.2 It was one of his students in 1861 in Heidelberg. Adam Politzer invented, notably, a revolutionary method to make the eustachian tube permeable in 1863,3 a method which made him famous and carries his name. He also developed an acometer in 18774 to measure hearing, replacing the watch, which was used until this date.

In 1864 Politzer founded with Anton von Tröltsch and Hermann Schwartz the first German and international journal of otology under the original title: Archiv für Ohrenheilkunde.5 In 1879 The American Journal of Otology6 was founded and edited by Clarence J Blake and was printed for only 4 years at this time.

In addition to more than 100 publications in medical journals, and besides his textbook of otology, Politzer published three other books, all translated into English. As well as one book about anatomical and histological dissection of the human ear and one about the history of otology, Politzer published an atlas of the tympanic membrane in 1865,7 completed and reprinted in 1896.8 Politzer was certainly the greatest otologist of the 19th century and probably one of the greatest of all time. His influence during 50 years of otology has never been equalled.

ALBERT MUDRY
ENT Department, University Hospital, Au de la Gare 6 CH-1003 Lausanne, Switzerland email: amudry@sorcomp.ch

1 Politzer A. Lehrbuch der Ohrenheilkunde für praktische Ärzte und Studierende. Stuttgart: Enke, 1878 Band I, 1882 Band II.

BOOK REVIEWS

Mononeuropathies: Examination, Diagnosis and Treatment by A STAAL, J VAN GIN, and F SPAANS (pp 243, 35.00). Published by W B Saunders, London, 1999.

The authors say that they wrote this book from a fresh look at having to look at several different sources to solve a single clinical problem.

The introductory chapters contain sound clinical advice on a general approach to patients with mononeuropathy. Then each nerve is dealt with in turn. The advice on treatment is sensible and not always tabulated; and finally treated. The line drawings of the anatomy are clear, highlighting sites of compression. The line drawings of power testing are less satisfactory. The movement to be tested is well illustrated but the site of the muscle being tested (and hopefully observed) is not shown and for some muscles lies outside the illustration. This is followed by some chapters discussing causes of peripheral nerve injury other than focal lesions, including metabolic and physical factors and tumours. The description of the clinical syndromes is clear and succinct and well referenced throughout. The advantageous is soundable with a strong emphasis towards conservative management with clear statements as to when more rapid intervention is needed.

The text is interspersed with illustrative cases which appear in boxes. I thought this worked well, although was surprised to find eight doctors (including a Professor of Neurology with a partial musculocutaneous nerve lesion, and a Dean of the Faculty of Medicine with neuromyalgomyastrophy), among the 40 or so cases.

While for mononeuropathies the book manages to act as a single point of reference it does not do this for some similar clinical problems whose presentations may be similar. It only briefly touches on radiculopathies as they appear in the differential diagnosis of mononeuropathies and skirts round some contentious issues such as the thoracic outlet syndrome. The anatomy of the brachialplexus (something I always have to look up) is not reproduced.

Overall I think the authors have succeeded in their objectives and there is indeed justification for this book. The book is moderately priced at less than half the price of the combined costs two of the books they aim to replace. I would suggest that most neurology units should get a copy. I would urge you to persuade your orthopaedic colleagues to get one too.

GN FULLER

J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.67.6.833 on 1 December 1999. Downloaded from http://jnnp.bmj.com/ on September 20, 2022 by guest. Protected by copyright.

This book deals, in general, with issues pertinent to the clinical application of cell transplantation approaches, and has been written by many eminent members of both the American and European transplant communities, the editors also being well respected figures in this field. It covers neuronal cell transplantation therapies in many forms, and although almost half relates to primary human foetal tissue transplants in Parkinson's and Huntington's disease, this does in fact reflect the balance of events. The book also contains the editors' Essay on the ethics of using human foetal tissue. The book ends with a single chapter on the ethics of using human foetal tissue. The book ends with a single chapter on the ethics of using human foetal tissue. The book ends with a single chapter on the ethics of using human foetal tissue. The book ends with a single chapter on the ethics of using human foetal tissue. The book ends with a single chapter on the ethics of using human foetal tissue.

Are we on the verge of molecular Armageddon, to be ravaged by the onslaught of giant, genetically modified, giant tomatoes? Are we entering a molecular Utopia, where all the world's ills will be solved with a golden key to a nucleotide code or at the gateway of a genetic nightmare? As far as epilepsy is concerned, a central message of this book is that clinical heterogeneity is the rule—the genes are only part of the story. Those of us with a deep suspicion (acquired not innate) of genetic models of life the universe and everything, can breathe a sigh of relief.

There are substantial methodological problems in genetic studies of epilepsy. It is a paroxysmal disorder, with age dependent expression, no diagnostic test, and frequent misdiagnosis. A tribute to workers in this field is that progress has been made despite these difficulties. Several early chapters consider benign childhood epilepsy with centrotemporal spikes. The characteristic EEG disturbance of this condition is probably inherited in autosomal dominant fashion, but only about 10% of siblings have epilepsy and they may have many different clinical varieties of epilepsy. Indeed there seems to be an association between this benign partial epilepsy and idiopathic generalised epilepsy, blurring the classic divisions of epilepsy classification. Autosomal dominant nocturnal frontal lobe epilepsy is genetically and clinically relatively well defined and is sometimes due to mutations of the nicotinic acetyl choline receptor. Even here the clinical expression of the same mutation may vary from a self limiting period of seizures to refractory nocturnal epilepsy with dozens of seizures each night. Other genetic epilepsy syndromes have been described recently; familial temporal lobe epilepsy and epilepsy with variable foci. MRI has allowed the in vivo classification of subtle cortical dysplasias as well as more gross disorders such as tuberous sclerosis, whose genetic bases are becoming clear. Subcortical band heterotopia or periventricular nodular heterotopia, are seen only in females and have been shown to be X linked and fatal in males.

How do genetic abnormalities produce epilepsy and what is the cause of the clinical heterogeneity? Here there are only questions. Abnormalities of regulatory homeobox genes may reproduce some aspects of cortical dysplasia and have been identified in humans too. The nicotinic acetylcholine receptor may be involved in development, cortical excitation, or the regulation of the thalamocortical sleep wake cycle—but all is speculation at this stage. Animal models may demonstrate changes in anatomy and chemistry and transgenic animal models may be valuable in exploring pathophysiology. Genetics is providing a gateway to pathophysiology but the clinical heterogeneity even in the most genetically uniform disorders suggests that these processes will not easily be revealed by simply understanding the genes. The relevance of the rarer genetic syndromes to commoner forms of epilepsy remains to be established. Targets for novel therapies are still a long way off.

This book provides a clear account of many genetically determined, focal epilepsies, a balanced view of their genetic components, and clinical and scientific methods for their future exploration. It will be of interest primarily to epilepsy specialists and geneticists.