LETTERS TO THE EDITOR

Postictal psychosis related regional cerebral hyperperfusion

Postictal psychosis is a known complication of complex partial seizure in particular temporal lobe epilepsy. It usually runs a benign and self-limiting course. A postictal phenomenon with focal cerebral hypofunction (similar to Todd’s palsy), rather than ongoing seizure activity, has been postulated. Surface EEG is either normal or showing non-specific slow waves. Hence, antipsychotic medications are prescribed instead of antiepileptic drugs. Until recently, the pathogenic mechanisms have remained unknown. In this communication, we report on two patients with postictal psychosis, during which a cerebral SPECT study showed a hyperperfusion signal over the right temporal lobe and contralateral basal ganglion. As hyperperfusion in ictal cerebral SPECT is closely linked to epileptic activities, our findings support a contrary explanation for postictal psychosis.

Prolonged video-EEG telemetry study was performed in patients who underwent presurgical evaluation for epilepsy surgery. Antiepileptic drugs were withdrawn to facilitate seizure recording. A diagnosis of temporal lobe epilepsy was based on analysis of the electroclinical events and, if applicable, postoperative outcome after anterior temporal lobectomy. Psychosis was diagnosed according to the fourth edition of the diagnostics and statistical manual of mental disorders (DSM-IV) criteria of brief psychotic disorders without marked stressor; HMPAO-SPECT was performed during the psychotic period, which ranged from 2–4 days after the last seizure. Interictal cerebral SPECT, brain MRI, and a Wada test were performed as part of presurgical evaluation.

Patient 1 was a 34 year old Chinese woman with complex partial seizures since the age of 18. Her seizure control was suboptimal on a combination of antiepileptic drugs. Brain MRI showed a small hippocampus on the right. Interictal EEG showed bilateral temporal sharp waves and ictal recordings confirmed a right temporal epileptogenic focus. A Wada test confirmed right hippocampal memory dysfunction. Six hours after her last secondary generalised tonic-clonic seizure after video-EEG telemetry, she began to develop emotional lability, talking nonsense, motor restlessness, and auditory hallucination. A cerebral SPECT study was performed at day 4 after her last seizure. Her psychotic features persisted although she was taking antipsychotic medication (pimozide). Cerebral SPECT showed a clear hyperperfusion signal over the right lateral temporal neocortex and contralateral basal ganglion. An interictal cerebral SPECT study was repeated at 4 weeks after postictal psychosis which showed a complete resolution of hyperperfusion signal in the right temporal lobe and basal ganglia. Anterior temporal lobectomy was performed and she became seizure free after surgery.

Patient 2 was a 44 year old man with intractable complex partial seizures since the age of 30. His seizures were intractable to multiple antiepileptic drugs. Brain MRI showed left hippocampal sclerosis. Interictal cerebral SPECT showed a relative hyperfusion area over the left hemisphere. Interictal surface EEG was non-lateralising but ictal EEG disclosed a right hemispheric onset. On withdrawal of antiepileptic drugs, seven complex partial seizures with secondary generalised tonic clonic seizures were recorded within a period of 72 hours. His usual antiepileptic drugs were then restarted. Thirty hours after his last secondary generalised tonic-clonic seizure; he began to develop emotional lability, talking nonsense, restlessness, auditory hallucination, persecutory delusion, and delusion of superstition. Cerebral SPECT study, performed 2 days later while his psychotic features persisted, showed two relative hyperperfused areas over the right temporal neocortex and contralateral basal ganglion in addition to the original hyperperfused area over the left hemisphere. An antipsychotic agent (thioridazine) was prescribed as additional therapy. Interictal SPECT and SPECT performed during postictal psychosis. (Top) A SPECT study of patient 1 showing areas of relative hyperperfusion over the right temporal neocortex (red arrows) and the left basal ganglia (blue and yellow arrows) during postictal psychosis. (Bottom) SPECT study of patient 2 showing areas of hyperperfusion over the right temporal neocortex and the left basal ganglia. Arrows indicate areas of hyperperfusion.
started after the cerebral SPECT. His psychotic symptoms resolved 2 weeks later with full recovery.

Cerebral SPECT performed during the interictal period (IP) and during postictal psychosis (PP) were analysed visually and areas of hypoperfusion were identified. Quantitative data at regions of interest (ROIs) were measured on coronal and axial slices containing basal ganglia (BG), mesial (MT), and lateral (LT) temporal lobe structures. Asymmetry index (ASI) was calculated as \((\text{ROI focus−ROI contralateral})/\text{ROI focus+ROI contralateral} \times 100\). We set an arbitrary change of ASI >100% to be significant. As there were only two patients, statistical testing was not performed.

Both patients showed postictal psychosis and had a regional increase in rCBF over the right temporal neocortex and the left basal ganglia compared with their interictal study (figure). Quantitative analysis for patient 1 showed changes of ASI during IP and PP over right MT was +75% (-6.6447 to -1.65289); over the right LT was +116.8% (1.07927 to 12.55764); and over the left BG was +206.8% (-2.07373 to 2.21574). Quantitative analysis for patient 2 showed changes of ASI during IP and PP over right MT was +3.8% (13.14217 to 12.64158); over right LT was +178.6% (10.4606 to 18.7007); and over left BG was +155.9% (-5.85556 to 3.27522).

Postictal psychosis is a distinct clinical event associated with temporal lobe seizures.1 The diagnosis of postictal psychosis requires a close temporal relation between bouts of complex partial seizures and the onset of psychosis. The psychosis usually develops after a clinical seizure and partial seizures were precipitated by abrupt withdrawal of antiepileptic drugs.2 The cluster occurs in patients with poor drug compliance or during video EEG telemetry studies when antiepileptic drugs are withdrawn purposefully. The clinical course of postictal psychosis is usually benign and predictable.1 In our patients, the duration of psychotic disturbances lasted from 3 to 7 years, which is in keeping with the good prognosis. Antipsychotic drugs, such as haloperidol and fluphenazine are usually prescribed.1

The underlying mechanism of postictal psychosis requires an explanation. Postictal cerebral hypofunction has been postulated by Todd’s paralysis after seizure. However, the presence of increased rCBF in the mesial (MT) and lateral (LT) temporal lobe structures during the PP period has been postulated as an ana-

Oncofetal matrix glycoproteins in cerebral arteriovenous malformations and neighbouring vessels

Cerebral arteriovenous malformations (AVMs) are thought to be congenital lesions exhibiting features of either mature vascular walls or embryonal anastomotic plexuses. It is generally assumed that changes in size are dependent on enlargement of the venous compartment, organisation in the setting of microhaemorrhages, and gliosis. However, recent findings are consistent with the hypothesis of ongoing angiogenesis.4 5 Previous research from this laboratory disclosed that peculiar isoforms of fibronectin (FN) and tenasin (TN) typically occur in fetal and neoplastic tissues.6 7 These isoforms are a blend of structurally different glycoproteins that result from alternative splicing of the primary transcript and are mainly expressed in the extracellular matrix. Their expression is undetectable in normal adult tissues, with the exception of the vessels in the regenerating endometrium. To gain further insight into the pathobiology of the AVMs the present report sought to ascertain whether these lesions also express oncofetal FN and TN isoforms.

Characterisation of the employed Abs and distribution of the recognized isoforms.

<table>
<thead>
<tr>
<th>Anti-FN mAbs</th>
<th>Anti-TN Ab fragments</th>
</tr>
</thead>
<tbody>
<tr>
<td>IST-4</td>
<td>TN-12</td>
</tr>
<tr>
<td>IST-9</td>
<td>TN-11</td>
</tr>
</tbody>
</table>

Recognition isoforms Total FN Isolomers containing the ED-A sequence Aberrant in adult tissues (with the exception of the regenerating endometrium) Present in the vascular wall and the matrix of fetal tissues and tumours

Distribution of the isoform

<table>
<thead>
<tr>
<th>Widespread</th>
<th>Widespread</th>
</tr>
</thead>
</table>

Asymmetry index (ASI) was calculated as \((\text{ROI focus−ROI contralateral})/\text{ROI focus+ROI contralateral} \times 100\). We set an arbitrary change of ASI >100% to be significant. As there were only two patients, statistical testing was not performed.

Both patients showed postictal psychosis and had a regional increase in rCBF over the right temporal neocortex and the left basal ganglia compared with their interictal study (figure). Quantitative analysis for patient 1 showed changes of ASI during IP and PP over right MT was +75% (-6.6447 to -1.65289); over the right LT was +116.8% (1.07927 to 12.55764); and over the left BG was +206.8% (-2.07373 to 2.21574). Quantitative analysis for patient 2 showed changes of ASI during IP and PP over right MT was +3.8% (13.14217 to 12.64158); over right LT was +178.6% (10.4606 to 18.7007); and over left BG was +155.9% (-5.85556 to 3.27522).

Postictal psychosis is a distinct clinical event associated with temporal lobe seizures.1 The diagnosis of postictal psychosis requires a close temporal relation between bouts of complex partial seizures and the onset of psychosis. The psychosis usually develops after a clinical seizure and partial seizures were precipitated by abrupt withdrawal of antiepileptic drugs.2 The cluster occurs in patients with poor drug compliance or during video EEG telemetry studies when antiepileptic drugs are withdrawn purposefully. The clinical course of postictal psychosis is usually benign and predictable.1 In our patients, the duration of psychotic disturbances lasted from 3 to 7 years, which is in keeping with the good prognosis. Antipsychotic drugs, such as haloperidol and fluphenazine are usually prescribed.1

The underlying mechanism of postictal psychosis requires an explanation. Postictal cerebral hypofunction has been postulated by Todd’s paralysis after seizure. However, the presence of increased rCBF in the mesial (MT) and lateral (LT) temporal lobe structures during the PP period has been postulated as an ana-

Oncofetal matrix glycoproteins in cerebral arteriovenous malformations and neighbouring vessels

Cerebral arteriovenous malformations (AVMs) are thought to be congenital lesions exhibiting features of either mature vascular walls or embryonal anastomotic plexuses. It is generally assumed that changes in size are dependent on enlargement of the venous compartment, organisation in the setting of microhaemorrhages, and gliosis. However, recent findings are consistent with the hypothesis of ongoing angiogenesis.4 5 Previous research from this laboratory disclosed that peculiar isoforms of fibronectin (FN) and tenasin (TN) typically occur in fetal and neoplastic tissues.6 7 These isoforms are a blend of structurally different glycoproteins that result from alternative splicing of the primary transcript and are mainly expressed in the extracellular matrix. Their expression is undetectable in normal adult tissues, with the exception of the vessels in the regenerating endometrium. To gain further insight into the pathobiology of the AVMs the present report sought to ascertain whether these lesions also express oncofetal FN and TN isoforms.

Characterisation of the employed Abs and distribution of the recognized isoforms.

<table>
<thead>
<tr>
<th>Anti-FN mAbs</th>
<th>Anti-TN Ab fragments</th>
</tr>
</thead>
<tbody>
<tr>
<td>IST-4</td>
<td>TN-12</td>
</tr>
<tr>
<td>IST-9</td>
<td>TN-11</td>
</tr>
</tbody>
</table>

Recognition isoforms Total FN Isolomers containing the ED-A sequence Aberrant in adult tissues (with the exception of the regenerating endometrium) Present in the vascular wall and the matrix of fetal tissues and tumours

Distribution of the isoform

<table>
<thead>
<tr>
<th>Widespread</th>
<th>Widespread</th>
</tr>
</thead>
</table>

Asymmetry index (ASI) was calculated as \((\text{ROI focus−ROI contralateral})/\text{ROI focus+ROI contralateral} \times 100\). We set an arbitrary change of ASI >100% to be significant. As there were only two patients, statistical testing was not performed.

Both patients showed postictal psychosis and had a regional increase in rCBF over the right temporal neocortex and the left basal ganglia compared with their interictal study (figure). Quantitative analysis for patient 1 showed changes of ASI during IP and PP over right MT was +75% (-6.6447 to -1.65289); over the right LT was +116.8% (1.07927 to 12.55764); and over the left BG was +206.8% (-2.07373 to 2.21574). Quantitative analysis for patient 2 showed changes of ASI during IP and PP over right MT was +3.8% (13.14217 to 12.64158); over right LT was +178.6% (10.4606 to 18.7007); and over left BG was +155.9% (-5.85556 to 3.27522).

Postictal psychosis is a distinct clinical event associated with temporal lobe seizures.1 The diagnosis of postictal psychosis requires a close temporal relation between bouts of complex partial seizures and the onset of psychosis. The psychosis usually develops after a clinical seizure and partial seizures were precipitated by abrupt withdrawal of antiepileptic drugs.2 The cluster occurs in patients with poor drug compliance or during video EEG telemetry studies when antiepileptic drugs are withdrawn purposefully. The clinical course of postictal psychosis is usually benign and predictable.1 In our patients, the duration of psychotic disturbances lasted from 3 to 7 years, which is in keeping with the good prognosis. Antipsychotic drugs, such as haloperidol and fluphenazine are usually prescribed.1

The underlying mechanism of postictal psychosis requires an explanation. Postictal cerebral hypofunction has been postulated by Todd’s paralysis after seizure. However, the presence of increased rCBF during postictal psychosis, may suggest an alternative explanation as ictal SPECT has been shown to be highly sensitive and specific in demonstrating seizure foci.1

To conclude, our results are contradictory to the hypothesis of the AVMs the present report sought to ascertain whether these lesions also express oncofetal FN and TN isoforms.

Six out of the 10 examined specimens were found to contain portions of cerebral tissue surrounding the angiomatous nidus. In all these cases the wall of several vessels exhibited intense staining with the use of the TN-12 Ab fragment. Using the BC-1 mAb some of these vessels exhibited some staining (figure). In the control specimens (brain and cerebellum) both the FN isoform containing the ED-B sequence (ED-B+FN), and the TN III repeat C TN isoform were absent, despite the widespread distribution of total FN and TN in the vascular walls.
Previous findings showed that ED-B+FN presents with conformational modifications in its central part and results from deregulation of FN pre-mRNA. The distribution of this isoform was found to be highly restricted in normal adult tissues. By contrast, ED-B+ FN exhibited widespread distribution in the vasculature of fetal tissues, including brain, and of several types of malignancies. It was therefore regarded as a marker of angiogenesis.

Similarly, the type III repeat C TN isoform, recognised by the Ab fragment TN-11, was found to occur in the vascular walls of anaplastic gliomas. Northern blot analysis showed that the mRNA of this isoform was undetectable in normal tissues and some malignancies, but was present in large amounts in fetal tissues, including brain, and in glioblastomas.

Recent advances in the pathology of cerebral AVMs suggest that these lesions might not be static. Tyrsoine kinase, an endothelial cell specific receptor upregulated in glioblastomas, was found to be highly expressed in both AVMs and in the vessels of cerebral tissue bordering the malformations, by contrast with the down regulation occurring in the vasculature of the normal brain. The pattern of distribution of structural proteins was consistent with the hypothesis of diffuse activation of angiogenesis, without specific relation to individual vessel types.

Furthermore, use of the cell proliferation marker MB-1 showed endothelial proliferation in arterioles, venules, and capillaries of the cerebral tissue neighbouring AVMs. The present findings indicate that angiogenic features in AVMs might result from maintenance of proliferating and remodelling potentials, or from a specific response to haemodynamic stress in vascular structures subjected to increased blood flow and pressure. Occurrence of these features also in vessels lying in areas peripheral to the nidus might be related to recruitment of the neighbouring vasculature, possibly dependent on focal ischaemia in the setting of arteriovenous shunting. However, the presence in apparently normal vasculature of molecules typically occurring in fetal tissues and malignancies indicate that cerebral AVMs may not be static lesions. Further studies are needed to ascertain whether this phenomenon results merely from haemodynamic stress or actually reflects an intrinsic growth potential. Should this second be the case, current therapeutic strategies would possibly require revision.

This study was partially supported by the National Research Council (CNR), AIRC and the Ministry of University and Scientific Research (MURST). We thank Sergio De Seri, EE, for his technical help and Mr. Thomas Wiley for manuscript revision.

Hashimoto’s encephalopathy presenting as "myxoedematous madness"

The neuropsychiatric sequelae of hypothyroidism range from lethargy and mental slowing to the florid psychotic illness referred to as "myxoedematous madness". The last condition is characterised by frank hypothyroidism accompanied by psychosis, and may respond completely to thyroxine. More recently described is a syndrome of subacute encephalopathy, associated with high titres of thyroid autoantibodies, raised CSF protein, EEG abnormalities, and perfusion deficits in the presence of normal structural neuroimaging. In most cases, the encephalopathy occurs without any gross change in circulating concentrations of thyroid hormones, suggesting that an inflammatory process is responsible for the cerebral dysfunction. In the absence of pathological data, the evidence for a specific pathogenetic mechanism is largely circumstantial: a small vessel vasculitis and immune complex deposition have both been suggested.

Although none of the published cases of Hashimoto’s encephalopathy has described psychosis as a primary feature, it is possible that “myxoedematous madness”, a condition first described in detail by Asher in 1949, lies in a range of encephalopathic phenomena mediated by autoimmune mechanisms. This suggestion would certainly be consistent with the range of clinical presentations of other autoimmune cerebral vasculitides. As autoimmune thyroiditis is the commonest cause of hypothyroid failure in this country, it is likely that this condition has been present in at least some of Asher’s original 14 cases. Although most had florid myxoedematous features at psychiatric presentation, this may simply reflect the difficulty of diagnosing subclinical thyroid disease before rapid laboratory assays became widely available. Many features of the present case, however, favoured an endocrine rather than an inflammatory mechanism, suggesting that the condition of “myxoedematous madness”, though rare, remains a valid diagnostic entity.
became aggressive and threatened them with a saw. The general practitioner was called and suspected CJD, but bought a new psychical and was a severe depressive illness. Police assistance was requested because of the patient's continuing violent behaviour.

On admission he was un Kemp but cooperative and appeared able to continue a normal life. He denied depression, but displayed no insight into the irregularity of his behaviour. No psychotic features were seen, although during the admission he consistently rationalised all reported psychogenic phenomena. He was aggressive towards staff and made repeated attempts to abscond. General physical examination was unremarkable. Neurological examination was normal except for spoken language, which was fluent and grammatical, but contained word finding pauses, circumlocutions, and occasional semantic errors (for example, "I just want to get my feet back on the table"). Formal neuropsychological testing, and a screen of laboratory tests for reversible causes of encephalopathy, were performed on admission, and results are presented below (column A). Attention is drawn to his mild naming deficit, and poor performance on the Rey figure, which was due to planning rather than visuospatial impairment.

At 6 month follow up the patient had become agitated and agitated towards staff. He was agreed to be delusional, and occasional semantic errors (for example, "I just want to get my feet back on the table"). Formal neuropsychological testing, and a screen of laboratory tests for reversible causes of encephalopathy, were performed on admission, and results are presented below (column A). Attention is drawn to his mild naming deficit, and poor performance on the Rey figure, which was due to planning rather than visuospatial impairment.

The clinical picture of Creutzfeldt-Jakob disease (CJD) includes various movement disorders such as myoclonus, parkinsonism, hemiballismus, and dystonia. We report on a patient with CJD who manifested the alien hand sign. We suggest that this phenomenon is not uncommon.

Alien hand sign in Creutzfeldt-Jakob disease

The clinical picture of Creutzfeldt-Jakob disease (CJD) includes various movement disorders such as myoclonus, parkinsonism, hemiballismus, and dystonia. We report on a patient with CJD who manifested the alien hand sign. We suggest that this phenomenon is not uncommon.

Of note, whereas his naming ability had improved, performance on formal executive tasks remained impaired. The appearance of the follow up SPECT differed minimally, if at all, from the first examination. In summary, therefore, this patient presented in clear consciousness with a first episode of acute psychosis, and evidence of subtle executive and linguistic neuropsychological disturbance, on the background of gradual behavioural and affective change. He was profoundly hypothyroid due to an autoimmune thyroiditis, but there was no clinical evidence of thyroid failure other than the abnormalities of thyroid autoimmunity, which was due to planning rather than visuospatial impairment.

The appearance of the follow up SPECT differed minimally, if at all, from the first examination. In summary, therefore, this patient presented in clear consciousness with a first episode of acute psychosis, and evidence of subtle executive and linguistic neuropsychological disturbance, on the background of gradual behavioural and affective change. He was profoundly hypothyroid due to an autoimmune thyroiditis, but there was no clinical evidence of thyroid failure other than the abnormalities of thyroid autoimmunity, which was due to planning rather than visuospatial impairment.

The clinical picture of Creutzfeldt-Jakob disease (CJD) includes various movement disorders such as myoclonus, parkinsonism, hemiballismus, and dystonia. We report on a patient with CJD who manifested the alien hand sign. We suggest that CJD should be included in the differential diagnosis of diseases which present with an alien hand.

Creutzfeldt-Jakob disease, one of the human prion diseases, is characterised by rapidly progressive mental and motor deterioration. Voluntary movements occur in above 90% of the patients in the course of the disease, the most common being myoclonus. Other movement disorders range from tremor to dystonia. We report on a patient with CJD who presented with an alien hand.
falling over him”. His wife mentioned bizarre, useless movements of his left hand which were present from the beginning of the disease.

On admission, he was awake, bradyphrenic, and partially collaborative. His conversation, hemiatrophy, and gait were normal. As were folic acid, vitamin B12 concentrations, and thyroid function. Venereal disease research laboratory and HIV tests were negative. The cerebrospinal fluid had no myoclonus or pyramidal signs. The aetiology of alien hand in CJD. MacGowan et al has characteristics of the callosal form (especially in patient 2). However, our case suggests that the alien hand sign in CJD may appear in a different type, performing less complex movements which resemble those reported by Riley et al in corticobasal degeneration. One common denominator between CJD, corticobasal degeneration, and progressive multifocal leukoencephalopathy, in which an alien hand sign has also been described, is multifocality. In corticobasal degeneration, it was proposed that more than one site is affected or that a “release” phenomenon occurs accounting for the aetiology of alien hand.

In CJD, bilateral cortical damage to the motor areas might be the origin of their subsequent isolation and disconnection. We suggest that CJD should be added to the differential diagnosis of diseases presenting with an alien hand with or without myoclonus.

We are indebted to Professor Eran Zardel, Department of Physiology, University of California, Los Angeles, USA.

Correspondence to: Dr Dr R Inzelberg, Department of Neurology, Hillel Yaffe Medical Center, Hadera, Israel

Recent peripheral neuropathy in a girl with celiac disease

The involvement of the peripheral nervous system (PNS) in children with celiac disease is particularly rare. Furthermore, in both children and adults with celiac disease, neurological complications are chronic and progressive.

We report on a 12 year old girl affected by celiac disease, who on two separate occasions presented with an acute peripheral neurological syndrome after accidental reintroduction of gluten in her diet. This patient was born uneventfully to healthy non-consanguineous parents with no family history of neurological or metabolic diseases. At the age of 6 months she was diagnosed as having celiac disease according to the European Society of Paediatric Gastroenterology and Nutrition (ESPGHAN) criteria. Since then she was on a strict gluten free diet and was asymptomatic until the age of 10 years when severe diarrhoea, vomiting, and abdominal pain manifested 6 days after the intake of corn flakes erroneously thought to be gluten free. No previous infections had been noticed. One week after the onset of these symptoms she experienced acute weakness and pins and needles sensation confined to her legs. At that time her parents stopped her intake of corn flakes on the suspicion that these were responsible for the symptoms. Despite this, symptoms worsened during the next few days, confining her to bed. At hospital admission, she was alert and mentally stable. Results of general physical examination were unremarkable. Neurological examination disclosed symmetric, predominantly distal, weakness of the legs, the knee jerks and ankle reflexes were depressed; plantar reflexes were flexor. Distal stocking glove decreased in pin prick and temperature with sparing of proprioception and light touch. Coordination tests were normal.

Laboratory investigations showed a white cell count of 9300/mm³. The results of the following investigations were within the normal limits: haemogram, erythrocyte sedimentation rate, serum uric acid, serum electrolytes, creatinine, glucose, transaminase, bilirubin, immunoglobulins (Igs), lead, iron, copper, urinalysis, urinary porphyrin, folic acid, and vitamins A, B, B12, and E. Antibodies to Campylobacter jejuni, neutrophilic, and antiglutens antibodies, specific and non-specific organ autoantibodies, IgA and IgG antigliadin antibodies (AGAs), IgA and IgG antigliadin antibodies (AGAs), IgA and IgG antigliadin antibodies (AGAs), IgA and IgG anticeli antibodies (AGAs), IgA and IgG antireticulin antibodies (ARRA), assessed by enzyme linked immunosorbent assay (ELISA) and immunofluorescence (IF) were also negative. Lumbar puncture was not performed. Anti-bodies against gangliosides GM1 and GQ1b, myelin associated glycoprotein and myelin
basic protein were not tested. Nerve conduc-
tion studies were consistent with a predomi-
nately motor demyelinating peripheral neu-
ropathy (table). Her symptoms improved
spontaneously and she was discharged home
after 2 weeks. For 2 years she was asympto-
matic on a gluten free diet.

At the age of 12 she presented acutely with
severe abdominal pain 8 days after a weekly
intake of bread meant to be gluten free. Two
weeks later, due to persisting gastrointestinal
symptoms, her parents excluded the bread
from her diet. After 2 further weeks, while the
abdominal pain was gradually improving, she
had a new episode of acute weakness in the
lower limbs and sensory abnormalities in-
cluding burning paraesthesiae. On neurologi-
cal examination the legs showed marked
diminished muscle power; absent deep
tendon reflexes, and a reduction in pain and
temperature; light touch, perception of posi-
tion, and vibration were preserved. Walking
was impaired and the patient was bedridden.
Otherwise the examination was normal.

A haemogram showed white cell counts of
9700/mm³. Laboratory investigations were
within normal values as in the past. IgA and
IgG AGA, IgA EMA, and IgA ARA measured
by ELISA and IF were again negative. Nerve
conduction studies confirmed the presence of
a predominantly motor demyelinating neu-
ropathy (table). The parents refused consent
for a lumbar puncture or nerve biopsy.

Over the next 2 weeks her neurological dis-
abilities spontaneously improved until full
recovery was complete. After 4 weeks, AGA,
EMA, and ARA were again negative.

On her most recent admission, 1 year after
the onset of her first neurological symptoms,
she is still on a strict gluten free diet and has
no residual symptoms or signs.

The natural history of celiac disease is well
known and the typical celiac enteropathy is
often associated with several other disorders.
However, as celiac disease is a relatively
common and lifelong condition, it is likely that
some of these associations may occur by
chance.

This patient, who was diagnosed as having
frank celiac disease at the age of 6 months,
over at the age of 10 and 12 years,
respectively. Two major pieces of evidence
strongly support the assumption of a gluten
derived disease: (1) the episodes occurred on
both occasions when gluten was accidentally
reintroduced in the diet; and (2) the response
to a gluten free diet was reasonably rapid,
occuring within weeks.

The present case, however, differs clinically
to those with neurological involvement pre-
viously reported. In the paediatric age group,
in fact, neurological complications of celiac
disease are rarely encountered and are mostly
collected to the CNS: to the best of our
knowledge, there are only two previously
reported cases of PNS involvement in children
with celiac disease. In both cases, however,
these were chronic axonal polyneuropathies
presenting during a gluten free diet.3

In both episodes in the present case neuro-
physiology was strongly supportive of a
demyelinating peripheral neuropathy, which
is most commonly attributed to a direct
immune mediated attack to the myelin. By
contrast, wallerian and axonal degeneration
may be caused by vasculitis, and nutritional,
metabolic, and toxic factors.

An autoimmune pathogenesis in associ-
ating with strong evidence of a genetic
susceptibility has been proposed for celiac
disease. Although it is well established that
AGA, EMA, and ARA are reliable indicators
of sensitisation to gluten at least at the time of
diagnosis, in the clinical practice at follow up,
during a gluten challenge, pathological values
of these antibodies may not be detected.4

In the present case the time course of the disease
might be suggestive of an antibody mediated
response. However, we could not detect
pathological concentrations of AGA, EMA,
or ARA antibodies either during the course of
the disease or at follow up.

It is known that in celiac disease many
immunological perturbations can occur out-
side the gastrointestinal tract. Crossing of
the antigens through a damaged small intesti-
nal mucosa, deposition of immune complexes in
target organs, a reduction in immune surveil-
ance, mechanism of molecular mimicry, and
activated T cell response may contribute to
the pathogenesis of the diseases associated
with celiac disease. Direct toxic effects of
gladin and vitamin deficiency are other pos-
sible pathogenic mechanisms of damage to
the nervous system. Although we ruled out
a vitamin deficiency it is still questionable
whether a toxic neuropathy can be the case.

In conclusion our case shows two major
issues: an acute polyneuropathy can be a
complication of celiac disease in childhood
and its benign course could help in the
understanding of the underlying pathogenic
mechanisms.

We are grateful to Professor Angela Vincent
(Oxford) for her helpful suggestions in reviewing
the manuscript.

AGATA POLIZZI
MARIA FINOCCHIARO
ENZO PARANO
PIERO PAVONE
Division of Paediatric Neurology, Department of
Paediatrics, University of Catania
Catania, Italy

Correspondence to: Dr Agata Polizzi, Division
of Paediatric Neurology, Department of
Paediatrics, University of Catania, Viale A
Doria 6, 95125 Catania, Italy. email: polizzi@ctonline.it

1 Cooke WT, Thomas Smith W. Neurological
disorders associated with adult celiac disease.
disease, epilepsy and cerebral calcifications.
Neurological symptoms in patients with
coeliac disease. In: Mearin ML, Mulder CJJ, eds.
Coeliac disease. Dordrecht: Kluwer Academic,
4 Simoni A, Battistella PA, Guarino G, et al.
Coeliac disease associated with peripheral neu-
opathy in a child: a case report. Neuropediatrics
antibodies in the various stages of coeliac
disease in children. Pediatr Med Chir 1988;10:

Frontal release signs in older people
with peripheral vascular disease

A growing body of research examining
neurological aspects of clinically “silent” cer-
ebrovascular disease suggests that neurologi-
cal signs indicative of generalised organic
brain damage may occur in the absence of
completed stroke.1 These soft signs include
primitive reflexes (frontal release signs),
representing an anatomical and functional de-
ferentation of cortical from subcortical struc-
tures. Primitive reflexes are known to occur in
a wide variety of dementia including
Alzheimer’s disease2 and vascular dementia.3
It is likely that the presence of undetected
cerebrovascular disease accompanying per-
ipheral vascular disease is underestimated,
as peripheral vascular disease is known to be
a risk factor for transient ischaemic attacks. A
study assessing 373 older patients with
peripheral vascular disease found that 72 of
the 144 patients who had not experienced a
transient ischaemic attack, or stroke were
found to have a degree of carotid stenosis of
between 60% and 99%.4

In the present study, the prevalence of
primitive reflexes was examined in older peo-
dle with peripheral vascular disease and a
non-vascular control group. Independent
predictors of these reflexes were also exam-
ned in peripheral vascular disease. Both
groups were drawn from the same geographi-
cal area. All were interviewed and examined
outside hospital by myself. Interviewees were
community residents from the catchment
area of an inner city London teaching hospi-
tal.

Twenty five consecutive non-ambulators on
the waiting list for femoropopliteal bypass
operation were compared with 25 postopera-
tive patients who had undergone elective hip
or knee replacement and a period of inpatient
rehabilitation. All participants were aged 65
and over at the time of interview. Patients
with peripheral vascular disease all had celiac
disease and Doppler proved evidence of periph-
eral ischaemia. Controls were interviewed
between 6 months and 1 year after their
operation. Both groups had no history of
stroke or transient ischaemic attack.

A more detailed description of instruments
is provided elsewhere.5 All subjects were

1 Cooke WT, Thomas Smith W. Neurological
disorders associated with adult celiac disease.
disease, epilepsy and cerebral calcifications.
Neurological symptoms in patients with
coeliac disease. In: Mearin ML, Mulder CJJ, eds.
Coeliac disease. Dordrecht: Kluwer Academic,
4 Simoni A, Battistella PA, Guarino G, et al.
Coeliac disease associated with peripheral neu-
opathy in a child: a case report. Neuropediatrics
antibodies in the various stages of coeliac
disease in children. Pediatr Med Chir 1988;10:
examined using a rating scale for the examination of frontal release signs (FRSS), with nine operationally defined items, each on a seven point semiquantitative scale. The examination of frontal release signs (FRSS) is a checklist for chronic physical illness.

Small numbers of patients, which may also have obscured other significant findings between the two groups, limit the present study. However, there is some evidence that clinically relevant cerebrovascular disease may accompany peripheral vascular disease and that concomitant disruption of frontal/subcortical brain function may not present with high neurovascular signs. As it is possible that silent brain infarction was present in patients with peripheral vascular disease, further studies incorporating brain imaging are required before there can be a clearer understanding of the relation between peripheral and central vascular pathology.

I thank Dr Robert Howard for supervision of this study and Professor Andrew Cuthbertson and Mr Paul Baskerville for allowing me to interview patients under their care. The study was carried out as part of a University of London MD thesis.

Table 1 Primitive reflexes in patients with peripheral vascular disease (n=25) and controls (n=25)

<table>
<thead>
<tr>
<th></th>
<th>Hand grasp</th>
<th>Foot grasp</th>
<th>Glabellar</th>
<th>Palomental</th>
<th>Patatonia</th>
<th>Rooting</th>
<th>Snout</th>
<th>Sucking (tactile)</th>
<th>Sucking (visual)</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>274.0</td>
<td>312.5</td>
<td>199.5</td>
<td>287.5</td>
<td>287.0</td>
<td>235.5</td>
<td>287.5</td>
<td>261.0</td>
<td>287.5</td>
</tr>
<tr>
<td>pValue</td>
<td>0.15</td>
<td>1.0</td>
<td>0.001*</td>
<td>0.15</td>
<td>0.29</td>
<td>0.01*</td>
<td>0.44</td>
<td>0.08</td>
<td>0.30</td>
</tr>
</tbody>
</table>

*Higher mean score in people with peripheral vascular disease.

5 years earlier. The angioplasty was complicated by the occurrence of a haemorrhage that was believed to be related to dye injection, and phenytoin had been prescribed for a short time thereafter. There was a remote history of heavy alcohol use, but he had been abstinent for several years. His father had had a stroke at the age of 65.

Six months earlier the patient had also collapsed at home and been taken to hospital with a left hemiplegia. Brain CT at that time was normal, as were carotid Doppler studies and an echocardiogram. During that admission to hospital, several generalised seizure-like episodes were seen, some with retained consciousness, and he had again been started on phenytoin therapy. A follow up outpatient brain MRI was normal and it was concluded that the hemiplegia was non-organic in origin. He was described to have made a gradual, near complete, recovery from this first hemiplegic episode and was scheduled for an imminent return to work at the time of his relapse.

On transfer to this hospital the patient was alert, oriented, and cooperative. Although up to date on current affairs and able to describe the investigations performed at the transferring hospital, he scored only 23/30 on a mini mental state examination, with absent three word recall, impaired registration, and poor copying of a two-dimensional figure. Further bedside neuropsychological testing showed other findings indicative of constructional apraxia and left hemineglect. Specifically, when asked to draw a clock with the time at 10 minutes to 2 o'clock, all the numbers, and the clockhands, were placed on the right hand side of the clock outline (figure A). Copying of three dimensional line drawings was also significantly impaired (figure B). When asked to pick up a right side of the brain MRI was normal and it was concluded that the hemiplegia was non-organic in origin. He was described to have made a gradual, near complete, recovery from this first hemiplegic episode and was scheduled for an imminent return to work at the time of his relapse.

Cranial nerve examination suggested an incoordinate and inconsistent left hemianopia to confrontation testing but was otherwise normal, including bilaterally symmetric optokinetic nystagmus. Motor examination showed paralysis of the left arm and leg, with bilaterally symmetric bulk, tone, and deep tendon reflexes. The plantar response was flexor bilaterally. Sensory examination showed decreased pinprick and absent light touch, joint position sense, and vibration sense on the entire left side. There was also impaired perception of a tuning fork's vibration on the left side of the forehead, with a distinct demarcation in the midline. The rest of the physical examination was unremarkable.

Brain CT and MRI, CSF examination, and routine EEG were normal. Routine haematological and metabolic analyses plus erythrocyte sedimentation rate, serum lactic, prothrombin time/platelet count, fasting serum glucose, HbA1c, serum Ig survey, and thyroid stimulating hormone were all within normal limits. A hypercoagulability profile was negative. A lipid profile showed mild hyperlipidaemia with increased low
A formal neuropsychological assessment performed in hospital documented impaired attention, concentration, and working memory, as well as several atypical calculations and spelling errors, the second involving unusual “near miss” letter substitutions or reversals (for example, “axiety”, “executive”). The formal testing identified no consistent evidence of visuospatial deficits or constructional apraxia. The findings were interpreted as inconsistent with the patient’s history but the possibility of a factitious aetiology was not specifically addressed—that is, tests designed to detect malingering during neuropsychological testing were not administered by the examiner, who had not been informed at the time of consultation of the presumptive neurological diagnosis of malingering or factitious disorder.

No further investigations were performed and the patient was transferred via the normal hospital to a rehabilitation facility and subsequently discharged to home. Confronted with the findings of the video monitoring the patient appeared sanguine and accepting of the evidence that he should be able to move his left side. Six months later he was ambulatory but otherwise not significantly improved. He had been assessed by a psychiatrist but had refused psychiatric follow up, electing instead to be followed up by a psychologist. He understood his diagnosis to be “conversion disorder” and reported that he was actively collecting information on the internet.

Outpatient brain SPECT and visual and somatosensory evoked potentials performed 1 year after discharge demonstrated no hemispheric abnormalities. The patient remained off work and was receiving disability funding. He walked with a limp favouring his left side and complained of persistent decreased sensation on the left side. Forced choice sensory testing of finger and arm movement on the left demonstrated performance to be worse than chance (68% wrong choices). Motor bulk, tone, and reflexes were symmetric and plantar responses downgoing. He drew a clock normally at the 1 year follow up.

The clinical and laboratory findings described above indicate beyond any doubt the non-organic nature of this patient’s left hemiplegia/hemianesthesia. His seizure-like episodes at presentation are presumed to have been non-epileptic in origin (as had been suspected during his previous admission to hospital) although this cannot be definitively proved.

The inability to copy line drawings or to draw a clock is, from a neurologist’s perspective, typically associated with parietal lobe dysfunction, usually of the non-dominant hemisphere, especially if associated with left hemispatial neglect. To our knowledge, this is the first reported case of factitious clock drawing and constructional apraxia. Bedside mental status testing also demonstrated the more common simulated deficits of impaired attention and absent three word recall. In retrospect, the severe neglect on clock drawing was perhaps “too good to be true”, especially in the light of the near normal line bisection demonstrated on the same day. The mirror image distortion of the house was also very unusual and, furthermore, the mirror reversal itself is evidence of lack of clinical neglect. The distortion of the cube, however, could easily be misinterpreted as evidence of organic constructional impairment if seen in the absence of the other relevant clinical and laboratory information.

During follow up, the patient admitted to feeling tremendous occupation related stresses, and described how he had come to both fear and detest his job. Given the clear benefit to the patient of removal from his work environment, the relapse of his symptomatology just as he was scheduled for return to work after his first non-organic hemispheric episode, and the intentionality required to feign poor clock drawing and constructional apraxia, there is much to support a diagnosis of malingering. Nevertheless, classification as a factitious disorder is at least as justifiable in view of the patient’s willingness to undergo medical investigations, including video monitoring.

It is unclear how or when the patient acquired the information needed to mimic a constructional apraxia. Previous bedside neuropsychological evaluations may have served to familiarise him with the format of such testing, acting as an impetus to research the issue of stroke and focal brain deficits (which might also have occurred after his father’s stroke), much in the same way he is now researching conversion disorder, thereby discovering what expected answers should look like. Despite repeated questioning, however, no evidence could be gathered from the patient to support this speculation.

I KHAN
Division of Neurology
R WENNBERG
Department of Medicine, Division of Neurology, The Toronto Hospital, University of Toronto, Toronto, ON, Canada

Correspondence to: Dr R Wennberg, EC8–022, The Toronto Hospital, 399 Bathurst Street, Toronto, Ontario, Canada M5T 2S8. Telephone 001 416 603 5402; fax 001 416 603 5768.

Anosognosia and mania associated with right thalamic haemorrhage

Both anosognosia and secondary mania are associated with right hemispheric lesions. These two non-dominant syndromes, however, are rarely described as occurring together. We present a patient with a right thalamic haemorrhage giving rise to profound denial of hemiplegia and elated mood. This case suggests mechanisms for the common production of mania and anosognosia.

A 53 year old, right handed, black man, with a history of alcohol misuse and dependence and untreated hypertension, was brought to the emergency room a few hours after developing an intense headache and left sided numbness and weakness.

On admission he was described as “belligerent,” “agitated,” and “confused.” Blood pressure was 240/160. Neurological examination disclosed left lower facial droop, decreased left corneal and gag reflexes, and left hemiparesis with dense sensory deficits. With increasing obtundation, the patient was transferred to the intensive care unit and intubated. Brain MRI showed a left frontotemporal and left insular thalamic lesion with mass effect and oedema. The patient was extubated 2 days later and 4 days after the stroke he was described as being drowsy and inattentive, but was able to answer questions
appropriately. Neurological examination showed contratralateral gaze preference, supra-nuclear vertical gaze palsy, difficulty converging, left sided flaccid hemiparesis, and dense, left sided hemanaesthesia. Deep tendon reflexes were absent on the left and Babinski’s reflex was ++ on the right. This was the opposite of his usual finding. Visual extinction and neglect were present.

At the time of onset of right sided weakness the patient insisted that he was “fine,” and an ambulance was called over his objections. After being extrubated, the patient acknowl-

dged that he had had a stroke, but, despite his hemiparesis, insisted that he was ready to go home and go back to work. His belief in his ability to walk led to near falls, and he was more willing to listen to the nurses’ concern for closer observation. He told the nurses that someone else’s arm was in his bed. On one occasion, holding up his left arm with his right, he told the nurse to “take it away; it keeps scratching me.” That the left arm “smelled funny” was another reason he wanted the nurses to take it away.

Four weeks after the stroke he first acknowledged that his left arm belonged to him and could be consciously recalled being there otherwise. By this time he had a moderate hemiplegia and recognised “a little weakness,” but continued to insist that he was well and able to return to work. By the 6th week after stroke he felt more consistently acknowledged that he was weak on the left side of his body. A request for disabled housing “so that I won’t be a burden to my family” seemed to indicate an appreciation of his disability, but might also have been a request for disabled housing because he had never lived alone before. He spontaneously recalled believing “so that I won’t be a burden to my family” after stroke the patient more consistently.

His awareness of his hemiplegia fluctuated for 8 weeks after stroke before becoming fixed, but remained shallow after 12 weeks; he was able to return to work. By the 6th week after stroke he was moderately within the low average range and after a 30 minute delay, he was able to recall most of the information initially encoded, scoring normally within the average range.

Structural brain MRI on admission to the emergency room showed a large right thalamic hemorrhage with mass effect and oedema, with oedema extending into the cerebel lar peduncle with internal susceptibility consistent with deoxyhaemoglobin. Also present was increased T2 signal bilaterally in cerebral peduncle with internal susceptibility contrast NMR. Magnetic Resonance Imaging showed a large right thalamus without any evidence of decreased cerebral blood volume within the right parietal, frontal, or temporal cortex.

This is a case of anosognosia of hemiplegia and mania co-occurring in a patient with a large right thalamic haemorrhage. Although anosognosia and mania are not generally thought of as occurring together, Babinski’s introduction of the term anosognosia he defined as on his example, a patient who suffered a stroke that caused a left sided weakness, was “a little overexcited,” and in a later paper he presented a case in which there was “a certain agitation, which expresses itself by exaggerat ed loquacity, a decrease in attention, and a tendency to erotic ideas.”

Weinstein and Kahn noted that euphoria was common in patients with anosognosia. Moreover, although Cutting emphasized that apathy is the mood more usually associated with anosognosia, 10% of his patients with ano-

sognosia were described as having “euphoric mood.”

Right sided thalamic lesions are known to produce both hemiplegia and mania, but the relation of each to the pathology is unclear. Only some of the patients with right hemispheric lesions are manic or agnostic. These two syndromes may be related to dysfunction of different neural networks and only occur together when a disease process affects both networks.

Another possibility is that these syndromes are aetiologically related. Could anosognosia be a manifestation of mania? Although it is easy to conceive how elevated mood might facilitate anosognosia of hemiplegia (or other types of anosognosia), it is difficult to explain the presence of denial of ownership and dislike of the left arm (other anosognosic phenomena) on the basis of euphoria. Moreover, Starkstein et al., finding that simi- lar frequencies and severities of major and minor depression were present in patients with and without anosognosia, suggest that a particular mood state may not necessarily influence right sided weakness.

Several explanations have been proposed to explain the phenomenon of anosognosia. All the models involve dysfunction of the cerebral cortex, especially the parietal cortex. It is interesting that in this case functional MRI failed to demonstrate decreased CBV in the parietal lobe.

In summary, we present a case of anosognosia accompanying anosognosia of hemiplegia (or a right thalamic haemorrhage). The coexistence of mania and anosognosia may be more com-

mon than previously appreciated. The associ-

ation with anosognosia implies that the mechanisms implicated in the pathogenesis of secondary mania may be similar to those of anosognosia. The absence of evidence of abnormal parietal, temporal, or frontal lobe function by functional MRI in this case is intriguing.

ELIZABETH LIEBSON
Department of Psychiatry, Tufts, New England Medical Center, 750 Washington Street, Box 1007, Boston, MA 02111, USA. Telephone 001 617 636 1633; email eliebson@opal.tufts.edu

1 Bech P, Kastrup M, Rafaelsen OJ. Mini-

compendium of rating scales for states of anxi-

ety, depression, mania, schizophrenia, with correspon-

2 Belliveau J. Functional cerebral imaging by sus-

4 Ellis S, Kahn RL. The syndrome of ano-

5 Weinsten EA, Kahn RL. The syndrome of ano-

6 Cutting J. Study of anosognosia. J Neurol Neuro-

7 Starkstein SE, Fedoroff JP, Price TR, et al. Ano-

9 Heilman KM. Anosognosia: possible neu-

Epileptic cardiac asystole

A patient is reported on with habitual episodes of collapse and loss of consciousness associated with EEG evidence of focal epileptiform discharges. Simultaneous EEG recordings disclosed 25 seconds of cardiac ventricular asystole occurring 24 seconds after the onset of clinical seizure activity. After changes to antiepileptic medication and the insertion of a permanent cardiac pacemaker he has had no further episodes. In cases of epileptic cardiac dysrhythmia, isolated EEG or ECG recordings may prove insufficient and prolonged simultaneous EEG/ECG monitoring may be required.

Cardiac arrhythmias subsequent to epilep-

tic seizures have been recognised for more than 80 years. They provoke diagnostic confusion and may be a mechanism of sudden unexplained death in epilepsy. Whereas sinus tachycardia was noted to accompany more than 90% of epileptic seizures, isolated bradycardia was seen much
less commonly (only 1 of 74 seizures recorded). A review in 1996 of the “ictal bradycardia syndrome” showed only 15 documented cases in the literature of either bradycardia or asystole associated with seizures. Most patients had temporal lobe seizures. The longest duration of asystole previously reported is in a 17 year old man with temporal lobe epilepsy who sustained a 22 second pause in cardiac output. More typically the asystolic periods in documented cases are in the region of 5–10 seconds. Shorter duration asystole may not compromise cerebral function sufficiently to cause loss of consciousness. Implantation of a cardiac pacemaker is advocated but does not ensure that lapses of consciousness are eliminated if these are directly related to the seizure rather than to the secondary asystole. We report on a patient with epileptic cardiac asystole of 25 seconds duration demonstrated by prolonged simultaneous EEG/ECG monitoring which responded well to pacemaker insertion.

A previously well 34 year old right handed builder was referred with a 1 year history of fortnightly episodes of loss of consciousness. There was no associated warning, aura, chest pain, or palpitations and the patient was only aware of the episode once consciousness was lost.
restored and he found himself lying on the floor. On recovery there was no confusion, drowsiness, dysphasia, or diuresis. Often, however, he sustained soft tissue injuries to his face and scalp.

Witnesses reported that the patient would, within seconds, suddenly collapse to the ground where he would remain unresponsive, inaccessible, and motionless for 90 to 120 seconds. On two occasions he appeared confused and disoriented immediately before a collapse. During the period of unconsciousness he would demonstrate no involuntary movements, orofacial automatisms, or cyanosis, but he would become pale and “ashen” while staring straight ahead with a glazed look. Within 90 seconds of the episode his colour would return to normal and within 2 minutes he would have fully recovered. Unusually during one reported episode of unconsciousness he was seen to briefly extend the fingers of both hands.

He was admitted to his local hospital and CT, MRI, interictal EEG, and 24 hour ECG were normal. No episodes were witnessed while he was an inpatient but they were then witnessed and recorded in oratory and therefore he was started on phenytoin, with no benefit. Carbamazepine was added, again with minimal effect.

The patient was then referred to the Epilepsy Assessment Centre of The National Society for Epilepsy and National Hospital for Neurology and Neurosurgery for further investigation and management.

Cardiovascular and neurological examination was normal as were MRI and routine interictal EEG. Sixteen channel ambulatory EEG using an Oxford Instruments digital EEG receiver was performed continuously for 340 hours before an episode was captured. Intracranial rare spikes were seen over the right frontocentrotemporal region during sleep. The Interictal EEG. Sixteen channel ambulatory EEG in anaesthetised rats has been shown to induce tachycardia and more caudal region stimulation to cause bradycardia. Additionally, prolonged stimulation resulted in ventricular tachypnoea, heart block, QT prolongation, and death. In presurgical temporal lobectomy patients stimulation of the left insular cortex (particularly posteriorly) produced bradycardia and a depressor response significantly more often than tachycardia and a pressor effect. It was suggested that an epileptic discharge in the insular cortex may result in cardiac arrhythmias.

Recurrent episodes of loss of consciousness are a common clinical problem. An accurate diagnosis relies principally on the patient’s and witnesses’ accounts of events. Further investigations are frequently required which are often normal unless an episode is captured during monitoring. Recording solely the EEG or the ECG may result in erroneous conclusions being drawn and insufficient or inappropriate therapy being instituted. Distinction between a primary cardiac arrhythmia and a secondary central arrhythmia is possible only with simultaneous EEG/ECG recordings.

FERGUS J RUGG-GUINN JOHN S DUNCAN SHELDON J M SMITH
Epilepsy Research Group, University Department of Clinical Neurology, Institute of Neurology, The National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
Correspondence to: Professor John S Duncan, National Society for Epilepsy, Chalfont St Peter, Gerrards Cross, Bucks SL9 0RJ, UK email j.duncan@ion.tcd.ac.uk

Respiratory insufficiency in a patient with hereditary neuropathy with liability to pressure palsy

Hereditary neuropathy with liability to pressure palsies (HNPP) is an autosomal dominant disorder, the molecular basis of which is a 1.5 Mb deletion in chromosome 17p11.2 including the peripheral myelin protein-22 (PMP-22) gene. HNPP typically presents recurrent pressure palsies of peripheral nerves, such as the axillary, median, radial, ulnar, or peroneal nerves, at common entrapment sites. Respiratory muscle weakness has not been previously reported in HNPP. We describe a patient with HNPP who developed respiratory failure and proximal muscle weakness as prominent features.

The patient started to have dyspnoea on exertion at the age of 44. At the age of 47, he noticed a slowly progressive weakness of the pelvic girdle and lower limbs. At the age of 57, he experienced difficulty in going up stairs. However, he was almost independent in daily life. At the age of 60, he was admitted to St. Monica Red Cross Hospital, emergency patient with a coma due to CO, narcosis (PCO, 117.6, PO, 64.0). Responding to mechanical ventilatory support, he completely recovered consciousness within a day. His respiratory condition in the daytime improved to that previously. However, he needed mechanical ventilation during sleep because of nocturnal hyperventilation.

The patient had no history of diabetes mellitus, pulmonary or other chronic medical problems. There was no familial history of neurological disorder, including entrapment neuropathies. After a few months, he noted that in his teens he had experienced some episodes of right peroneal and right axillary nerve palsies which resolved themselves over a few months.

In a neurological examination, the patient’s mental state and cranial nerves were normal. Evidence of muscular atrophy was noted. Motor nerve conduction studies in all the nerves were normal. His vital capacity was 1.91 (55% of the normal mean) in the sitting position, but 1.31 (38%) in the supine position. The percentage of forced expiratory volume in 1 second was normal. His EEG showed a monomorphic discharge at inspiration and expiration showed poor movement of the diaphragm but no abnormality in the lung field. Routine haematological and serological studies gave normal results. No monoclonal or polyclonal proteins were detected. IgG and IgM antibodies to gangliosides GM1 and GD1b were negative. Analysis of CSF showed 1 lymphocyte/mm³ and 25 mg/dl protein. Motor nerve conduction studies showed prolonged distal latencies in the right median (8.8 ms (normal value in our laboratory <4.6) and ulnar (6.2 ms (normal<3.6) ms nerves, and moderate decreased conduction velocities in the right median (45 ms (normal>45), ulnar (45 ms (normal>49), tibial (35 ms (normal>38)), and peroneal (29 ms (normal>41) nerves). There were moderate decreases in the amplitude of compound action potentials in all the nerves tested, and an amplitude reduction of 50% was detected across the cubital tunnel of the right ulnar nerve. Minimum F wave latencies were prolonged in all the nerves tested. The latency in the right phrenic nerve was 8.5 ms.
delayed (8.7 ms (normal<8.0)). Sensory nerve conduction studies showed a reduced amplitude of sensory nerve action potentials and conduction slowing in all the nerves tested. Electromyography carried out in the supraspinatus, deltoid, biceps, flexor carpi ulnaris, brachioradialis, quadriceps femoris, biceps femoris, tibialis anterior, and gastrocnemius muscles showed polyphasic motor unit potentials of long duration, but denervation potentials were rare. A left sural nerve biopsy showed scattered tomacular thickening of the myelin sheath and some abnormally thin axonal myelin sheaths. The density of myelinated fibres was reduced (5726/mm²).

A gene analysis disclosed a 53% gene dose of PMP-22 related to normal controls, using Southern blots of DNA digested with EcoRI. Given the possibility of superimposing demyelinating neuropathy, especially chronic inflammatory demyelinating polyneuropathy, oral prednisolone (60 mg/day) was given for 1 month. However, the patient’s clinical condition did not respond to this treatment. Pulmonary dysfunction and proximal muscle weakness were almost steady during the next 3 years.

We examined the patient’s elder sister (64 years old), elder brother (62 years old), and younger sister (58 years old), although they had no neurological complaints. All of them had experienced generalised hyporeflexia or areflexia but no weakness or sensory loss, and nerve conduction studies showed moderate conduction slowing with accentuation at the common entrapment sites, suggesting demyelinating neuropathy.

Our patient recalled experiencing recurrent episodes of transit entrapment mononeuropathies, and the familial occurrence of asymptomatic entrapment neuropathy was detected by nerve conduction studies. The presence of tomacula, and genetic analysis confirmed a diagnosis of HNPP. However, the patient’s dominant clinical features—respiratory failure and proximal muscle weakness—were atypical for HNPP. Although respiratory muscle weakness has been reported in hereditary motor and sensory neuropathy (HMSN), there has been no report of respiratory insufficiency associated with HNPP to our knowledge.

The weakness of the truncal muscles, including the respiratory accessory muscle, is a possible cause of respiratory failure in our patient. On the other hand, he had experienced hypventilation in the supine posture and paradoxical movement of the abdomen, which suggested diaphragmatic weakness. Also, chest radiography showed poor movement of the diaphragm. Although the prolongation of distal latency in the phrenic nerve was mild considering the severity of respiratory failure, assessment of axonal loss is not possible with phrenic nerve stimulation. In fact, phrenic nerve latency is not necessarily associated with pulmonary dysfunction in HMSN.

Diffuse proximal weakness in our patient is an uncommon finding as for HNPP. Mancardi et al reported on three patients with progressive sensory-motor polyneuropathy associated with 17p11.2 deletion, and the initial symptom of one patient was proximal weakness in one arm. We propose that our patient represents a clinical phenotypic variability among HNPP. It may be necessary to pay attention to respiratory function in HNPP.

We thank Dr T Yamamoto from the University of Occupational and Environmental Health for the gene analysis and Mr T Nagase from Chiba University for his technical help with the sural nerve biopsy.
venous thrombosis is often asymptomatic, or presents with non-specific pain, it is probably unrecognized in many cases. Concurrent ipsilateral spinal accessory neuropathy and internal jugular venous thrombosis after CEA is expected to be rare, and this is underscored by the lack of published cases. Despite this apparent rarity, a common pathogenetic mechanism for postoperative spinal accessory neuropathy and internal jugular venous thrombosis may well be present, at least in some cases, which may lead to the consideration of the possibility of both when either is discovered.

We report on a patient who developed right spinal accessory neuropathy and internal jugular venous thrombosis after right CEA. A 59 year old man underwent right CEA for possibly symptomatic stenosis. Angiography had shown 90% stenosis of the right internal carotid. The operation was done under general anaesthesia. The carotid bifurcation was unusually distal, necessitating a long dissection and high retraction. No immediate postoperative complications were evident. The next day, the patient complained of mild pain at the operative site, but did not notice any weakness. The pain spread into his right shoulder within several days; at that time, he also noted difficulty raising his right arm. His symptoms worsened further a few weeks later. The symptoms persisted, and he presented for neurological evaluation 4 months after CEA. At that time, he had some induration along the incision site and a palpable cord within the right supraclavicular fossa. There was moderate atrophy of the right sternocleidomastoid and trapezius, with right shoulder drooping and minor right scapular winging. Right arm abduction produced more prominent scapular winging and was limited to 90 degrees due to pain and weakness. Electrodiagnostic studies were consistent with partial right accessory neuropathy with minor denervation of the right trapezius. Cervical ultrasonography and MRI demonstrated right internal jugular venous thrombosis. The patient was treated with a shoulder support, analgesics, and low dose aspirin. There was no significant clinical change 1 year after CEA. Repeat electrodiagnostic studies were consistent with a chronic right spinal accessory neuropathy, and repeat ultrasonography showed persistent right internal jugular venous thrombosis. In spite of a chronic neuropathy, we only reported this as a complication of CEA in 1982.1 Since then, there have been a number of case reports and small series. 1 A 1996 review of reports of cranial neuropathy after CEA disclosed only one patient with spinal accessory neuropathy in over 3000 cases.1 Although the authors did not include several other reports’ which, taken together, may suggest to somewhat a higher incidence, the overall small number of reported cases in proportion to the hundreds of thousands of CEAs that have been done worldwide suggests that clinically significant spinal accessory neuropathy is a rare complication. Minor spinal accessory neuropathy after CEA may be more frequent. The cause of spinal accessory neuropathy after CEA is usually not well established, but intraoperative nerve stretching or compression from retraction is most often invoked.2 Delayed onset (after 3 weeks) has been noted in some; for these patients, postoperative inflammation and scarring seem more likely causes. Spinal accessory nerve transection or ischemia/infarction (arterial or venous) are other possibilities. As in our patient, high carotid dissection and retraction have been reported to precede spinal accessory neuropathy. 3

The spinal accessory nerve courses along the internal jugular vein and near the internal carotid artery, typically well above the carotid bifurcation. It is thought that a high carotid incision and retraction resulting from a high carotid bifurcation would place the nerve at risk. Whether this realisation may lead to any technical modification to decrease the risk of spinal accessory neuropathy in those with a high bifurcation is unclear.

From our search, internal jugular venous thrombosis after CEA has been reported in only one case.2 As Southcott et al noted, retraction of the internal jugular during CEA may cause complete occlusion, leading to thrombosis from venous stasis or endothelial injury. Other causes of internal jugular venous thrombosis include jugular cannulation, blunt cervical trauma, and a hypercoagulable state. Internal jugular venous thrombosis may occur late, after neck dissection, often with recanalisation after several months.3

The presence of induration about the incision site and a palpable supraclavicular cord in our patient led us to suspect venous thrombosis. Internal jugular venous thrombosis may often be asymptomatic. Potential symptoms of internal jugular venous thrombosis include headache, dysphagia, and anterior or posterior neck pain, tenderness, and swelling. In addition to perivenous induration, fever and leukocytosis may occur.4

Common pathogenetic mechanisms for spinal accessory neuropathy and internal jugular venous thrombosis may include intrathecal, haemorrhagic, and postoperative inflammation and scarring. Although the onset of either spinal accessory neuropathy or internal jugular venous thrombosis in our patient cannot be determined precisely, it is likely that both developed at about the same time. The delayed worsening of the spinal accessory neuropathy in this case suggests postoperative scarring or inflammation. The lack of improvement after a year, as in some other cases of spinal accessory neuropathy after CEA, implies considerable axonal injury, but does not clarify the manner of injury.

GEORGE WOODWARD
RAM VENKATESH
Department of Neurology, University of Kansas, and Neurology Section, VA Eastern Kansas Health Care System, VA, USA

Correspondence to: Dr George Woodward, Neurology Section (111), VA Medical Centre, Leavenworth, Kansas 66048, USA. Telephone 001 913 620000 ext 2441; fax 001 913 758 4225.

Ischaemic stroke in a sportsman who consumed MaHuang extract and creatine monohydrate for body building

We report the first case of extensive cerebral infarct in a young sportsman consuming high doses of MaHuang extract and creatine monohydrate. MaHuang extract contains ephedrine, and 6000 mg creatine monohydrate daily for about 6 weeks before his stroke.

Although a paradoxical embolism through a patent foramen ovale in this patient cannot be ruled out as he recently returned from a transatlantic flight, there was no deep venous thrombosis and D-dimeres were normal. However, ephedrine has an indirect sympathomimetic action, and has been reported to enhance the risk of arterial vasocstriction in addition to other catecholamineergic effects. Both ischaemic and haemorrhagic stroke associated with ephedrine use have been reported.4 Acute myocardial infarction and acute psychosis have also been reported after taking ephedrine and other sympathomimetic drugs.5 Ephedrine and its metabolites are natural products that are used in non-prescription medicines for multiple uses. In this case, which contains ephedrine, is used among young sportsmen and sportswomen as an energy supplement in non-prescription tablets in some countries. Although no cardiovascular side effects have been reported with the use of creatine monohydrate, this compound, used in association with other drugs as energy supplement may have deleterious side effects. This may be particularly true when used at high doses in combination with sympathomimetic drugs as in our patient. Renal dysfunction has also been reported after oral creatine supplements. Our patient had a slight increase in creatine concentration although...
it remained in the normal range. Whether the use of high doses of caffeine can enhance the cardiovascular effect of ephedrine remains a possibility as stroke after taking a combination of caffeine and amphetamine has been reported.\(^1\)

Drug addiction in sportsmen and sportswomen is becoming a major concern in our societies, involving both professionals and amateurs. As energy supplements, thought to enhance performance, are easily available in some countries without the need of medical prescription, everybody should be aware that these so called "benign" drugs may have major adverse effects.

This first case report of an extensive cerebral infarct in a young sportsman consuming high doses of MaHuang extract and creatine monohydrate should alert the sport community to this possible adverse effects of energy supplements, particularly when used in multiple combination.

K VAHEDI
V DOMIGO
P AMARENCO
M-G BOUSSER
Service de Neurologie, Hôpital Lariboisière, Paris, France

Correspondence to: Dr K Vahedi, Service de Neurologie, Hôpital Lariboisière, 2 Rue A Paré, 75010 Paris, France
email vahedi@ccr.jussieu.fr

Petroclival meningioma as a cause of ipsilateral cervicofacial dyskinesias

Hyperkinetic movement disorders of facial and neck muscles such as blepharospasm, hemifacial spasm, facial myokimia, and cervical dystonia have rarely been associated with unilateral brainstem or posterior fossa pathologies. We report a case of unilateral cervicofacial dyskinesias due to an ipsilateral petroclival meningioma.

A 32 year old left handed woman complained about left sided facial dysaesthesia of the upper quadrant of her face for 1 year. In addition she had intermittent ipsilateral headache. A left sided facial palsy and hypogeusia developed. When progressive hearing loss and persistent ipsilateral tinnitus occurred she sought medical advice. She was referred to our department for further treatment after a large tumour in the left cerebellopontine angle had been demonstrated by MRI. On admission, the left corneal reflex was absent. There was marked hypoaesthesia of the first two divisions of the left trigeminal nerve and a mild left facial palsy. There was also hypogeusia of the left half of the tongue. Speech was slightly dysarthric. During examination dystonic and choreic movements of the left facial muscles were seen. The dystonic grimacing increased when the patient was being observed. There were also intermittent jerky dystonic head movements with turning of the head to the left, associated with slight elevation of the left shoulder. The facial movement disorder was clearly different from hemifacial spasm. There were no tonic or clonic synchronous contractions of facial muscles and no signs of involuntary coactivation. The patient barely noted the dyskinesias. Audiometry showed a hearing threshold at 30 Db on the left side and lack of stapedius reflex on the left side. Oculovestibular response to caloric stimulation was

(A) Axial T2 weighted SE MR images of a 32 year old woman with left sided cervicofacial dyskinesias show a large left petroclival meningioma compressing the brainstem. (B) Coronal inversion recovery MR scans demonstrate marked displacement and distortion of the brainstem due to the petroclival meningioma. (C) Gadolinium enhanced axial T1 weighted SE MR scans 3 months postoperatively show complete removal of the tumour and normalisation of the displacement of the brain stem.
decreased on the left side. Furthermore, there was mild left dysdiadochokinesia.

Neurography of the facial nerve was normal on both sides. Needle myography of the left frontalis and orbicularis oculi did not show signs of denervation.

An MRI study showed a large gadolinium enhancing tumour within the left cerebellopontine angle extending to the cavaux Meckeli with marked displacement of the brainstem to the contralateral side (figure A and B). Cerebral angiography showed a discrete blush of the tumour as typically seen in meningiomas. The tumour was totally removed by a combined transpetrosal supratentorial and infratentorial presigmoidal approach. The postoperative course was uneventful and there were no new deficits. The facial palsy improved slightly as well as the trigeminal hypoaesthesia. Audiometry remained unchanged. Postoperative imaging showed no residual tumour and the displacement of the brain stem within the posterior fossa had resolved (figure C). Marked improvement of the left sided craniofacial dyskinesias occurred during the next weeks.

The postoperative improvement of the dystonic and choreic grimacing and the cervical dystonia indicates a causal association between the petroclival meningioma and the segmental hyperkinetic movement disorders. Such a relation is supported also by the absence of a family history of movement disorders and the absence of previous exposure to neuroleptic medication. Hyperkinetic movement disorders due to tumours of the brainstem or of the posterior fossa have been reported only occasionally. Asymmetric blepharospasm was recently found in a patient with an ipsilateral mesencephalic cyst. 1 Hemifacial spasm was seen in patients with anastomosing nevromas, meningiomas, and epidermoid tumours of the cerebellopontine angle. 2 Acoustic neurinomas and anaplastic pontocerebellar glioma can be associated with facial myokymia and spastic parietic facial contracture. 3 Also, cervical dystonia due to tumours of the cerebellopontine angle have been reported recently. 4

The pathophysiological mechanisms responsible for dystonic movement disorders caused by structural or functional lesions of the brainstem are not fully understood. The possibility of denervation supersensitivity of cranial nerve nuclei has been proposed previously. Alternatively, enhanced excitability of brainstem internucleons has been suggested. This pathophysiological mechanism is supported by the findings of blink reflex studies in patients with blepharospasm, spasmodyc dysphonia, and cervical dystonia. Totosa et al. found significantly less inhibition of the test stimulus polysynaptic late response and marked enhancement of the recovery curve of the late response under such conditions compared with the response in healthy subjects. 5

Our case provides further evidence that functional impairment by compression and distortion of the brain stem may cause hyperkinetic cervicofacial movement disorders. It is supported also by the knowledge that such movement disorders are accessible to surgical treatment of the underlying pathology. Therefore, patients with cranial or cervical dystonia or choreic dyskinesia should undergo MR imaging to rule out a surgically treatable cause.

THOMAS POHLE JOACHIM K KRAUSS Department of Neurosurgery, Inselhospital, University of Berna, Berna, Switzerland

JEAN-MARC BURGUNDER Department of Neurology

Correspondence to: Dr J K Krauss, Department of Neurosurgery, University Hospital, Klinikum Mannheim, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany email joachim.krauss@nch.ma.uni-heidelberg.de

Acute multifocal cerebral white matter lesions during transfer factor therapy

Transfer factor is an active substance of unknown structure present in dialysable leukocyte extract which is assumed to transfer cell mediated immunity in an antigen specific fashion. 1 The mechanisms of action of transfer factor are still far from clear; in vitro dialysable leukocyte extract increases macrophage activation and interleukin (IL) 1 production and enhances leukocyte chemotaxis and natural killer function. Transfer factor has been reported to stimulate the cell mediated antigen specific response in patients with various infections; 4 therefore, transfer factor has been suggested in patients with selective deficits in cell mediated immunity such as refractory neoplasms and chronic infections. Moreover, it has been used in the treatment of uveitis. 7 Administration of dialysable leukocyte extract has seemed to be free of hypersensitivity, long lasting side effects, or complications, except for transitory hyperpyrexia. 1

We report on a patient in whom multiple cerebral white matter lesions developed after taking dialysable leukocyte extract orally for uveitis. A 28 year old man was admitted to hospital because of headache, mental confusion, and right hemiparesis. He had had recurrent bilateral uveitis from the age of 12 to 14 with relapse of right eye. In January 1993 retinal vasculitis was diagnosed at fundoscopy and in July 1995 he started oral transfer factor as dialysable leukocyte extract twice a week. He complained of generalised weakness after the second dose and the referring symptoms developed after the third dose.

Neurological examination on admission showed mental confusion and severe right spastic hemiparesis with Babinski’s sign. No fever or meningismus were present.

Laboratory examinations on admission showed a slight increase in total serum protein (8.4 g/l, normal 6.0–8.0 g/l), although the serum protein fraction was normal, antistreptolysin titer (355 UI/ml, normal 0–200 UI/ml), and anticardiolipin IgG (30 UI/ml, normal 0–120 UI/ml). Negative results were obtained for HIV, hepatitis B and C, and antinuclear antibodies. Serological investigations showed IgG but not IgM against cytomegalovirus (CMV), herpes simplex, Varicella zoster, Epstein-Barr virus, and JC virus. Polymerase chain reaction search for herpes simplex 1 and 2, Varicella zoster, CMV, Epstein-Barr virus, and JC virus in the CSF was negative.

Cell, protein, and glucose concentrations in CSF were normal. No oligoclonal bands or antibodies against CMV, herpes simplex, Varicella zoster, Epstein-Barr virus, and JC virus were present. Acute multifocal cerebral white matter lesions in our patient support the assumption of dialysable leukocyte extract therapy and appearance of cerebral white matter lesions in our patient supports the possibility that the association of the two events might not be casual. Despite the absence of biopsy, we reasonably excluded muscle, and antineutrophil cytoplasmic antibody, lupus anticoagulants, cryoglobulin, immune complexes, complement fractions, and neoplastic markers.

Seroserological investigations showed IgG but not IgM against cytomegalovirus (CMV), herpes simplex, Varicella zoster, Epstein-Barr virus, and JC virus. These tests were performed twice a week. He complained of genitourinary symptoms and the possibility of dialysable leukocyte extract therapy and appearance of cerebral white matter lesions in our patient supports the possibility that the association of the two events might not be casual. Despite the absence of biopsy, we reasonably excluded
the diagnosis of vasculitis or neuro-Bechet's disease although in the absence of biopsy. In fact, the clinical, laboratory, and MRI findings were not typical and a low titre of anticardiolipin antibodies is found in 2% of healthy subjects. The occurrence at different time of focal cerebral white matter lesions highly supports the diagnosis of multiple sclerosis, but some clinical and laboratory findings in the patient are not typical for this condition. Mental confusion is not common at the onset of multiple sclerosis whereas it is often found in acute disseminated encephalitis. In addition, CSF without oligoclonal banding argues against a diagnosis of multiple sclerosis, whereas it is commonly found in acute disseminated encephalitis. On the other hand the possibility that acute disseminated encephalitis may recur has been accepted and on the basis of the patient's clinical picture and CSF, we favoured such a diagnosis.

The pathogenic mechanisms underlying the triggering, development, and duration of multiple sclerosis and acute disseminated encephalitis are still far from clear despite the progress made in unravelling them. Some findings suggest that acute disseminated encephalitis and multiple sclerosis lie at the two poles of an autoimmune range, in which autoantigen reactivity is only temporary and direct against a single antigen in acute disseminated encephalitis and multiple antigens in multiple sclerosis. Although the hypothesis that dialysable leucocyte extract had triggered an autoimmune disorder in our patient cannot be proved, our finding is in line with the report of multiple cerebral lesions after therapy with IL-2 in patients with malignancies or HIV infections. On the other hand, the fact that acute disseminated encephalitis is often correlated with the administration of foreign proteins, such as during vaccinations or viral infections led us to postulate in this patient a cell mediated immunological mechanism. Therefore, an immunological cross reaction between viral antigens (or other foreign material contained in vaccines) and various parts of the nervous system resulting in acute disseminated encephalitis might have occurred. As already noted, dialysable leucocyte extract contains a multitude of immunostimulating or potentially activating substances so it is impossible to pinpoint which one could have been responsible for the demyelinating effect seen in our patient. This notwithstanding, our finding indicates that neurological surveillance is worthy in patients assuming dialysable leucocyte extract therapy.

FRANCESCO G FOSCHI
LORENZO MARSIGLI
MAURO BERNARDI
Semeiotsica Medica, Dipartimento di Medicina Interna, Epatoelogia e Cardioangiologia, Università di Bologna, Policlinico Sant’Orsola, via G Massarenti 9, 40138 Bologna, Italy. Telephone 0039 51 308943; fax 0039 51 308966; email: fgfoschi@tin.it

Fahr's disease and Asperger's syndrome in a patient with primary hypoparathyroidism

Abnormal calcium phosphate metabolism has not previously been associated with Asperger’s syndrome, a form of pervasive developmental disorder. Nor have symmetric calcifications of the basal ganglia, dentate nuclei and cortex, or Fahr’s disease—whether idiopathic or associated with hypoparathyroidism—previously been associated with this handicap. We present the case of a 24 year old man with Asperger’s syndrome, primary hypoparathyroidism, and multifocal brain calcifications.

According to medical history, the patient’s mother had received weekly injections of Depopovera during pregnancy. A single child born after a normal term delivery, he underwent surgery for an inguinal hernia at 3 weeks. Developmental milestones were only moderately delayed. At 9 months, he rolled instead of crawling. He walked at 15 months, spoke at 2 years with poor articulation, and still speaks in short, unelaborated sentences. His social and language development lagged in grade school and he occasionally got into fights. In late adolescence, antisocial behaviour took the form of shoplifting and repeated long distance calls to pornographic hot lines. As an adult, his social adaptation remains poor: he currently lives with his mother and works irregularly as a dishwasher in a restaurant. He is indifferent, isolated, and resists novelty. He enjoys repetitive and solitary activities such as slot machine games and playing the piano.

Neurological examination showed bilateral hyperreflexia, mild imprecision of fine finger movements, dysgraphaesthesia on sensory testing, and a manieristic gripping handshake. There were no extrapyramidal movements, dysgraphaesthesia on sensory testing, and a manieristic gripping handshake. There were no extrapyramidal abnormalities.

Correspondence to: Dr Francesco Giuseppe Foschi, Semeiotsica Medica, Dipartimento di Medicina Interna, Epatologia e Cardioangiologia, Università degli Studi di Bologna, Policlinico Sant'Orsola, via G Massarenti 9, 40138 Bologna, Italy. Telephone 0039 51 308943; fax 0039 51 308966; email: fgfoschi@tin.it

Brain CT, axial section: dense calcific deposits in the basal ganglia, thalamus, and orbitofrontal cortex consistent with Fahr’s disease.
symptoms. His IQ score was in the low range (WASI-C=85 at the age of 13; Barbeau-Pinar=82 at the age of 17). He also presented an impairment on the Tower of London test, which measures executive function, and in a task assessing the understanding of other's intentions. These two findings are reliably present in pervasive developmental disorders, in this IQ range. In addition, his performance on the Tower of London test disclosed impaired performance in procedural learning. Psychiatric assessment showed scores above the cut off for autism according to the autism diagnostic interview (ADI),4 a standardised interview that requires specific training and those administering it to have a 0.90 reliability with other researchers. The subject was positive for the diagnosis of autism, being above cut off values in the three relevant areas of communication, social interactions, restricted interests, and repetitive behaviours. Nevertheless, he did not present delay in language acquisition or morphological atypicalities in language development, which corresponds to DSM-IV criteria for Asperger’s syndrome.

Brain CT showed dense calcium deposits in the basal ganglia, thalamus, cerebellar dentate nucleus, and orbitofrontal cortex, consistent with Fah’s disease (figure).5,6,7,8 CT showed increased activity in the basal ganglia relative to the cerebral cortex. A fine banded karyotype was normal. Serum calcium was 1.55 mM (normal 2.15–2.55 mM), phosphate 1.69 mM (normal 0.70–1.45 mM), and ionised calcium was 0.80 mM at pH 7.4 (normal 1.19–1.34 mM); urinary calcium was 0.8 mM (normal 2.5–6.3 mM). Serum parathyroid hormone was below 0.6 (normal 1.0–6.55 µM/l), and a nuclear scan with Tc was unremarkable. Magnetic resonance imaging showed a retro-odontoid extradural mass that was homogeneous and isointense on T1 weighted signal, demarcated no enhancement after intravenous gadolinium contrast, and was compressing the upper cervical spinal cord (figure). The laboratory tests were normal, confirming the absence of rheumatoid arthritis, metabolic disease, or gout. Surgical removal via a transoral approach with a minimal bony resection was direct and provided sufficient space to obtain spinal cord decompression. It was followed by a posterior C1–C2 fusion. Macroscopically, the lesion had no capsule and resembled a hypertrophic ligamentum flavum. Microscopically, it was non-inflammatory, hypocellular, and ligamentary pieces found within the mass appeared fibrous and almost disintegrated. The patient regained normal neurological function. Over a 3 year follow up period there was no recurrence.

We focus attention on hypertrophic atlantoaxial ligamentary disease as a degenerative disease that must be considered within the possible causes of high spinal cord compression.

ALEJANDRA TERESA RABADAN
Department of Neurosurgery, Instituto de Investigaciones Medicas “Alfredo Lanari”, Facultad de Medicina, Universidad de Buenos Aires, and Equipo de Neurocirugia de Buenos Aires, Argentina

GUSTAVO SEVELLER
Department of Pathology, Clínica Bastrozza, Buenos Aires, and Equipo de Neurocirugia de Buenos Aires, Argentina

Correspondence to: Dr Alejandra T Rabadan, Billinghurst 1976 PB, 1425 Buenos Aires, Argentina. Telephone 0054 1 902 4417; fax 0054 1 903 892; email rabadan @ movi.com.ar

Selective hemihypaesthesia due to tentorial coup injury against dorsolateral midbrain: potential cause of sensory impairment after closed head injury

A 63 year old woman who fell off her bicycle had a left temporal region head injury with evidence of initial loss of consciousness of 5 minutes and scalp excoriation of that area. On arrival at our hospital 30 minutes later she was alert and oriented. Cranial nerve functions, including extraocular motion and hearing function, were preserved. Pain and temperature sensations of the right side, including her face, showed a 70% decrease compared with the left side; however, position and vibration sensations were normal. Other neurological examinations, including motor function, coordination, and deep tendon reflexes, were normal. The patient’s only complaints were left temporal headache and right hemihypaesthesia.

Brain CT on admission showed a discrete and linear high density at the left ambient cistern without other intracranial lesions. On the next day CT showed an obscure low density at the dorsolateral midbrain in addition to the previous lesion (figure).

Brain MRI, taken 3 days later, demonstrated an intraparenchymal lesion, at the surface of the left dorsolateral midbrain in high intensity on a T2 weighted image. The high intensity lesion corresponding to haematoma on CT was seen in the ambient cistern (figure). Taking both CT scans and MRI into consideration, this case was diagnosed as traumatic midbrain contusion.

The loss of pain and temperature sensation improved gradually and the patient was discharged 2 weeks later.

T2 weighted images 1 month later showed a more localised lesion in the same area. The coronal slices showed a high intensity lesion at the level of lower midbrain coinciding with the tentorium level, disclosed as a low line between the occipital lobe and the cerebellar hemisphere (figure).

The neurological deficits almost disappeared 6 months later.

Somatosensory impairment including pain is one of the most common complaints among patients with craniovascular injury. Responsible lesions for sensory impairment, detectable by neuroimaging studies, almost always accompany associated neurological deficits. To our knowledge, a selective injury at the spinothalamic or trigeminotrigeminal tracts due to closed head injury has not been highlighted in the neurological literature.

The MR images in our case showed a discrete lesion at the dorsolateral midbrain. Topographical study at this lower midbrain level showed that the lateral and ventral spinothalamic and ventral trigeminotrigeminal tracts pass at the surface of this level by carrying a superficial somatosensory input. The lesion shown in our MR images seemed to be localised to these tracts. The medial lemniscus for the deep sensation and lateral lemniscus and nucleus of inferior colliculus associated with hearing function run ventral and dorsal to these tracts, respectively, which were seemingly spared in our patient. The topographical anatomy seemed to correspond to the neurological manifestations of our patient.

The mechanism of midbrain injury in our patient was speculated to be due to tentorial coup injury based on MR images. The location of contusion was at the lower dorsolateral midbrain, coinciding with the tentorial edge level. Initiation of injury was the surface of the midbrain; however, due to the proximity of the tentorial edge to the midbrain on the injured side, tentorial contact to the midbrain supposedly occurred more readily. Brain MRI findings support the anatomical features of this tentorial coup injury. This injury is not rare in patients with severe head injury, accompanied by other intracranial lesions, and is often caused by lateral displacement of the brain stem relative to the tentorium. It is influenced by congenital variation in the size and shape of the tentorial incisura. The brain stem of the patient with a narrow incisura is more vulnerable to the direct contusive effects than that of a patient with a wider incisura. Therefore, even in minor head injury, this mechanism may occur in patients preconditioned with narrow tentorial incisura, which may have been the case in our patient.

The concept of tentorial coup injury against the midbrain is not new. It usually accompanies various degrees of conscious disturbance and other long tract signs, sensory deficits as well as cerebellar and cranial nerve palsies due to the midbrain lesion or other associated intracranial lesions. The clinical manifestation of our patient may represent one of the mildest forms of the midbrain contusion. Therefore, when we see a patient with post-traumatic sensory deficit, the possibility of this tentorial injury should be kept in mind even in minor head injury.
CORRESPONDENCE

Toluene induced postural tremor

We read with interest the article by Miyaı et al1 and comment on the medical treatment of toluene induced tremor. Microdialysis experiments in rats have shown that inhalation of toluene increases extracellular γ-amino butyric acid (GABA) concentrations within the cerebellar cortex1 which probably explains why GABA agonists including benzodiazepines (for example, clonazepam) are not very effective in toluene induced tremor and ataxia. Rat experiments also showed a 50% reduction in brain catecholaminergic neuronal densities.2 Degenera- tion of certain cerebellar pathways is probably responsible for the loss of this dopaminergic innervation.3 Dopamine agonists could therefore be of potential interest in the treatment of toluene induced tremor. This hypothesis was explored in a recently described case, which showed remarkable clinical and iconographic similarities with that described by Miyaı et al: (a) long history of chronic toluene inhalation, (b) marked postural tremor, (c) progressive worsening of the symptoms despite abstinence from inhalant misuse, and (d) mild cerebral atrophy and marked low signal intensity in globus pallidi, thalami, red nuclei, and substantia nigrae on T2 weighted MRI. As our patient’s tremor was progressive, medical treatment with a dopamine agonist was considered. One particular agent (aman- tadine) caught our attention because it had proved successful in the treatment of postural tremor in patients of heredodegenerative disorders in which the dentatorubro-olivary system is affected. In addition, there is evidence that catecholaminergic pathways are also involved in this type of ataxias, supported by loss of neurons of these neurotransmitters in the CSF of patients with heredodegenerative ataxias.4 In our patient, amantadine hydrochloride (100 mg twice daily) abolished postural tremor and ataxia completely over a 3 month period. Subsequently, the treatment was discontinued, which resulted in relapse of the tremor and ataxia. He was rechallenged to amanta- dine, which progressively offered him the same clinical improvement as in the past 3 months. After 3 years the treatment was dis- continued without any sign of relapse. Although this finding needs confirmation, amantadine treatment could form a new approach such as treatment of patients with toluene induced tremor and ataxia. Intracta- ble cases would then justify a more aggressive approach such as ventromedial thala- lomyotomy.

Early diagnosis of subependymal giant cell astrocytoma in children with tuberous sclerosis

Nabbout et al have attempted to identify the risk factors for the progression of subepen- dymal nodules into giant cell astrocytomas (SEGAs) in tuberous sclerosis complex. In an attempt to develop screening strategies that avoid iatrogenic morbidity, patient inconvenience, and excess cost, it is essential that the natural history of these lesions in the general population of patients with tuberous sclerosis complex be understood well.

We think that there are two problems with this study that should make the physician cau- tious about an astute identification of factors identified by Nabbout et al as a basis for a screening programme. The first is that this study was performed in a population that had been referred to a tertiary medical centre, and then had been further selected by virtue of having had at least 3 years tertiary centre follow up and needing two MR scans of the head. The prevalence of astrocytomas and risk factors, and hence the positive predictive value of any screening tool in a general population of patients with tuberous sclerosis complex is likely to be different from those described in the highly selected group studied in this paper. The second point is that the authors have made a potentially misleading decision to exclude more than half their study sample because they do not have lesions close to the foramen of Monroe. It is not certain that all SEGAs arise from lesions close to the foramen. They may arise in the upper ventricles. Furthermore, the late presentation of many lesions in the lateral ventricles has, in the past, precluded accurate determination of their point of origin. This study selects 24 of 60 patients who had met their entry criteria but does not state how many of the excluded 36 patients had no subependymal nodules or nodules that were not “near the foramen of Monroe”. Inclusion of lesions is given for what constitutes proximity to the foramen. The authors were apparently not blinded at the point when they selected which patients had lesions near to the foramen and therefore there is an obvious issue of potential selection bias.

The consequence of excluding these pa- tients may have been that false significance is given to their results. The data they present are fragile. Consider, for example, the conse- quence of introducing from these 36 non- selected patients a hypothetical single case that had a family history of tuberous sclerosis complex and a subependymal nodule which enhanced with gadolinium. The effect would be to remove the stated statistical significance (using Fisher’s exact test) between the outcome and both of these explanatory variables.

Identifying the risk factors that can tell us which subependymal lesions will become invasive is important. As subependymal nodules and SEGAs seem to be histologically identical it is unlikely that pathologists will provide an answer. The study of Nabbout et al tests some new hypotheses but excludes others. However, the definitive answer will not be provided by studies of selected samples but by follow up of a popula- tion based sample of patients with tuberous sclerosis complex. In the absence of such a study we would be cautious about implementing screening programmes based on what may be misleading criteria.

Atypical form of amyotrophic lateral sclerosis: a new term to define a previously well known form of ALS

We read with interest the article by Sasaki et al concerning the atypical form of amyoto-rophic lateral sclerosis (ALS). The pattern of muscular atrophy in these patients differed from that of typical ALS in that severe muscle involvement was confined to the upper limbs, predominantly the proximal portion and shoulder girdle, sparing the face and the legs until late in the disease’s course or until the terminal stage.

Over the past few years, we have noticed a growing interest in the renaming of this clini- cal form of ALS, which has its origins and predomination in the proximal muscles and upper limbs and little or no effect of either a bulbar nature or in the lower limbs.

Thus Hu et al coined the term flail arm syndrome, to describe a subgroup of patients affected by ALS that predominantly showed signs of lower motor neuron disease in the upper limbs, without significant functional involvement of other regions on clinical presentation. This subgroup of patients was clini- cally characterised by the display of progress- ively atrophy and weakness affecting the proximal muscles in the upper limb muscles in a more or less symmetric manner.

Recently, along these lines, Katz et al described a series of patients affected by an adult onset motor neuron disorder restricted to the upper limbs, with severe proximal and varying degrees of distal involvement, calling it amyotrophic brachial diplegia syndrome.

Other terms used in the past to refer to this form of ALS have been danging arm syndrome, suspended form, orangutan sign, dead arm sign, bibrachial palsy, rizomelic amyotrophy, and the idea of naming it a distinctive phenotype of a neurogenic
“man-in-the-barrel” syndrome has even been suggested. Probably all these terms used to define this variation of ALS are synonyms for an older, well-known condition, the scapulohumeral form, or the chronic anterior poliomyelitis reported by Volkmann in 1886 and known in Franco-German literature as Vulpin-Bernhardt’s form of ALS. At certain stages of the disease’s clinical course, it is probably difficult to differentiate it from progressive muscular atrophy (PMA). Some authors have said that PMA with late onset scapulohumeral distribution (over 45 years of age) generally leads to ALS as a matter of course.

Sovani and associates, on the contrary, have suggested that if the amyotropic lateral sclerosis behaves differently from typical ALS. The comparative study with the rest of the ALS group supplied important clinical findings, such as little or no functional impairment of the bulbar muscles or legs. Hsu et al also made four important statistical discoveries. (1) The prevalence of this form of ALS constituted 10% of the ALS group as a whole (p = 0.05). (2) The age of onset of this form was similar to the rest of ALS. (3) There was a clear predominance among men (the male/female ratio was 9:1 in this form, compared with 1.5:1 in the total ALS group). (4) There was a 1.5:1 survival rate (a median survival of 57 months compared with 39 months in the ALS group).

Some of these patients have a long ALS clinical course, in that they usually preserve ambulatory ability, albeit with gait disorders, for more than 5 years after the onset of symptoms.

On a personal level, we also note two findings characteristic of these patients. In the initial stages of the illness, there is no effect on the diaphragm and the respiratory muscle failure occurs much later than in the typical form of ALS. This can be seen in the follow-up of the results obtained in the respiratory function tests (FVC, PImax, and PEmax).

We do not know the reason for either the characteristic distribution of weakness or muscle atrophy. A meticulous study shows that there is an atrophy of the deltoides (especially in the pars spinata) and a loss of strength in the external rotation of the shoulder (infraespinatus, supraespinatus, and teres minor). As a consequence, the upper limbs adopt a characteristic position, with the shoulders slumped, and the arms, forearms, and hands in pronation.

The atrophy and weakness of the infraespinatus and the supraespinatus, that act as an active ligament in scapulohumeral articulation, would explain the presence of subluxation of the subscapular joints in these patients.

Finally, we are in complete agreement that the absence of sensory changes, positive corneal reflex and ALS can cause difficulty in diagnosis. The problem lies in the fact that cervical spondylosis is a common condition. It is found in 83.5% of men and 80.7% of women over the age of 55. The faster progressive deterioration of the symptoms, the appearance of bulbar signs, and the absence of sensory symptoms and signs would favour the diagnosis of ALS.

Correspondence to: Correspondence to: Dr Josep Gmez, Servicio de Neurologia, Hospital Geral, Universitat Val d’Hebron, Passeig Val d’Hebron 119–135, 08035 Barcelona, Spain. email: 12784jg@ccom.es

Sasaki replies: We thank Gmez et al for their interest in our article concerning the atypical form of amyotrophic lateral sclerosis (ALS).

Over many years, several researchers have recognised this peculiar distribution of muscle atrophy in clinical practice. The clinical manifestations consist of the muscular atrophy confined to the foregirdle and the arms (proximally dominant), absence of deep tendon reflex in the legs, almost normal deep tendon reflex in the legs, and subluxation of the shoulder joints. Some patients progress to bulbar involvement. As Gmez et al cite, many terms have been coined to describe this peculiar pattern of the muscular atrophy such as dangling arm, orang utan sign, dead arm syndrome, amyotrophic brachial diplegia syndrome, bibrachial palsy and man-in-the-barrel syndrome. Some researchers classified into a category of motor neuron disease (ALS or spinal progressive muscular atrophy). However, others could not exclude the possible cause of cervical diseases such as associated motor loss in the upper extremity. In fact, these patients had cervical abnormalities such as cervical spondylosis: an exacerbation of posterior longitudinal ligament discolored by cervical radiography, MRI, or myelography. By contrast with clinical awareness of this peculiar pattern of muscular atrophy, no pathological confirmation had been made until we first reported necropsy cases in our articles.1, 2 Now, these patients with their peculiar pattern of muscular atrophy are considered to be ALS or a subtype of ALS. In my private opinion, “dangling arms syndrome” or “dead arm sign” seems to be the most suitable term depicting this type of motor neuron disease.

I agree with Hu et al reporting four important statistical discoveries in this form of ALS: the prevalence percentage of 10% of the whole ALS group, the similar age onset to the rest of ALS, a predominance among men (the male/female ratio was 1.5:1 in our study), and a longer median survival. It is clinically important to give wider publicity to the existence of this atypical form of ALS to avoid unnecessary surgical intervention for cervical abnormalities.

JOSEP GMEZ CARLOS CERVERA AGUSTIN CODINA Servicio de Neurología, Hospital Geral, Universitat Vall d’Hebron, Passeig Vall d’Hebron 119–135, 08035 Barcelona, Spain.

SHOICHI SASAKI Department of Neurology, Neurological Institute, Tokyo Women’s Institute, Tokyo Women’s Medical College, 8-1 Kamadacho, Shinjuku-ku, Tokyo 162-8666, Japan

BUNGO OKUDA HISAO TACHIBANA Division of Neurology, Fifth Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan

Isolated dysarthria

We read with interest the article by Urban et al. Using transcranial magnetic stimulation, the authors demonstrated electrophysiological evidence for a central monoparesis of the tongue in patients with isolated dysarthria from stroke.1 As in their patients transcranial magnetic stimulation induced absent or delayed corticofugal responses at the tongue, the authors ascribed isolated dysarthria to interruption of the corticobulbar pathways.2–4 We read with interest the article by Urban et al on March 13, 2022 by guest. Protected by copyright.http://jnnp.bmj.com/ J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.68.1.103 on 1 January 2000. Downloaded from http://jnnp.bmj.com/ on March 13, 2022 by guest. Protected by copyright.
Huntington’s disease. Hanajima et al report that intracortical inhibition to extracortical lesions is reduced in Huntington’s disease. The discrepancies between the two studies must be considered when interpreting the results of studies on Huntington’s disease. We agree with the authors that the discrepancies between the two studies must be considered when interpreting the results of studies on Huntington’s disease.

Motor cortical excitability in Huntington’s disease

We read with great interest the paper of Hanajima et al reporting that intracortical inhibition of the motor cortex is normal in patients with chorea of various origins. At variance with the results we previously found a reduced intracortical inhibition in a group of patients with genetically confirmed Huntington’s disease. Hanajima et al suggest that the discrepancies between the two studies might be due to differences in patient selection as they included patients with early stage Huntington’s disease to “study the pathophysiology of chorea unaffected by other disorders movement.” They postulated that our cases, because of the reported correlation with a dyskinetic rating scale, had a more advanced stage of the disease possibly with coexisting dystonia or rigidity. These assertions deserve some comments.

The mean disease duration of our nine patients with Huntington’s disease was 6.2 (4.1) years which is actually shorter than the duration of the six patients reported by Hanajima et al (8.3 (5.9) years). Most of our patients could be considered in an early stage of the disease, the Unified Huntington’s disease rating scale, and none presented dystonia, rigidity, or any other additional motor disorder. In this regard, however, it should be pointed out that bradykinesia is often associated with chorea in patients with Huntington’s disease 1 and may even precede the appearance of choreic dyskinesias."Chorea itself is often reduced in the more advanced Huntington’s disease stages." It is unlikely, therefore, that any phenophysiologic approach can test purely chorea in the early Huntington’s disease stages.

In addition, different mechanisms are involved in Huntington’s disease and other diseases as suggested by the lack of impairment of somatosensory evoked responses and long latency stretch reflexes in the second. 2 We were not really surprised at the results of Hanajima et al as we do share their opinion that patients with Huntington’s disease may be characterised by large individual differences in the involvement of motor cortical areas. Actually, three patients in our study showed an amount of intracortical inhibition within the confidence limits of the control population. We also think that the impairment of intracortical inhibition is likely to differ during different stages of the disease as that of the patients of Abbruzzese et al, if studied with our method. We also consider that the methodological differences are very important in paired magnetic stimulation. The results strongly depend on the intensities of both a conditioning and a test stimulus. Especially, the intensity of the conditioning stimulus before we confirmed inhibition in studies of patients. 3 We used an intensity of 5% less than the active threshold as a conditioning stimulus in our study of chorea. 4 We did not need to change the intensity of the conditioning stimulus because we always obtained a normal inhibitory effect and superimpose on the intracortical inhibition. This makes the interpretation difficult. Was the intensity of 80% of the resting threshold the active threshold in their patients? In our experience, 80% of the resting threshold was sometimes above the active threshold. These factors must be considered in interpreting the results of paired magnetic stimulation.

Such a methodological problem is inherent in human studies because we have no direct way of detecting the threshold of the motor cortex. Our two results must be true. We may have two completely different interpretations of these results. (1) The intracortical inhibition is normal in Huntington’s disease. Abbruzzese et al showed the reduced inhibition because they used a high intensity conditioning stimulus with the degree of the
intracortical inhibition is often decreased even in normal subjects. The 80% of the threshold for relaxed muscles must correspond to different values relative to the threshold for active muscles in patients that from in normal subjects. (2) The intracortical inhibition is disturbed in Huntington’s disease. This slight abnormality could be detected with their method but not with ours because their method has better sensitivity in detecting an abnormality than ours. Which ever is true, the intracortical inhibition must be normal or slightly disturbed in Huntington’s disease.

R HANAJIMA
Y UGAWA
Department of Neurology, Division of Neuroscience,
Chiba University School of Medicine, Chiba, Japan
7–3–1 Hongo, Bunkyo-ku, Tokyo 113–8655, Japan

Critical closing pressure: a valid concept?

Czosnyka et al. recently published a study investigating the clinical significance of critical closing pressure (CCP) estimates in patients with head injury. They seek problems both with the theoretical foundation of their CCP concept and with the interpretation of their results.

Firstly, the physiological meaning of both formulae of CCP presented (CCP1 and CCP2, respectively) is questionable. The implication of both presented equations is that the instantaneous value of cerebral blood flow velocity (FV(t)) at a given moment is equal to arterial blood pressure at the given time (ABP(t)) minus CCP divided by cerebrovascular resistance (CVR): FV(t) = (ABP(t)−CCP)/CVR

(1)

At the time of systolic and diastolic pressure peaks (ABPs, ABPd), respectively, it follows that systolic and diastolic FVs (FVd, FVd) should equal to (ABPs−CCP)/CVR and (ABPd−CCP)/CVR, respectively. However, it is well known that the vascular resistance valid for the static pressure/flow connection (CVR0, concerning mean pressures and flows) is different from and is in general much higher than resistance determining dynamic pressure/flow relations (CVR1) as in the case of pulsatile flows.

Therefore, equation 1 cannot be applied to describe dynamic flow. This can best be illustrated using the frequency domain approach (FV=mean pressure; FV=mean flow velocity; A1=amplitude of the pulsatile pressure wave; F1=amplitude of the pulsatile flow wave).

FV=(ABP−CCP)/CVR

(2)

F1=A1/CVR

(3)

Inserting equations 2 and 3 into the frequency domain equation for CCP2 of the authors:

CCP2=ABP−A1/F1×FV

(4)

leads to

CCP2=ABP−CVR1/CVR0×(ABP−CCP)=ABP−CVR1/CVR0×CVR1/CVR0=CCP1

(5)

However, CCP1 is only in the case of CVR1=CVR0 equal to CCP. Under the more realistic assumption that CVR1 is equal to about half of CVR0 it follows for CCP2:

CCP2=0.5ABP+0.5CCP

With decreasing CVR1/CVR0 ratios, CCP2 becomes more and more dependent on ABP and independent of CCP. In any case, without exact knowledge of the CVR1/CVR0 ratio, equation 4 is useless for a valid CCP calculation.

The second criticism concerns the correlation of the calculated FVs with mean ABP found by the authors (r=0.5; p<0.05). According to the original idea of Burton,1 CCP represents a certain mean ABP value below which small vessels begin to collapse. CCP should, therefore, be a constant value independent of the actual ABP. On the other hand, this significant correlation can be explained by our equation 5, again indicating the missing physiological basis of the CCP concept of the authors.

Thirdly, it seems doubtful that CCP could be estimated using pressure and flow values from ABP ranges clearly above CCP and flow values clearly above zero flow, respectively. As long as small vessels do not collapse (ABP−CCP) it is not possible to decide whether their actual wall tension is determined more by transmural pressure or by active vasocostriction. However, the relative contribution of both effects is critical for the limit of CCP.

Finally, I would be interested in the authors’ explanation of negative diastolic flow values as seen in Doppler spectra of arteries with a high vascular resistance (peripheral arteries, middle cerebral artery during strong hypocapnia). In the case of ABP<CCP and a small vessel collapse according to the model of the authors, CVR should increase towards 100% of FVd towards zero (equation 1). Negative flow values could, conversely, not occur.

I suggest that the relation between pulsatile pressure and flow should be better described using the concept of different static and dynamic resistances (CVR0 and CVR1). The driving pressure of the mean FV is more accurately given by cerebral perfusion pressure (CPP=ABP−CCP) than by ABP−CCP. Therefore, equation 2 changes to

FV=(ABP−ICP)/CVR0

(6)

and equation 5 to

CCP2=ABP−1×(CVR1/CVR0)×CPP−ICP

(7)

Equation 7 explains well the positive correlations found between CCP2 and ABP and between CCP2 and ICP, respectively, without assuming a connection between CCP2 and Burton’s concept of “critical closing pressure”.1

Rolf R Diehl
Department of Neurology, Krupp Hospital, Alfried-Krupp-Strasse, 45117 Essen, Germany

Critical closing pressure in cerebrovascular circulation

Crozisky et al. reported the mathematical formulation taken for calculations:

CCP1=ABP−ABPpp×FVpp/ABP=FV=FVpp

where (ABP and FV are mean values of arterial pressure and MCA flow velocity, ABPpp and FVpp are peak to peak amplitudes). A graphical interpretation of this formula has been given in figure 1. CCP should be a constant value independent of the actual ABP. In any case, this significant correlation can be explained by our equation 5, again indicating the missing physiological basis of the CCP concept of the authors.

Critical closing pressure in cerebrovascular circulation

Crozisky et al. reported the mathematical formulation taken for calculations:

CCP1=ABP−ABPpp×FVpp/ABP=FV=FVpp

where (ABP and FV are mean values of arterial pressure and MCA flow velocity, ABPpp and FVpp are peak to peak amplitudes). A graphical interpretation of this formula has been given in figure 1. CCP should be a constant value independent of the actual ABP. In any case, this significant correlation can be explained by our equation 5, again indicating the missing physiological basis of the CCP concept of the authors.

Critical closing pressure in cerebrovascular circulation

Crozisky et al. reported the mathematical formulation taken for calculations:

CCP1=ABP−ABPpp×FVpp/ABP=FV=FVpp

where (ABP and FV are mean values of arterial pressure and MCA flow velocity, ABPpp and FVpp are peak to peak amplitudes). A graphical interpretation of this formula has been given in figure 1. CCP should be a constant value independent of the actual ABP. In any case, this significant correlation can be explained by our equation 5, again indicating the missing physiological basis of the CCP concept of the authors.

risks. How risky—we can see from Dieth’s letter. Cerebrovascular resistance certainly never increases to infinity, only after death.

We fully agree with the considerations regarding equations (6) and (7). CCP can be understood as a combination of ABP and ICP with coefficients describing properties of the cerebrovascular bed. Whether it simplifies our knowledge—we personally find it doubtful.

Finally, we are truly obliged to Dieth for an opportunity to have this interesting discussion.

MAREK CZOSNYKA
PIOTR SMIELEWSKI
STEFAN PIECHNIK
Academic Neurosurgical Unit, Box 167, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK

Correspondence to: Dr Marek Czosnyka
email MC144@MEDSCHL.CAM.AC.UK

High frequency stimulation of the subthalamic nucleus and levodopa induced dyskinesias in Parkinson’s disease

Reduction in the neuronal activity of the subthalamic nucleus leading to diminished excitation of the globus pallidum internum is associated with chorea-ballism in monkeys. Levodopa induced dyskinesias are currently thought to share a similar pathophysiology but recent findings also suggest that abnormalities of neuronal firing in the globus pallidum internum are associated with the production of dyskinesias only when reduced in levodopa intake. Moreover, Benabid et al. who pioneered this technique, considered the induction of dyskinesias by high frequency stimulation of the subthalamic nucleus as a good indicator of a very positive response. The information delivered to the thalamus from the globus pallidum internum are placed dorsocaudally to the subthalamic nucleus and could be blocked by high frequency stimulation. When the recording electrode goes into a region caudally to the subthalamic nucleus in sagittal planes 11 mm or less, neuronal activity is characterised by action potentials of large amplitudes (0.5–1 nV) with low background activity, tonically firing neurons, and absent sensorimotor responses (“driving”). All these characteristics seemed to be present in the patient discussed here. Neuronal activity in the sensorimotor region of the subthalamic nucleus is different from the above but on occasions the distinction may not be easy. Accordingly, it is very important to document in more detail the findings in the case of Figueiras-Mendez et al. Ideally we would like to see the trajectory and length of the different recording tracks, the effects of microstimulation, and the postsurgery MRI with measurement of current density at the tip of the electrodes. If, as assumed, the subthalamic nucleus was indeed correctly targeted in this patient, the pathophysiology of the basal ganglia will need to be revisited.

Correspondence to: Correspondence to: Professor J A Obeso, 30 Cizur Artea, Cizur Mayor, 31180 Navarra, Spain.

J A OBESO
G LINAZASORO
E RAMOS
Centro de Neurologia y Neuropsicologia Funcional, Clinica Quiron, San Sebastian, Spain

J A OBESO
M C RODRIGUEZ-OROZ
Hospitan, Tenerife, Spain

Hospital de Navarra, Pamplona, Spain

Correspondence to: Correspondence to: Professor J A Obeso, 30 Cizur Artea, Cizur Mayor, 31180 Navarra, Spain.

Figueiras-Mendez et al reply

We thank Obeso et al for their comments regarding our recent report. In summary, they raised some interesting points which need further clarification.

Recognition of the electrical activity of the subthalamic nucleus as a discriminator of the dyskinesia-inducing potential. This is the role of the subthalamic nucleus. All this heterogeneity may have relevance for the study of the thalamus from the globus pallidum internum. Finally, we are truly obliged to Dieth for an opportunity to have this interesting discussion.

low background activity found in our recordings is only due to the better signal-to-noise ratio of the electrodes used. “Good recording electrodes” depend on many variables such as tip size, tip profile, insulation material, impedance, manufacture, etc. "The signal-to-noise ratio of the cells in question has the same ratio as the subthalamic nucleus cell shown by Hutchinson et al."

(b) In our report, cells discharges tonically, but in our later experiments, cells fired phasically well differentiated by a profound burst activity and identified by statistical means (autocorrelation and interval histograms).

(c) Motor responses and tremogenic cells in line with the above mentioned criteria were found along the trajectory of the electrode. Unfortunately, this point was not mentioned in the paper. It would surely have changed the opinion of Obeso et al.

The felled patient, a total of eight neurons were recognised as belonging to the subthalamic nucleus in the right hemisphere, with a mean frequency of 74 Hz (range 38–109 Hz). Four of them responded to the passive voluntary movements and one was considered tremogenic. The stimulating electrode was placed in laterality 11. One track was performed. In the left hemisphere, two tracks were performed. One track was identified by the poor responding activity of the cells recorded. In the other track, nine neurons were recorded in the subthalamic nucleus (always following the above mentioned criteria) with a mean of 69 Hz (range 17–98 Hz). Five cells responded to passive and/or voluntary movements. One of them was also positive to tremor. The stimulating electrode was placed in laterality 12. The stimulating electrode stimulating frequency was always tested in the surgery before cementing, considering the stimulating electrode was placed in laterality 12.

The activity of the cells recorded. In the other cases, the stimulating electrode was placed in laterality 11.

Considering the mentioned patient, a total of eight neurons were recognised as belonging to the subthalamic nucleus in the right hemisphere, with a mean frequency of 74 Hz (range 38–109 Hz). Four of them responded to the passive voluntary movements and one was considered tremogenic. The stimulating electrode was placed in laterality 11. One track was performed. In the left hemisphere, two tracks were performed. One track was identified by the poor responding activity of the cells recorded. In the other track, nine neurons were recorded in the subthalamic nucleus (always following the above mentioned criteria) with a mean of 69 Hz (range 17–98 Hz). Five cells responded to passive and/or voluntary movements. One of them was also positive to tremor. The stimulating electrode was placed in laterality 12. The stimulating electrode stimulating frequency was always tested in the surgery before cementing and interval histograms).

Nitrergic oxide in acute ischaemic stroke

The pivotal role of nitric oxide (NO) in cerebral ischaemia has been elegantly highlighted in the recent editorial by O’Mahony and Kendall. Although studies of neuroprotective agents have been largely disappointing, pharmacological manipulation of NO may represent a novel means of protecting the brain from ischaemic insult. One area not discussed in the recent paper is neuroprotective effect of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors or “statins” in cerebral ischaemia. Preliminary studies have shown that statins modulate brain nitrergic synapic activity in a neuroprotective manner. Data from a murine model of ischaemic stroke demonstrate that prophylactic statin therapy reduces infarct size by about 30%, and improves neurological outcome in normocholesterolaemic animals. In this investigation, statin therapy directly upregulated endothelial NO in the brain without altering expression of neuronal NO. Recent findings also suggest that statin therapy enhances the efficacies of inducible NO. Lovastain has been shown to inhibit cytokine mediated upregulation of inducible NO and production of NO in rat astrocytes and macrophages, and this inhibition may represent a novel strategy for suppressing inflammatory responses that accompany ischaemia. Most interestingly, these preliminary findings suggest that statin therapy may modify the “friendly face” of the other effects of NO in a synergistically neuroprotective manner. These and other vascular effects of statins in cerebral ischaemia are potentially of great importance in human neuroprotection and ongoing studies such as the The Prospective Study of Pravastatin in the Elderly at Risk (PROSPER) study will help clarify their role in human cerebral vasculardisease.

CARL J VAUGHAN
Division of Cardiology, Department of Medicine, Will Medical College of Cornell University, The New York Presbyterian Hospital, Starr 4, 525 E 68th Street, New York, New York 10021, USA
NORMAN DELANTY
Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
Correspondence to: Dr Carl Vaughan
Email: evaughan@mds.med.cornell.edu

BOOK REVIEWS

That neuroimmunology has come of age is demonstrated by the profusion of volumes published in the subject in recent years. This volume focuses on the central nervous system, and aims to satisfy the curiosity of both the clinician faced with a diagnostic conundrum and the experimental immunologist inquiring into the clinical relevance of his findings. At first sight it seems improbable that both of these goals might be achieved in one volume; this book however, succeeds admirably in what it sets out to do, as much as a result of its literary style as its content.

The intrusive authorial voice fell into disfavour in literary circles around the turn of the century because it was thought that calling attention to the act of narrating might detract from realistic illusion, so reducing the emotional intensity of what was being represented. It is a device much favoured by postmodern writers, who expose the nature of fictional constructs. The intrusive medical author never dropped out of fashion, although in these days of evidence based prejudice, authorial omniscience might be considered suspect. The authors of this volume are intrusive in a guiding conversational manner that makes this book by far the most readable of the neuroimmunological texts.

The book opens with a highly accessible chapter on immunity and the immune system. There follows a chapter that integrates the neurobiology of multiple sclerosis with contemporary issues of aetiology, cell injury, and repair. Next, a chapter on inflammatory demyelinating disease and the syndromes of isolated demyelination, acute disseminated encephalomyelitis and allied conditions, and some of the syndromes of demyelination that are now accepted as part of the range of multiple sclerosis. The chapters on demyelinating disease are drawn to a close by a discussion of existing and experimental therapies for multiple sclerosis.

The book concludes with chapters on para-neoplastic disorders of the CNS, stiff man syndrome, neurological complications of...
connective tissue disorders, organ specific autoimmunity, sarcoidosis, and cerebral vasculitis. Each chapter is an appropriate length and well referenced; the wood is always clearly visible between the trees. This book is sufficiently readable and small to be recommended as holiday reading. Its only drawback is that in making erudition so readily available, one risks being outshined yet again by one's registrar.

JON SUSSMAN

As Alzheimer's disease becomes of increasing importance to society, basic science research in this field needs to provide the building blocks for both therapeutic interventions and accurate diagnosis. This publication is a collection of papers presented at an international Alzheimer's disease research meeting in Leipzig in 1997. This conference aimed to bring together both clinical and basic science disciplines and this is reflected in the papers selected for this book. There are 31 papers included, covering topics from early symptomatology and cognitive features to immunology and theoretical neuronal treatment strategies. The contributors to this book are some of the most authoritative in their field, predominantly based in Europe.

Covering all aspects of Alzheimer's disease research from the correct diagnosis to basic science approaches of treatment is ambitious for such a compact book (315 pages), and although the editors succeed in collecting an interesting series of papers around these themes, they make no claims to be comprehensive in their scope. The papers included range from final research reports to reviews of the current literature. The review papers are generally excellent, concise, clear, well referenced, and illustrated—for example, there are excellent reviews of Alzheimer's disease with vascular pathology (Pasquier et al), and Lewy body disease (Moore (McKeith et al), great updates on neuropathology (Jellinger and Bancher, Braak et al), and several worthy reviews of treatment strategies for Alzheimer's disease including NSAIDS (Möller), antioxidants, and radical scavengers (Röser et al). I found the review by Reisberg et al on oncogenic models in the understanding of the management of Alzheimer's disease particularly interesting. However, the papers of original research are of more limited interest to the general reader. Although, as mentioned, the quality of illustrations is good, there is some variability in the definition of abbreviations and occasional lapses into other European languages.

Certainly, I think this book would be of value for investigators interested in the neuropathology, immunopathology, and molecular biology of Alzheimer's disease. It would make an excellent addition to libraries as a reference text for many researchers of varied interests.

CLARE GALTON

ALASDAIR COLES

Organ transplantation, once medical exotica, is now almost routine. In the United Kingdom each year are performed cadaveric organ transplants of about 1800 kidneys (in addition to 160 live kidney donors), 700 livers, and 450 heart/lungs (UK Transplant Support Service). As basic surgical techniques were established at the beginning of the century in canine models. Transplantation of these experiments to humans awaited effective and safe immunosuppression. Until the 1960s, the only forms of immunosuppression were radiation (total body or total lymphoid) and non-selective chemical reagents (benzene and toluene). Then the antiproliferative drug 6-mercaptopurine (6-MP) was introduced, shortly followed by a derivative, azathioprine, with improved oral bioavailability. Combined with corticosteroids, these allowed the first human solid organ transplants to be performed: in 1963 the first lung transplant in Mississippi and liver transplant in Colorado. Then in 1967 Christian Barnard captured the world's imagination with the first heart transplant. His technique has been modified slightly since, but increasing success of organ transplantation rests mainly on improved immunosuppression with drugs that selectively suppress lymphocytes by inhibiting lymphokinene generation (cyclosporin A, tacrolimus), renal transduction (sirolimus, lefunomide), or differentiation (15-deoxyspergualin) pathways. As a result, over the last 10 years in the United Kingdom, the 1-year survival of grafts has improved from 80% to 90% (kidney), 55% to 75% (liver), and 70% to 90% (heart/lung).

Wijdicks estimates that 10% of transplant patients have a significant neurological complication, the most common being neurotoxicity of immunosuppressive drugs, seizures, and failure to awaken. Yet this is the first text devoted to the neurological aspects of organ transplantation. It is therefore a timely subject for another title in the excellent Blue Books Of Practical Neurology series. Twenty authors contribute (one Dutch, one Swiss, the rest American) to four chapters on the transplant procedures themselves followed by 10 chapters on neurological complications of transplantation including failure to awaken, and psychiatric, neuromuscular and demyelinating complications. Especially useful to the neurologist without much experience of transplantation are the comprehensive chapters on immunosuppressive drugs and the opportunistic infections associated with them (most commonly *Listeria monocytogenes*, *Aspergillus fumigatus*, and *Crypococcus neoformans*). The peripheral nerve and plexus injuries associated with transplantation are painstakingly described; astonishingly a significant ulnar neuropathy occurs in up to 40% of kidney transplants. The Cincinnati Transplant Tumour Registry has recorded information on 10 813 cancers arising de novo in organ allograft recipients worldwide and here are presented the data in the 300 of these with CNS involvement. This is one for the shelves of any neurologist involved in organ transplantation.

Volume nine of the Current Issues in Neurodegenerative Disease series examines the interplay between cerebrovascular disease and dementia, particularly Alzheimer's disease. Two hundred pages of what are essentially 20 brief review articles comprise this text, sadly without any illustrations. Perhaps the introduction to each chapter there is a certain sense of deja vu, although on the positive side each contribution is extremely well referenced. The book is divided into five sections covering the historical concepts of vascular and Alzheimer's dementias, the arguments for a pure vascular dementia, the role of Alzheimer's disease in the genesis of dementia after stroke, the complications which make no claims to being comprehensive in their scope. This publication is a series of essays on transplants. Each chapter is an appropriate length and well referenced; the wood is always clearly visible between the trees. This book is sufficiently readable and small to be recommended as holiday reading. Its only drawback is that in making erudition so readily available, one risks being outshined yet again by one's registrar.

The books is divided into five sections covering the historical concepts of vascular and Alzheimer's dementias, the arguments for a pure vascular dementia, the role of Alzheimer's disease in the genesis of dementia after stroke, the complications which make no claims to being comprehensive in their scope. This publication is a series of essays on transplants. Each chapter is an appropriate length and well referenced; the wood is always clearly visible between the trees. This book is sufficiently readable and small to be recommended as holiday reading. Its only drawback is that in making erudition so readily available, one risks being outshined yet again by one's registrar.

Volume nine of the Current Issues in Neurodegenerative Disease series examines the interplay between cerebrovascular disease and dementia, particularly Alzheimer's disease. Two hundred pages of what are essentially 20 brief review articles comprise this text, sadly without any illustrations. Perhaps the introduction to each chapter there is a certain sense of deja vu, although on the positive side each contribution is extremely well referenced. The book is divided into five sections covering the historical concepts of vascular and Alzheimer's dementias, the arguments for a pure vascular dementia, the role of Alzheimer's disease in the genesis of dementia after stroke, the complications which make no claims to being comprehensive in their scope. This publication is a series of essays on transplants. Each chapter is an appropriate length and well referenced; the wood is always clearly visible between the trees. This book is sufficiently readable and small to be recommended as holiday reading. Its only drawback is that in making erudition so readily available, one risks being outshined yet again by one's registrar.

Aspergillus fumigatus with them (most commonly *Listeria monocytogenes*, *Aspergillus fumigatus*, and *Crypococcus neoformans*). The peripheral nerve and plexus injuries associated with transplantation are painstakingly described; astonishingly a significant ulnar neuropathy occurs in up to 40% of kidney transplants. The Cincinnati Transplant Tumour Registry has recorded information on 10 813 cancers arising de novo in organ allograft recipients worldwide and here are presented the data in the 300 of these with CNS involvement. This is one for the shelves of any neurologist involved in organ transplantation.

PETER MARTIN

Evolutionary biologists would probably tell us that the enchantment of stories is due to survival having been dependent on the passing of oral culture from one generation to the next. Information put in narrative form not only delights, but is easily recalled. Stories also construct meaning by interweaving observation, inference, motive, and consequence in a fashion that informs future action. Our experience of the world is constructed around such narratives. They define us as individuals, family members, professionals, and cultural groups.

This book is a series of essays on psychotherapy, psychiatry, and also medicine that see in the awareness and use of narrative in clinical practice as a construct that can both

The Maudsley prescribing guidelines are produced each year for a local readership, but this, the fifth edition, is the first to go public. The authors and principal contributors, a mixture of pharmacists and psychiatrists with an interest and background in clinical psychopharmacology, are to be complimented on producing a guide of manageable size and ready accessibility. The book is divided into sections dealing with the treatment of broad groups of clinical disorders—for example, psychosis—special patient populations—for example, elderly people, with further sections on the management of emergencies and the adverse effects of psychotropic drugs. Much of the information is laid out in tabular form. It could become an indispensable resource for a busy on call senior house officer (the dimensions would fit comfortably into the pocket of a clinical white coat, were they still to be worn) but more senior clinicians will find plenty of use for it in the clinic. It does not aim at difficult tradition, but provides a useful list of references.

There are a few cavils. The section on treatment of anxiety is skimpy (one and a half pages) compared with the treatment of affective illness (22 pages) or schizophrenia (30 pages). The brevity is only partly explained by the undeveloped state of that particular area of psychopharmacology. Sections on common indications to and contraindications for lumbar puncture and indications for EEG seem to have been displaced from some other primer for busy junior doctors. There is no index.

These quibbles apart, prescribing guidelines can be wholeheartedly recommended.

BRIAN TOONE

Previsiting skills will find this book useful.

SIMON FLEMINGER

In a small accessible and easily digestible volume, the authors address a clinically important field. Faced with slim evidence on which to base clinical recommendations, they acknowledge that their very useful management advice “has often had to be based on practical clinical experience rather than the results of clinical trials or formal research ...” This disclaimer seems to have allowed them to mix evidence and opinion, limit references, and confuse the reader regarding the level of evidence. A pity, as the authors, with special expertise in this important area, have made a good start in putting together different aspects of the care of the woman with epilepsy in a practical book that is of direct interest and relevance to neurologists, obstetricians, general practitioners, midwives, and gynaecologists.

Moving on from the general to the particular, the text, although expansive in parts, glosses over some important points. Examples include (a) which oral vitamin K preparations are considered safe in pregnancy (phytomenadione); (b) differential efficacy of various antiepileptic drugs in different syndromes versus side effect and teratogenicity profile, (c) more information on the limitation of available evidence to support the statement “no monotherapy human abnor-
mality reported” with certain new antiepileptic drugs in pregnancy, (d) the need to consider anticonvulsant monotherapy prevention well before the menopause (and not only with enzyme inducing drugs such as valproate has also been implicated), (e) discussion of differences (and available formulations) between synthetic and natural progesterone, (f) stand of pregnancy when various malformations are detectable on scanning, and (g) time to closure of the neural tube (different from the 21-56 days they qualify as “the most sensitive time of the fetus to the induction of malformations by exogenous agents.”)

Despite these comments (made with an eye on the next edition) I would recommend this book to all those involved in the care of women with epilepsy.

LINA NASHEF

Childhood Epilepsies and Brain Development is the fruit of a symposium held in 1997 to try and bridge the chasm between those working in the clinic or at the bedside and those in the laboratory. Both groups must collaborate and communicate to improve the management of children (and their families) with epilepsy.

The book is essentially a collection of monographs of heterogeneous content and style and the result, perhaps not surprisingly, is that some of the component parts are better than the sum. The clinically oriented section will clearly be of particular interest to those who treat children and their families. The chapters on infantile spasms and Lennox-Gastaut syndrome are informative and provide some new but speculative insights into the pathogenesis of spasms. However, it was surprising that severe myoclonic epilepsy of infancy did not merit a spe-
cific chapter in view of the unique electroclinical evolution and natural history of this syndrome. The crucial issue of the cognitive and behavioural sequelae of early and frequent seizures on the immature brain, which is probably of most concern to both clinicians and families, is succinctly addressed in two chapters—although a clear and consistent approach occurs—before the clinician and basic scientists are erudite and fascinating but at times are barely comprehensible. Further work is needed, including answering the funda-
mental question—why does the first sei-
zure occur—before the clinician and basic scientist are able to talk the same language—
for the benefit of the patient with epilepsy.

The concept of Childhood Epilepsies and Brain Development is innovative and com-
mendable and although some of the mono-
graphs are interesting and informative, the overall impression is that the individual parts (the chapters) are better than the whole (the book). The lack of an index is a strange omission, perhaps indicating a prolonged editorial atypical absence, and although this militates against it becoming a well-thumbed reference text, the book is an erudite addition to the mossy fibre-like sprouting of the epileptologi-
cal literature.

RICHARD E APPLETON

Difficult clinical problems in psychiatry come in many forms. Diagnosis often causes difficulty, particularly in cases which demand some assessment of the role of physical illness in symptom formation. Perhaps for most psy-
chiatrists practising in community settings risk assessment comes high on their list of concerns.

Unsurprisingly, given the psychopharma-
cological expertise of the editors, this book is particularly interested in treatment resis-
tance. The first 6 chapters give excellent reviews of the management of clinically relevant topics—for example, refractory schizophrenia or the difficult panic patient. The emphasis is very much on psychophar-
macological management.

The second half of the book is more of a mixed bag, both in terms of the areas covered and the quality of the material. Some chapters covering all aspects of the assessment and management of anorexia nervosa and chronic fatigue are followed by a thorough review of the pharmacological management of substance misuse. Then come two weak chapters on behavioural disturbances in old age and the violent patient in the community. This last chapter will be of particular interest to community psychiatrists, but I would recommend because some aspects of the practical management of violence are missing—for example, a documented risk-
benefit analysis, good failsafe communication, or deciding when to detain. One of the last chapters is a very good account of the management of hyperactivity in childhood, with good practical advice on the use of methylphenidate.

Apart from the chapters on chronic fatigue and the treatment of tardive dyskinesia there is little in this book which is of immediate interest to neurologists. However general psychiatrists wishing to improve their pre-
scribing skills will find this book useful.

SIMON FLEMINGER

...