LETTERS TO THE EDITOR

Postictal psychosis related regional cerebral hyperperfusion

Postictal psychosis is a known complication of complex partial seizure in particular temporal lobe epilepsy. It usually runs a benign and self limiting course. A postictal phenomenon with focal cerebral hypofunction (similar to Todd’s palsy), rather than ongoing seizure activity, has been postulated. Surface EEG is either normal or showing non-specific slow waves. Hence, antipsychotic medications are prescribed instead of antiepileptic drugs. Until recently, the pathogenic mechanisms have remained unknown. In this communication, we report on two patients with postictal psychosis, during which a cerebral SPECT study showed a hyperperfusion signal over the right temporal lobe and contralateral basal ganglia. As hyperperfusion in ictal cerebral SPECT is closely linked to epileptic activities, our findings support a contrary explanation for postictal psychosis.

Prolonged video-EEG telemetry study was performed in patients who underwent presurgical evaluation for epilepsy surgery. Antiepileptic drugs were withdrawn to facilitate seizure recording. A diagnosis of temporal lobe epilepsy was based on analysis of the electroclinical events and, if applicable, postoperative outcome after anterior temporal lobectomy. Psychosis was diagnosed according to the fourth edition of the diagnostics and statistical manual of mental disorders (DSM-IV) criteria of brief psychotic disorders without marked stressor. HMPAO-SPECT was performed during the psychotic period, which ranged from 2–4 days after the last seizure. Interictal cerebral SPECT, brain MRI, and a Wada test were performed as part of presurgical evaluation.

Patient 1 was a 34 year old Chinese woman with complex partial seizures since the age of 18. Her seizure control was suboptimal on a combination of antiepileptic drugs. Brain MRI showed a small hippocampus on the right. Interictal EEG showed bilateral temporal sharp waves and ictal recordings confirmed a right temporal epileptogenic focus. A Wada test confirmed right hippocampal memory dysfunction. Six hours after her last secondary generalised tonic-clonic seizure after video-EEG telemetry, she began to develop emotional lability, talking nonsense, motor restlessness, and auditory hallucination. A cerebral SPECT study was performed at day 4 after her last seizure. Her psychotic features persisted although she was taking antipsychotic medication (pimozide). Cerebral SPECT showed a clear hyperperfusion signal over the right lateral temporal neocortex and contralateral basal ganglion. An interictal cerebral SPECT study was repeated at 4 weeks after postictal psychosis which showed a complete resolution of hyperperfusion signal in the right temporal lobe and basal ganglia. Anterior temporal lobectomy was performed and she became seizure free after surgery.

Patient 2 was a 44 year old man with intractable complex partial seizures since the age of 30. His seizures were intractable to multiple antiepileptic drugs. Brain MRI showed left hippocampal sclerosis. Interictal cerebral SPECT showed a relative hyperperfusion area over the left hemisphere. Interictal surface EEG was non-lateralising but ictal EEG disclosed a right hemispheric onset. On withdrawal of antiepileptic drugs, seven complex partial seizures with secondary generalised tonic clonic seizures were recorded within a period of 72 hours. His usual antiepileptic drugs were then restarted. Thirty hours after his last secondary generalised tonic-clonic seizure, he began to develop emotional lability, talking nonsense, restlessness, auditory hallucination, persecutory delusion, and delusion of superstition. Cerebral SPECT study, performed 2 days later while his psychotic features persisted, showed two relative hyperperfused areas over the right temporal neocortex and contralateral basal ganglion in addition to the original hypoperfused area over the left hemisphere. An antipsychotic agent (thioridazine) was used.
started after the cerebral SPECT. His psychotic symptoms resolved 2 weeks later with full recovery.

Cerebral SPECT performed during the interictal period (IP) and during postictal psychosis (PP) were analysed visually and areas of hyperperfusion were identified. Quantitative data at regions of interest (ROIs) were measured on coronal and axial slices containing basal ganglia (BG), mesial (MT), and lateral (LT) temporal lobe structures. Asymmetry index (ASI) was calculated as (ROI focus−ROI contralateral)/ROI focus+ROI contralateral)×100%. We set an arbitrary change of ASI >100% to be significant. As there were only two patients, statistical testing was not performed.

Both patients showed postictal psychosis and had a regional increase in rCBF over the right temporal neocortex and the left basal ganglia compared with their interictal study (figure). Quantitative analysis for patient 1 showed changes of ASI during IP and PP over right MT was +75% (+6.64476 to -1.65289); over the right LT was +116.7% (1.07927 to 12.55794); and over the left BG was +206.8% (-2.07373 to 2.21574). Quantitative analysis for patient 2 showed changes of ASI during IP and PP over right MT was +3.8% (13.14271 to 12.64158); over right LT was +178.6% (10.49066 to 18.7057); and over left BG was +155.9% (-5.85556 to 3.27522).

Postictal psychosis is a distinct clinical event associated with temporal lobe epilepsy.1 The diagnosis of postictal psychosis requires a close temporal relation between bouts of complex partial seizures and the onset of psychosis. The psychosis usually develops after a clinical period of partial seizures, partial or secondary generalised seizures, or without partial seizures.2 The clinical course of postictal psychosis is usually benign and predictable.1 In our patients, the duration of psychotic disturbances lasted from 10 days to 4 weeks, which is in keeping with the good prognosis. Antipsychotic drugs, such as haloperidol and fluphenazine are usually prescribed.1

The underlying mechanism of postictal psychosis is unknown. Postictal cerebral dysfunction has been postulated as an analogue to Todd’s paralysis after seizure.1 However, the presence of increased rCBF during postictal psychosis, may suggest an alternative explanation as ictal SPECT has been shown to be highly sensitive and specific in demonstrating seizure foci.3

To conclude, our results are contradictory to the hypothesis that postictal psychosis is due to loss of normal brain tissue. We think that these findings are compatible with the hypofunction theory of Todd’s paralyysis in demonstrating seizure foci.

Oncofetal matrix glycoproteins in cerebral arteriovenous malformations and neighbouring vessels

Cerebral arteriovenous malformations (AVMs) are thought to be congenital lesions exhibiting features of either mature vascular walls or embryonal anastomotic plexuses. It is generally assumed that changes in size are dependent on enlargement of the venous compartment, organisation in the setting of microhaemorrhages, and gliosis. However, recent findings are consistent with the hypothesis of ongoing angiogenesis.4

Previous research from our laboratory disclosed that peculiar isoforms of fibronectin (FN) and tenasin (TN) typically occur in fetal and neoplastic tissues.5 These isoforms are a blend of structurally different glycoproteins that result from alternative splicing of the primary transcript and are mainly expressed in the extracellular matrix. Their expression is undetectable in normal adult tissues, with the exception of the vessels in the regenerating endometrium. To gain further insight into the pathobiology of the AVMs the present report sought to ascertain whether these lesions also express oncofetal FN and TN isoforms.

Tissue samples were obtained after neurosurgical excisions of ruptured AVMs. All 10 patients had experienced an intracerebral haemorrhage as the first clinical manifestation of their disease. There was no drug history before bleeding. Control specimens from two right gyri recti and one cerebellar tonsil were obtained, respectively, from operations for ruptured aneurysms of the anterior communicating artery or for Arnold Chiari disease.

Immunohistochemical evaluations were performed on 5 μm thick cryostat sections using a protocol reported previously.6 Owing to the limited amount of available material, only in a few cases was some fresh tissue retained to allow western blots. Distribution of FN and TN isoforms was investigated using three monoclonal antibodies (mAbs) or two Ab fragments, obtained by phage display technology, respectively. These Abs, prepared in our laboratory, were found to work on fresh frozen material. According to the previous characterisations the BC-1 mAb and the TN-11 Ab fragments are specific for isoforms occurring almost exclusively in fetal tissues and in tumours, with the recognised TN isoform being typically associated with anaplastic gliomas (table). Control sections were processed identically to the other specimens, but the primary antibody was substituted with a specific immunoglobulin of recombinant antibodies. The antibodies were blocked using the specific antigen. The antigens were recombinant protein containing the epitope produced in Escherichia coli. For the mAb BC-1 we used the recombinant protein containing the type-III repeats 7B–8–9. For the mAb IST-4 we used the recombinant protein containing the type-III repeats 2–8. For the recombinant antibodies TN-11 and TN-12 the recombinant type-III repeat C and the recombinant fragment containing the B1G-10 repeat were used respectively.

All 10 AVMs were found to contain large amounts of FN and TN, as shown by intense immunostaining with the use of the IST-9/IST-4 mAbs and the TN-12 Ab fragment. The staining was localised either in the endothelium or the subendothelial layer. A positive response was found in several artery-like vessels and in a few vessels with thinner walls using the mAb BC-1. Staining with the TN-11 Ab fragment showed occurrence of type III repeat C TN isoform in the inner layers of the vascular components of the nidus, irrespective of their morphology.

Six out of the 10 examined specimens were found to contain portions of cerebral tissue surrounding the angiomatous nidus. In all these cases the wall of several vessels exhibited intense staining with the use of the TN-11 Ab fragment. Using the BC-1 mAb some of these vessels exhibited some staining (figure). In the control specimens (brain and cerebellum) both the FN isoform containing the ED-B sequence (ED-B+FN) and the type III repeat C TN isoform were absent despite the widespread distribution of total FN and TN in the vascular walls.
Previous findings showed that ED-B+FN presents with conformational modifications in its central part and results from deregulation of FN pre-mRNA. The distribution of this isoform was found to be highly restricted in normal adult tissues. By contrast, ED-B+FN exhibited widespread distribution in the vasculature of fetal tissues, including brain, and of several types of malignancies. It was therefore regarded as a marker of angiogenesis.

Similarly, the type III repeat C TN isoform, recognised by the Ab fragment TN-11, was found to occur in the vascular walls of anaplastic gliomas. Northern blot analysis showed that the mRNA of this isoform was undetectable in normal tissues and some malignancies, but was present in large amounts in fetal tissues, including brain, and in glioblastomas.

Recent advances in the pathology of cerebral AVMs suggest that these lesions might not be static. Tyrosine kinase, an endothelial cell-specific receptor upregulated in glioblastomas, was found to be highly expressed in both AVMs and in the vessels of cerebral tissue bordering the malformations, by contrast with the down regulation occurring in the vasculature of the normal brain. The pattern of distribution of structural proteins was consistent with the hypothesis of ongoing angiogenesis in and around these lesions.

The presence of angiogenic features in AVMs might result from maintenance of proliferating and remodelling potentials, or from a specific response to haemodynamic stress in vascular structures subjected to increased blood flow and pressure. Occurrence of these features also in vessels lying in areas peripheral to the nidus might be related to recruitment of the neighbouring vasculature, possibly dependent on focal ischaemia in the setting of arteriovenous shunting. However, the presence in apparently normal vasculature of molecules typically occurring in fetal tissues and malignancies indicates that cerebral AVMs may not be static lesions. Further studies are needed to ascertain whether this phenomenon results merely from haemodynamic stress or actually reflects an intrinsic growth potential. Should this second be the case, current therapeutic strategies would possibly require revision.

This study was partially supported by the National Research Council (CNR), AIRC and the Ministry of University and Scientific Research (MURST). We thank Sergio De Seri, EE, for his technical help and Mr. Thomas Wiley for manuscript revision.

Hashimoto’s encephalopathy presenting as “myxoedematous madness”

The neuropsychiatric sequelae of hypothyroidism range from lethargy and mental slowing to the florid psychotic illness referred to as “myxoedematous madness”. The last condition is characterised by frank hypothyroidism accompanied by psychosis, and may respond completely to thyroxine. More recently described is a syndrome of subacute encephalopathy, associated with high titres of thyroid autoantibodies, raised CSF protein, EEG abnormalities, and perfusion deficits in the presence of normal structural neuroimaging. In most cases, the encephalopathy occurs without any gross change in circulating concentrations of thyroid hormones, suggesting that an inflammatory process is responsible for the cerebral dysfunction. In the absence of pathological data, the evidence for a specific pathogenic mechanism is largely circumstantial: a small vessel vasculitis and immune complex deposition have both been suggested.

Although none of the published cases of Hashimoto’s encephalopathy has described psychosis as a primary feature, it is possible that “myxoedematous madness”, a condition first described in detail by Asher in 1949 lies in a range of encephalopathic phenomena mediated by autoimmune mechanisms. This suggestion would certainly be consistent with the range of clinical presentations of other autoimmune cerebral vasculitides. As an autoimmune thyroiditis is the commonest cause of thyroid failure in this country, it is likely that these have been present in at least some of Asher’s original 14 cases. Although most had florid myxoedematous features at psychiatric presentation, this may simply represent a failure of diagnosing subclinical thyroid disease before rapid laboratory assays became widely available. Many features of the present case, however, favoured an endocrine rather than an inflammatory mechanism, suggesting that the condition of “myxoedematous madness”, though rare, remains a valid diagnostic entity.

A 63 year old market stallholder without medical or psychiatric history was brought to a local psychiatric hospital by police. His business had been in decline for several months, and his family had noticed uncharacteristic emotional lability. In the weeks preceding admission he had experienced delusions and hallucinations, and hallucinations remaining consistent and uncharacteristic behaviour. He had reported a vision of the crucifixion, and hearing the voice of his dead mother. He claimed that his house was occupied by the devil, drove around aimlessly in his car, and appeared constantly fearful and withdrawn. On the day of admission he had made a bonfire in the garden and burned his wife’s clothes, family photographs, furniture, and business papers. When his wife and son tried to intervene he
Table 1 Laboratory and neuropsychological results at presentation (A) and at 12 month follow up (B)

<table>
<thead>
<tr>
<th>Laboratory (units)</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full blood count</td>
<td>Normal</td>
<td>Normal</td>
</tr>
<tr>
<td>Erythrocyte sedimentation rate</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>Urea and electrolytes</td>
<td>Normal</td>
<td>Normal</td>
</tr>
<tr>
<td>Liver function tests</td>
<td>Normal</td>
<td>Normal</td>
</tr>
<tr>
<td>Anti-ubiquitin antibodies</td>
<td>Negative</td>
<td>Negative</td>
</tr>
<tr>
<td>B12 and folate</td>
<td>Normal</td>
<td>Not tested</td>
</tr>
<tr>
<td>VDLR</td>
<td>Normal</td>
<td>Not tested</td>
</tr>
<tr>
<td>Thyroid stimulating hormone (mU/L)</td>
<td>58.4</td>
<td>0.87</td>
</tr>
<tr>
<td>Free T4 (pmol/l)</td>
<td>7.4</td>
<td>Not tested</td>
</tr>
<tr>
<td>Antithyroid microsomal antibody titres</td>
<td>25/30</td>
<td>25</td>
</tr>
<tr>
<td>Psychometric (normal/predicted range):</td>
<td>12:5600</td>
<td>1:1600</td>
</tr>
<tr>
<td>FAS verbal fluency (>30)</td>
<td>25</td>
<td>23</td>
</tr>
<tr>
<td>WAIS-R (verbal)</td>
<td>100th percentile</td>
<td>18th percentile</td>
</tr>
<tr>
<td>WAIS-R (performance)</td>
<td>25</td>
<td>23</td>
</tr>
<tr>
<td>Digit span forwards (>3)</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>Rey-Osterreith complex figure (copy)</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>Rey-Osterreith complex figure (recall)</td>
<td>25.5</td>
<td>24</td>
</tr>
<tr>
<td>Not tested</td>
<td>75%</td>
<td></td>
</tr>
</tbody>
</table>

P J DE VRIES
N HUNT
University of Cambridge Department of Psychiatry, Addenbrooke's Hospital, Cambridge CB2 2QZ, UK

A CRAWFORD J R HODGES
MRC Cognition and Brain Sciences Unit, 15 Chaucer Road, Cambridge CB2 2EF, UK

K BALAN
Department of Nuclear Medicine, Addenbrooke's Hospital, Cambridge CB2 2QZ, UK

Correspondence to: Dr P Garrard, University of Cambridge Neurology Unit, Box 165, Addenbrooke's Hospital, Cambridge CB2 2QZ, UK

P Garrard
J R Hodges
University of Cambridge Neurology Unit, Addenbrooke's Hospital, Cambridge CB2 2QZ, UK

Table 1 Laboratory and neuropsychological results at presentation (A) and at 12 month follow up (B)

<table>
<thead>
<tr>
<th>Laboratory (units)</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full blood count</td>
<td>Normal</td>
<td>Normal</td>
</tr>
<tr>
<td>Erythrocyte sedimentation rate</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>Urea and electrolytes</td>
<td>Normal</td>
<td>Normal</td>
</tr>
<tr>
<td>Liver function tests</td>
<td>Normal</td>
<td>Normal</td>
</tr>
<tr>
<td>Anti-ubiquitin antibodies</td>
<td>Negative</td>
<td>Negative</td>
</tr>
<tr>
<td>B12 and folate</td>
<td>Normal</td>
<td>Not tested</td>
</tr>
<tr>
<td>VDLR</td>
<td>Normal</td>
<td>Not tested</td>
</tr>
<tr>
<td>Thyroid stimulating hormone (mU/L)</td>
<td>58.4</td>
<td>0.87</td>
</tr>
<tr>
<td>Free T4 (pmol/l)</td>
<td>7.4</td>
<td>Not tested</td>
</tr>
<tr>
<td>Antithyroid microsomal antibody titres</td>
<td>25/30</td>
<td>25</td>
</tr>
<tr>
<td>Psychometric (normal/predicted range):</td>
<td>12:5600</td>
<td>1:1600</td>
</tr>
<tr>
<td>FAS verbal fluency (>30)</td>
<td>25</td>
<td>23</td>
</tr>
<tr>
<td>WAIS-R (verbal)</td>
<td>100th percentile</td>
<td>18th percentile</td>
</tr>
<tr>
<td>WAIS-R (performance)</td>
<td>25</td>
<td>23</td>
</tr>
<tr>
<td>Digit span forwards (>3)</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>Rey-Osterreith complex figure (copy)</td>
<td>25.5</td>
<td>24</td>
</tr>
<tr>
<td>Rey-Osterreith complex figure (recall)</td>
<td>75%</td>
<td></td>
</tr>
</tbody>
</table>

became aggressive and threatened them with a saw. The general practitioner was called and suspected aseptic meningitis but a new psychogeriatrician saw him and was grossly depressed, but displayed no insight into the irregularity of his behaviour. No psychotic features were seen, although during the admission he consistently rationalised all reported psychotic phenomena. He was aggressive towards staff and made repeated attempts to abscond. General physical examination was unremarkable. Neurological examination was normal except for spoken language which was fluent and grammatical, but contained word finding pauses, circumlocutions, and occasional semantic errors (for example, “I just want to get my feet back on the table”). Formal neuropsychological testing, and a screen of laboratory tests for reversible causes of encephalopathy, were performed on admission, and results are presented below (column A). Attention was drawn to his mild naming deficit, and poor performance on the Rey figure, which was due to planning rather than visuospatial errors, suggesting a predominantly “dysexecutive” pattern. CT and EEG were both normal. Iodine-131 was prescribed, but mild cortical hypoperfusion. Trifluprazine (75 µg once daily) was introduced, and thyroxine (75 µg once daily) was continued. By contrast, in the present case the EEG was normal and the SPECT abnormal—showing multiple areas of severely reduced perfusion (of the basal ganglia). It additionally suggests that subtle neuropsychological deficits may be apparent even in the absence of obvious cerebral perfusion deficits, and that these may not be fully reversible.

In summary, therefore, this patient presented in clear consciousness with a first episode of acute psychosis, and evidence of subtle executive and linguistic neuropsychological disturbance, on the background of gradual behavioural and affective change. He was profoundly hypothyroid due to an autoimmune thyroiditis, but there was no clinical evidence of thyroid failure other than the abnormal mental state. The psychiatric component of his illness resolved fully, and the antithyroid microsomal antibody titre fell markedly after thyroxine replacement, although his mild neuropsychological deficits remained unchanged. Corticosteroids were not used at any stage.

The response to thyroxine does not, in itself, imply that the cerebral illness had an endocrine origin; a recent report described a patient with a subacute encephalopathic illness and compensated hypothyroidism in the presence of increased antimicrosomal antibodies, all of which responded to thyroxine replacement alone. That is, in this case, both EEG and SPECT were abnormal, the SPECT showing multiple areas of severely reduced perfusion, which normalised with treatment. By contrast, in the present case the EEG was normal and the SPECT abnormal—showing only marginal changes, if any, at all, with treatment. The evidence for a significant vasculitic component to the illness is, therefore, unconvincing.

The mild and relatively circumscribed neuropsychological deficits coupled with florid psychotic phenomena, also contrast with the profound global disturbance of cognition usually associated with Hashimoto’s encephalopathy. This distinction suggests that microvascular dysfunction and thyroid hormone depletion may emphasise different aspects of the clinical range in Hashimoto’s encephalopathy. Although the present case would support Asher’s conclusion that the psychiatric features of Hashimoto’s encephalopathy typically respond to thyroid replacement, it additionally suggests that subtle neuropsychological deficits may be apparent even in the absence of obvious cerebral perfusion deficits, and that these may not be fully reversible.

Alien hand sign in Creutzfeldt-Jakob disease

The clinical picture of Creutzfeldt-Jakob disease (CJD) includes various movement disorders such as myoclonus, parkinsonism, hemiballismus, and dystonia. We report on a patient with CJD who manifested the alien hand sign. We suggest that CJD should be included in the differential diagnosis of diseases which present with an alien hand.

Creutzfeldt-Jakob disease, one of the human prion diseases, is characterised by rapidly progressive mental and motor deterioration.1 Voluntary movements occur in above 90% of the patients in the course of the disease, the most common being myoclonus.1 Other movement disorders range from tremor to chorea, athetosis, hemiballismus, and dystonia.1 We report on a patient with CJD who presented with an alien hand.

Alien hand is a rare and striking phenomenon defined as “a patient’s failure to recognise the action of one of his hands as his own”.2 One of the patient’s hands acts as a stranger to the body and is uncooperative. Thus, there is loss of feeling of ownership but loss of sensation in the affected hand. Originally described in callosal tumours,3 the aetiology of alien hand also includes surgical callosotomy,4 infarction of the medial frontal cortex,5 opticocortical loop,6 and subcortical infection,7 and corticobasal degeneration.8

A 70 year old, right handed Jewish man born in Argentina, living in Israel for the past 20 years, was admitted to the Neurology Department. Until a month before his admission, he was apparently healthy and helped in the accounting office of the village where he lived. His neurological illness had presented insidiously during the past month with asthenias of gait and fear of falling. He also manifested behavioural changes, became aggressive, and had visual hallucinations, perceiving insects and mice moving through his visual field. Often, he expressed his fear from seeing that the “ceiling was
was found. The patient had no cortical purpose, the patient denied that they were while using his right hand. He was unaware of rise in front of the patient during speaking or ataxic on a wide base.

A number of patients presented with unusual movements, such as clapping, were extremely difficult to explain. In one patient the left arm “was noted to have myoclonic alien hand syndrome. In one case of corticobasal degeneration, the authors described the alien limb as “involutary rising and touching the mouth and eyes” (patient 1). The patient thought that she “was powerless to stop this movement” and when directed to stop responded that “she can’t”. Another patient’s left arm was at times “elevated in front of him”, while he was “unaware of this situation until his attention was called to it” (patient 10). Another related phenomenon coined as “arm levitation” was reported in progressive supranuclear palsy. In these patients the arm involuntarily raised and performed semi-purposeful movements.

One common denominator between CJD, corticobasal degeneration, and progressive multifocal leukoencephalopathy, in which an alien hand sign has also been described, is multifocality. In corticobasal degeneration, it was proposed that more than one site is affected or that a “release” phenomenon occurs accounting for the aetiology of alien hand. In CJD, bilateral cortical damage to motor areas might be the origin of their subsequent isolation and disconnection.

We suggest that CJD should be added to the differential diagnosis of diseases presenting with an alien hand with or without myoclonus.

We are indebted to Professor Eran Zarel, Department of Physiology, University of California, Los Angeles, USA.

R INZELBERG
P NISIPLEANU
S C BLUMEN
R L CARASIO
Department of Neurology, Hillel Yaffe Medical Center, Hadera, Israel

Correspondence to: Dr Dr R Inzelberg, Department of Neurology, Hillel Yaffe Medical Center, Hadera, 38100, Israel

email: neurology@hillel-yaffe.health.gov.il

Recent peripheral neuropathy in a girl with celiac disease

The involvement of the peripheral nervous system (PNS) in children with celiac disease is particularly rare. Furthermore, in both children and adults with celiac disease, neurological complications are chronic and progressive.

We report on a 12 year old girl affected by celiac disease, who on two separate occasions presented with an acute peripheral neurological syndrome after accidental reintroduction of gluten in her diet.

This patient was born uneventfully to healthy non-consanguineous parents with no family history of neurological or metabolic diseases. At the age of 6 months she was diagnosed as having celiac disease according to the European Society of Paediatric Gastroenterology and Nutrition (ESPGHAN) criteria. Since then she was on a strict gluten free diet and was asymptomatic until the age of 10 years when severe diarrhoea, vomiting, and abdominal pain manifested 6 days after the intake of corn flakes erroneously thought to be gluten free. No previous infections had been noticed. One week after the onset of these symptoms she experienced acute weakness and pins and needles sensation confined to her legs. At that time her parents stopped her intake of corn flakes on the suspicion that these were responsible for the symptoms. Despite this, symptoms worsened during the next 2 days, confining her to bed.

At hospital admission, she was alert and mentally stable. Results of general physical examination were unremarkable. Neurological examination disclosed symmetric, predominantly distal, weakness of the legs; the knee jerks and ankle reflexes were depressed; plantar reflexes were flexor. Distal stocking glove decreased in pin prick and temperature with sparing of proprioception and light touch. Coordination tests were normal.

Laboratory investigations showed a white cell count of 9300/mm³. The results of the following investigations were within the normal limits: haemogram, erythrocyte sedimentation rate, serum urea, creatinine, electrolytes, creatine, glucose, transaminase, bilirubin, immunoglobulins (Ig), lead, iron, copper, urinalysis, urinary porphyrin, folic acid, and vitamins A, B, B₁₂, and E. Antibodies to Campylobacter jejuni, cytomegalovirus, hepatitis B virus, and human immunodeficiency virus were negative. Serum and cerebrospinal fluid titres to antigens of human autoimmune antibodies, specific and non-specific organ autoantibodies, IgA and IgG antigliadin antibodies (AGA), IgA antidiomensomes antibodies (EMA), and IgA antireticulocyte antibodies (ARA), assayed by enzyme-linked immunosorbent assay (ELISA) and immunofluorescence (IF) were also negative. Lumbar puncture was not performed. Antibodies against gangliosides GM₁ and GQ₁b, myelin associated glycoprotein and myelin
Electrophysiological study suggestive in both episodes of an acute demyelinating peripheral neuropathy confined to the lower limbs. Values were within normal limits as the upper limbs.

<table>
<thead>
<tr>
<th>1st Episode</th>
<th>2nd Episode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pronasal</td>
<td>Tibial</td>
</tr>
<tr>
<td>u MCV (ms)</td>
<td>26</td>
</tr>
<tr>
<td>74</td>
<td>24</td>
</tr>
<tr>
<td>74</td>
<td>8.0</td>
</tr>
<tr>
<td>DL (ms)</td>
<td>7.5</td>
</tr>
<tr>
<td>F wave latency (ms)</td>
<td>70</td>
</tr>
<tr>
<td>CMAP (µV)</td>
<td>3</td>
</tr>
<tr>
<td>SGR (µV)</td>
<td>42</td>
</tr>
<tr>
<td>AMP (µV)</td>
<td>16.2</td>
</tr>
</tbody>
</table>

MVC=motor conduction velocity; DL=distal latency; CMAP=compound motor action potential; SGC=sensory conduction velocity; AMP=amplitude; L=left; R=right.

In both episodes in the present case neurophysiological was strongly supportive of a demyelinating peripheral neuropathy, which is most commonly attributed to a direct immune mediated attack to the myelin. By contrast, wallerian and axonal degeneration may be caused by vasculitis, and nutritional, metabolic, and toxic factors. An autoimmune pathogenesis in association with strong evidence of a genetic susceptibility has been proposed for celiac disease. Although it is well established that AGA, EMA, and ARA are reliable indicators of celiac disease. In both cases, however, these were chronic axonal polyneuropathies presenting during a gluten free diet.1

In both episodes in the present case neurophysiological was strongly supportive of a demyelinating peripheral neuropathy, which is most commonly attributed to a direct immune mediated attack to the myelin. By contrast, wallerian and axonal degeneration may be caused by vasculitis, and nutritional, metabolic, and toxic factors. An autoimmune pathogenesis in association with strong evidence of a genetic susceptibility has been proposed for celiac disease. Although it is well established that AGA, EMA, and ARA are reliable indicators of celiac disease. In both cases, however, these were chronic axonal polyneuropathies presenting during a gluten free diet.1

In both episodes in the present case neurophysiological was strongly supportive of a demyelinating peripheral neuropathy, which is most commonly attributed to a direct immune mediated attack to the myelin. By contrast, wallerian and axonal degeneration may be caused by vasculitis, and nutritional, metabolic, and toxic factors. An autoimmune pathogenesis in association with strong evidence of a genetic susceptibility has been proposed for celiac disease. Although it is well established that AGA, EMA, and ARA are reliable indicators of celiac disease. In both cases, however, these were chronic axonal polyneuropathies presenting during a gluten free diet.1

Frontal release signs in older people with peripheral vascular disease

A growing body of research examining neurological aspects of clinically “silent” cerebrovascular disease suggests that neurological signs indicative of generalised organic brain damage may occur in the absence of completed stroke.1 These soft signs include primitive reflexes (frontal release signs), representing an anatomical and functional deafferentation of cortical from subcortical structures. Primitive reflexes are known to occur in a wide variety of other conditions, including Alzheimer’s disease and vascular dementia.2 It is likely that the presence of undetected cerebrovascular disease accompanying peripheral vascular disease is underestimated, as peripheral vascular disease is known to be a risk factor for transient ischaemic attacks. A study assessing 373 older patients with peripheral vascular disease found that 72 of the 144 patients who had not experienced a transient ischaemic attack, or stroke were found to have a degree of carotid stenosis of between 60% and 99%.4

In the present study, the prevalence of primitive reflexes was examined in a group of older people with peripheral vascular disease and a non-vascular control group. Independent predictors of these reflexes were also examined in peripheral vascular disease. Both groups were drawn from the same geographical area. All were interviewed and examined outside hospital by myself. Interviewees were community residents from the catchment area of an inner city London teaching hospital.

Twenty five consecutive non-ambulants on the waiting list for femoropopliteal bypass operation were compared with 25 postoperative patients who had undergone elective hip or knee replacement and a further 25 rehabilitation. All participants were aged 65 and over at the time of interview. Patients with peripheral vascular disease had all clinical and Doppler proved evidence of peripheral ischaemia. Controls were interviewed between 6 months and 1 year after their operation. Both groups had no history of stroke or transient ischaemic attack.

A more detailed description of instruments is provided elsewhere.5 All subjects were
examined using a rating scale for the examination of frontal release signs (FRSS), with nine operationally defined items, each on a seven point semi-quantitative scale. The nine reflexes were paratonia and palomental, hand grasp, foot grasp, glabellar, rooting, snout, and visual/tactile sucking reflexes. Neuropsychological measures included the assessment of frontal lobe function (trailmaking tests A and B, behavioural dyscontrol scale, and the controlled word association test) and generalised cognitive impairment (CAMCOG). Depression was assessed using the Hamilton rating scale for depression, 15 item geriatric depression scale, and diagnostic criteria for DSM IV major depressive disorder. Family history of depression, wish to die, and suicidal ideation within the past year were also recorded, as were blood pressure and a checklist for chronic physical illness.

Total FRSS scores and scores on FRSS subscales were compared between groups using the Mann-Whitney U test for independent samples. In the peripheral vascular disease group, a correlation matrix for total FRSS score against DSMIV depression, CAMCOG score, behavioural dyscontrol scale score, verbal fluency score (total number of words beginning with F, A, and S) and trailmaking test times was examined using the Spearman correlation coefficient, correction for age, sex, blood pressure, and chronic physical illness. Behavioural dyscontrol scale scores, trailmaking A/B test times, and verbal fluency scores were first converted into binary variables according to whether they were at/above or below the median value for the group. CAMCOG score was divided into subjects scoring 69 or above or less than 69. Those associations with a two tailed significance of 0.1 or less were then entered into a linear regression equation using the stepwise method.

Patients with peripheral vascular disease had a higher mean score on the frontal release signs scale than controls (5.9 (SD 4.6) v. 1.7 (SD 1.0)), Mann-Whitney U = 144.500, Z = −3.33, two tailed p = 0.001, as well as on glabellar and rooting reflexes (table). Only one variable (trailmaking B test time) was entered into the equation; this accounted for 23% of the variance in FRSS score (β = 4.6, 95% confidence interval (95% CI) (B 1.3–8.0, p = 0.01).

In peripheral vascular disease, there is limited information available concerning the intended and unintended neurological sequelae of coexisting cerebrovascular disease. Phillips et al found greater impairment in psychomotor speed and abstract reasoning in patients with peripheral vascular disease than age/sex matched controls, with less significant differences between the groups in verbal fluency, concentration, abstract thought, perception, and constructional skills. Another study by the same group found poorer performance in patients with peripheral vascular disease than in controls on visual memory, trailmaking B test, and visuospatial skills. Patients with peripheral vascular disease were also equally impaired in these areas compared with a matched group of stroke patients.*

Small numbers of patients, which may also have obscured other significant findings between the two groups, limit the present study. However, there is some evidence that clinically relevant cerebrovascular disease may accompany peripheral vascular disease and that concomitant disruption of frontal/subcortical brain function may not present with hard neurological signs. As it is possible that silent brain infarction was present in patients with peripheral vascular disease, further studies incorporating brain imaging are required before there can be a clearer understanding of the relation between peripheral and central vascular pathology.

*Higher mean score in people with peripheral vascular disease.

<table>
<thead>
<tr>
<th>Hand grasp</th>
<th>Foot grasp</th>
<th>Glabellar</th>
<th>Palomental</th>
<th>Paratonia</th>
<th>Rooting</th>
<th>Snout</th>
<th>Sucking (tactile)</th>
<th>Sucking (visual)</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>pValue</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>274.0</td>
<td>0.15</td>
<td>312.5</td>
<td>199.5</td>
<td>287.5</td>
<td>287.0</td>
<td>235.5</td>
<td>287.5</td>
<td>261.0</td>
</tr>
<tr>
<td>1.0</td>
<td>0.001*</td>
<td></td>
<td></td>
<td>0.15</td>
<td>0.29</td>
<td>0.01*</td>
<td>0.44</td>
<td>0.08</td>
</tr>
<tr>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td>0.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5 years earlier. The angioplasty was complicated by the occurrence of contrast reaction to be related to dye injection, and phenytoin had been prescribed for a short time thereafter. There was a remote history of heavy alcohol use, but he had been abstinent for several years. His father had had a stroke at the age of 65.

Six months earlier the patient had also collapsed at home and been taken to hospital with a left hemiplegia. Brain CT at that time was normal, as were carotid Doppler studies and an echocardiogram. During that admission to hospital, several generalised seizure-like episodes were seen, some with retained consciousness, and he had again been started on phenytoin therapy. A follow up brain MRI was normal and it was concluded that the hemiplegia was non-organic in origin. He was described to have made a gradual, near complete, recovery from this first hemiplegic episode and was scheduled for an imminent return to work at the time of his relapse.

On transfer to this hospital the patient was alert, oriented, and cooperative. Although up to date on current affairs and able to describe the investigations performed at the transferring hospital, he scored only 23/30 on a mini mental state examination, with absent three word recall, impaired registration, and poor copying of a two dimensional line drawing. Further bedside neuropsychological testing showed other findings indicative of constructional apraxia and left hemineglect. Specifically, when asked to draw a clock with the time at 10 minutes to 2 o’clock, all the numbers, and the clockhands, were placed on the right hand side of the clock outline (figure A). Copying of three dimensional line drawings was also significantly impaired (figure B). What was asked to be placed on the left side of the line drawing.

Cranial nerve examination suggested an inconsistent and inconsistent left hemiataxia to confrontation testing but was otherwise normal, including bilaterally symmetric optokinetic nystagmus. Motor examination showed paralysis of the left arm and leg, with bilaterally symmetric bulk, tone, and deep tendon reflexes. The plantar response was flexor bilaterally. Sensory examination showed decreased pinprick and absent light touch, joint position sense, and vibration sense on the entire left side. There was also impaired perception of a tuning fork’s vibration on the left side of the forehead, with a distinct demarcation in the midline. The rest of the physical examination was unrevealing.

Brain CT and MRI, CSF examination, and routine EEG were normal. Routine haematological and metabolic analyses plus erythrocyte sedimentation rate, serum lactate, prothrombin time, partial thromboplastin time, fasting serum glucose, HbA1c, serum Ig survey, and thyroid stimulating hormone were all within normal limits. A hypercoagulability profile was negative. A lipid profile showed mild hyperlipidaemia with increased low

Table 1 Primitive reflexes in patients with peripheral vascular disease (n=25) and controls (n=25)

<table>
<thead>
<tr>
<th>Hand grasp</th>
<th>Foot grasp</th>
<th>Glabellar</th>
<th>Palomental</th>
<th>Paratonia</th>
<th>Rooting</th>
<th>Snout</th>
<th>Sucking (tactile)</th>
<th>Sucking (visual)</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>pValue</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>274.0</td>
<td>0.15</td>
<td>312.5</td>
<td>199.5</td>
<td>287.5</td>
<td>287.0</td>
<td>235.5</td>
<td>287.5</td>
<td>261.0</td>
</tr>
<tr>
<td>1.0</td>
<td>0.001*</td>
<td></td>
<td></td>
<td>0.15</td>
<td>0.29</td>
<td>0.01*</td>
<td>0.44</td>
<td>0.08</td>
</tr>
<tr>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td>0.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
density lipoprotein (3.92 mmol/l) and triglycerides (4.30 mmol/l) and low high density lipoprotein (0.73 mmol/l). Serum phenytoin concentration was therapeutic at 74 mmol/l. An ECG was normal.

Ophthalmological consultation and formal visual field testing demonstrated a concentrically constricted field of mild degree in the right eye and tunnel vision in the left eye.

The patient consented to overnight video-EEG monitoring and was seen on multiple occasions to move his left arm and/or leg in a normal fashion, at one point using the left arm to readjust his bed covers shortly after arousal from sleep, before glancing briefly at the video camera and completing the task with his right arm. The prolonged EEG was normal.

A formal neuropsychological assessment performed in hospital documented impaired attention, concentration, and working memory, as well as several atypical calculation and spelling errors, the second involving unusual “near miss” letter substitutions or reversals (for example, “amixey”, “executive”). The formal testing identified no consistent evidence of visuospatial deficits or constructional apraxia. The findings were interpreted as inconsistent with the patient’s history but the possibility of a factitious aetiology ("an amixey", “executive”). The formal testing identified no consistent evidence of visuospatial deficits or constructional apraxia. The findings were interpreted as inconsistent with the patient’s history but the possibility of a factitious aetiology was not specifically addressed—that is, tests designed to detect malingering during neuropsychological testing were not administered by the examiner, who had not been informed at the time of consultation of the presumptive neurological diagnosis of malingered or factitious disorder.

No further investigations were performed and the patient was transferred via the original hospital to a rehabilitation facility and subsequently discharged to home. Confronted with the findings of the video monitoring the patient appeared sanguine and accepting of the evidence that he should be able to move his left side. Six months later he was ambulatory but otherwise not significantly improved. He had been assessed by a psychiatrist but had refused psychiatric follow-up, electing instead to be followed up by a psychologist. He understood his diagnosis to be “conversion disorder” and reported that he was actively collecting information on the subject via the internet.

Outpatient brain SPECT and visual and somatosensory evoked potentials performed 1 year after discharge demonstrated no hemispheric abnormalities. The patient remained off work and was receiving disability funding. He walked with a limp favouring his left side and complained of persistent decreased sensation on the left side. Forced choice sensoory testing of finger and arm movement on the left demonstrated performance to be worse than chance (68% wrong choices). Motor bulk, tone, and reflexes were symmetric and plantar responses downgoing. He drew a clock normally at the 1 year follow up.

The clinical and laboratory findings described above indicate beyond any doubt the non-organic nature of this patient’s left hemiplegia/hemianesthesia. His seizure-like episodes at presentation are presumed to have been non-epileptic in origin (as had been suspected during his previous admission to hospital) although this cannot be definitively proved.

The inability to copy line drawings or to draw a clock is, from a neurologist’s perspective, typically associated with parietal lobe dysfunction, usually of the non-dominant hemisphere, especially if associated with left hemisphere neglect. To our knowledge, this is the first reported case of factitious clock drawing and constructional apraxia. Bedside mental status testing also demonstrated the more common simulated deficits of impaired attention and absent three word recall. In retrospect, the severe neglect on clock drawing was perhaps “too good to be true”, especially in the light of the near normal line bisection demonstrated on the same day. The mirror image distortion of the house was also very unusual and, furthermore, the mirror reversal itself is evidence of lack of clinical neglect. The distortion of the house, however, could easily be misinterpreted as evidence of organic constructional impairment if seen in the absence of the other relevant clinical and laboratory information.

During follow up, the patient admitted to feeling tremendous occupation related stresses, and described how he had come to both fear and detest his job. Given the clear benefit to the patient of removal from his work environment, the relapse of his symptomatology just as he was scheduled for return to work after his first non-organic hemiplegic episode, and the intentionality required to feign poor clock drawing and constructional apraxia, there is much to support a diagnosis of malingering. Nevertheless, classification as a factitious disorder is at least as justifiable in view of the patient’s willingness to undergo medical investigations, including video monitoring.

It is unclear how or when the patient acquired the information needed to mimic a constructional apraxia. Previous bedside neuropsychological evaluations may have served to familiarise him with the format of such testing, acting as an impetus to research the issue of stroke and focal brain deficits (which might also have occurred after his father’s stroke), much in the same way he is now researching conversion disorder, thereby discovering what expected answers should look like. Despite repeated questioning, however, no evidence could be gathered from the patient to support this speculation.

Anosognosia and mania associated with right thalamic haemorrhage

Both anosognosia and secondary mania are associated with right hemispheric lesions. These two non-dominant syndromes, however, are rarely described as occurring together. We present a patient with a right thalamic haemorrhage giving rise to profound denial of hemiplegia and elated mood. This case suggests mechanisms for the common production of mania and anosognosia.

A 53 year old, right handed, black man, with a history of alcohol misuse and dependence and untreated hypertension, was brought to the emergency room a few hours after developing an intense headache and left sided numbness and weakness.

On admission he was described as “belligerent”, “agitated”, and “confused.” Blood pressure was 240/160. Neurological examination disclosed left lower facial droop, decreased left corneal and gag reflexes, and left hemiparesis with dense sensory deficits. With increasing obtundation, the patient was transferred to the intensive care unit and intubated. Brain MRI showed a large, left sided, hyperacute thalamic bleed with mass effect and oedema. The patient was extubated 2 days later and 4 days after the stroke he was described as being drowsy and inattentive, but was able to answer questions...
appropriately. Neurological examination showed contralateral gaze preference, supra-nuclear vertical gaze palsy, difficulty converging, left sided flaccid hemiparesis, and dense, left sided hemianesthesia. Deep tendon reflexes were absent on the left and Babinski's reflex was positive on the left and absent on the right. Vision extinction and neglect were present. At the time of onset of right sided weakness the patient insisted that he was “fine,” and an ambulance was called over his objections. After being extubated, the patient acknowl-
edged that he had had a stroke, but, despite his hemiparesis, insisted that he was ready to go home and go back to work. His belief in his ability to walk led to near falls, and he was more inclined to listen to the nurses’ instruction for closer observation. He told the nurses that someone else’s arm was in his bed. On one occasion, holding up his left arm with his right, he told the nurse to, “take it away; it keeps scratching me.” That the left arm “smelled funny” was another reason he wanted the nurses to take it away.

Four weeks after the stroke he first acknowledged that his left arm belonged to him. He had now clearly remembered being told otherwise. By this time he had a moderate hemiplegia and recognised “a little weak-
ess,” but continued to insist that he was well and able to return to work. By the 6th week and was more consistently acknowledged that he was weak on the left side of his body. A request for disabled hous-
ing “so that I won’t be a burden to my family” seemed to indicate an appreciation of his improvered health. He confessed that he was not planning to return to work, and that he had no longer planned to return to work and applied for social security disability insurance “because they say I’m disabled.”

The patient’s mood was remarkably cheerful and optimistic. A week after the stroke he was noted to praise extravagantly the hospital and boasted of having fathered 64 children. He spontaneously recalled believing “so that I won’t be a burden to my family” and acknowledged that his left arm belonged to someone else. He used as one of his examples a case in which someone else’s arm was in his bed. On one occasion he said, “smelled funny” was another reason he wanted the nurses to take it away. He had now clearly remembered being told otherwise.

Four weeks after the stroke he first acknowledged that his left arm belonged to him. He had now clearly remembered being told otherwise. By this time he had a moderate hemiplegia and recognised “a little weak-
ess,” but continued to insist that he was well and able to return to work. By the 6th week and was more consistently acknowledged that he was weak on the left side of his body. A request for disabled hous-
ing “so that I won’t be a burden to my family” seemed to indicate an appreciation of his improved health. He confessed that he was not planning to return to work, and that he had no longer planned to return to work and applied for social security disability insurance “because they say I’m disabled.”

The patient’s mood was remarkably cheerful and optimistic. A week after the stroke he was noted to praise extravagantly the hospital and boasted of having fathered 64 children. He spontaneously recalled believing “so that I won’t be a burden to my family” and acknowledged that his left arm belonged to someone else. He used as one of his examples a case in which someone else’s arm was in his bed. On one occasion he said, “smelled funny” was another reason he wanted the nurses to take it away. He had now clearly remembered being told otherwise.

Four weeks after the stroke he first acknowledged that his left arm belonged to him. He had now clearly remembered being told otherwise. By this time he had a moderate hemiplegia and recognised “a little weak-
ess,” but continued to insist that he was well and able to return to work. By the 6th week and was more consistently acknowledged that he was weak on the left side of his body. A request for disabled hous-
ing “so that I won’t be a burden to my family” seemed to indicate an appreciation of his improved health. He confessed that he was not planning to return to work, and that he had no longer planned to return to work and applied for social security disability insurance “because they say I’m disabled.”

The patient’s mood was remarkably cheerful and optimistic. A week after the stroke he was noted to praise extravagantly the hospital and boasted of having fathered 64 children. He spontaneously recalled believing “so that I won’t be a burden to my family” and acknowledged that his left arm belonged to someone else. He used as one of his examples a case in which someone else’s arm was in his bed. On one occasion he said, “smelled funny” was another reason he wanted the nurses to take it away. He had now clearly remembered being told otherwise.
less commonly (only 1 of 74 seizures recorded). A review in 1996 of the “ictal bradycardia syndrome” showed only 15 documented cases in the literature of either bradycardia or asystole associated with seizures. Most patients had temporal lobe seizures. The longest duration of asystole previously reported is in a 17 year old man with temporal lobe epilepsy who sustained a 22 second pause in cardiac output. More typically the asystolic periods in documented cases are in the region of 5–10 seconds. Shorter duration asystole may not compromise cerebral function sufficiently to cause loss of consciousness. Implantation of a cardiac pacemaker is advocated but does not ensure that lapses of consciousness are eliminated if these are directly related to the seizure rather than to the secondary asystole. We report on a patient with epileptic cardiac asystole of 25 seconds duration demonstrated by prolonged simultaneous EEG/ECG monitoring which responded well to pacemaker insertion.

A previously well 34 year old right handed builder was referred with a 1 year history of fortnightly episodes of loss of consciousness. There was no associated warning, aura, chest pain, or palpitations and the patient was only aware of the episode once consciousness was regained. A review in 1996 of the “ictal bradycardia syndrome” showed only 15 documented cases in the literature of either bradycardia or asystole associated with seizures. Most patients had temporal lobe seizures. The longest duration of asystole previously reported is in a 17 year old man with temporal lobe epilepsy who sustained a 22 second pause in cardiac output. More typically the asystolic periods in documented cases are in the region of 5–10 seconds. Shorter duration asystole may not compromise cerebral function sufficiently to cause loss of consciousness. Implantation of a cardiac pacemaker is advocated but does not ensure that lapses of consciousness are eliminated if these are directly related to the seizure rather than to the secondary asystole. We report on a patient with epileptic cardiac asystole of 25 seconds duration demonstrated by prolonged simultaneous EEG/ECG monitoring which responded well to pacemaker insertion.

A previously well 34 year old right handed builder was referred with a 1 year history of fortnightly episodes of loss of consciousness. There was no associated warning, aura, chest pain, or palpitations and the patient was only aware of the episode once consciousness was regained. A review in 1996 of the “ictal bradycardia syndrome” showed only 15 documented cases in the literature of either bradycardia or asystole associated with seizures. Most patients had temporal lobe seizures. The longest duration of asystole previously reported is in a 17 year old man with temporal lobe epilepsy who sustained a 22 second pause in cardiac output. More typically the asystolic periods in documented cases are in the region of 5–10 seconds. Shorter duration asystole may not compromise cerebral function sufficiently to cause loss of consciousness. Implantation of a cardiac pacemaker is advocated but does not ensure that lapses of consciousness are eliminated if these are directly related to the seizure rather than to the secondary asystole. We report on a patient with epileptic cardiac asystole of 25 seconds duration demonstrated by prolonged simultaneous EEG/ECG monitoring which responded well to pacemaker insertion.
74 temporal lobe seizures in which simultaneous EEG and ECG recordings were acquired, ictal arrhythmias occurred in 52% of seizures, the commonest being irregular abrupt changes in heart rate, (both acceleration and deceleration) occurring towards the end of the period of EEG abnormality. Interictally, patients with epilepsy seem no more likely than age and sex matched healthy subjects to experience arrhythmias although in one study patients with epilepsy had a faster ventricular rate and a longer QT interval than control subjects. It has been hypothesised that there is laterisation with respect to central autonomic cardiac control with an increase in heart rate seen after an increased stimulation of amobarbital and inactivation of the left hemisphere and a decrease in heart rate on right hemispheric inactivation. Experimental stimulation of the rostral posterior insular cortex in anaesthetised rats has been shown to induce tachycardia and more caudal region stimulation to cause bradycardia. Additionally, prolonged stimulation resulted in ventricular ectopics, heart block, QT prolongation, and death. In preclinical temporal lobeectomy patients stimulation of the left insular cortex (particularly posteriorly) produced bradycardia and a depressor response significantly more often than tachycardia and a pressor effect. It was suggested that an epileptic discharge in the insular cortex may result in cardiac arrhythmias. Recurrent episodes of loss of consciousness are a common clinical problem. An accurate diagnosis relies principally on the patient’s and witnesses’ accounts of events. Further investigations are frequently required which are often normal unless an episode is captured during monitoring. Recording solely the EEG or the ECG may result in erroneous conclusions being drawn and insufficient or inappropriate therapy being instituted. Distinction between a primary cardiac arrhythmia and a secondary central arrhythmia is possible only with simultaneous EEG/ECG recordings.

Fergus J Rugg-Gunn
John S Duncan
Sheila J M Smith
Epilepsy Research Group, University Department of Clinical Neurology, Institute of Neurology, The National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK

Correspondence to: Professor John S Duncan, National Society for Epilepsy, Chalfont St Peter, Gerrards Cross, Bucks SL9 0RJ, UK email j.duncan@ion.ucl.ac.uk

1 Blumhardt LD, Smith PEM, Queen Square, London WC1N 3BG, UK

Respiratory insufficiency in a patient with hereditary neuropathy with liability to pressure palsy

Hereditary neuropathy with liability to pressure palsies (HNPP) is an autosomal dominant disorder, the molecular basis of which is a 1.5 Mb deletion in chromosome 17p11.2 including the peripheral myelin protein-22 (PMP-22) gene. HNPP typically presents recurrent pressure palsies of peripheral nerves, such as the axillary, median, radial, ulnar, or peroneal nerves, at common entrapment sites. Respiratory muscle weakness has not been previously reported in HNPP. We describe a patient with HNPP where respiratory failure and proximal muscle weakness were prominent features.

The patient started to have dypsnea on exertion at the age of 44. At the age of 47, he noticed a slowly progressive weakness of the pelvic girdle and lower limbs. At the age of 57, he experienced difficulty in going up stairs. However, he was almost independent in daily life. At the age of 60, he was admitted to Yonago Red Cross Hospital as an emergency patient with a coma due to CO2 narcosis (PCO2 117.6, PO2 64.0). Responding to mechanical ventilatory support, he completely recovered consciousness within a day. His respiratory condition in the daytime improved to that previously. However, he needed mechanical ventilation during sleep because of nocturnal hyperventilation.

The patient had no history of diabetes mellitus, pulmonary, or neurological problems. There was no familial history of neurological disorder, including entrapment neuropathies. After a few months, he noted that in his teens he had experienced some episodes of right peroneal and right axillary nerve palsies which resolved themselves over a few months.

In a neurological examination, the patient’s mental state and cranial nerves were normal. Evidence of muscular atrophy and lordosis was found. The muscular atrophy was prominent in the shoulder girdle, intercostal muscles, paravertebral muscles, and pelvic girdle, and moderate atrophy was present in all four limbs (figure). There was moderate weakness of the shoulder and pelvic girdle and mild weakness of the distal limbs. The thorax showed poor respiratory movement, and the patient showed paradoxical movement of the abdomen in the supine position. Tendon reflexes were hypoactive in all limbs. The patient’s sensations of touch and pain were mildly impaired in the four extremities except the face. Motor and sensory examination were normal. His vital capacity was 1.9 l (55% of the normal mean) in the sitting position, but 1.3 l (38%) in the supine position. The percentage of forced expiratory volume in 1 second (FEV1) was normal. Routine haematological and serological studies gave normal results. Two monoclonal or polyclonal proteins were detected. IgG and IgM antibodies to gangliosides GM1 and GD1b were negative. Analysis of CSF showed 1 lymphocyte/mm3 and 25 mg/dl protein. Motor nerve conduction studies showed prolonged distal latencies in the right median (8.8 ms (normal value in our laboratory <4.6)) and ulnar (6.2 ms (normal<3.6) ms) nerves, and moderate decreased conduction velocities in the right median (45 ms (normal>49)), ulnar (45 ms (normal>49)), tibial (35 ms (normal>38)), and peroneal (29 ms (normal>41)) nerves. There were moderate decreases in the amplitude of compound action potentials in all the nerves tested, and an amplitude reduction of 50% was detected across the cubicital tunnel of the right ulnar nerve. Minimum F wave latencies were prolonged in all the nerves tested. Nerve latency in the right phrenic nerve was slightly prolonged and he found himself lying on the floor. On recovery there was no confusion, drowsiness, dysphasia, or diuresis. Often, he sustained soft tissue injuries to the ground where he would remain unrousable, inaccessible, and motionless for 9 to 120 seconds. On two occasions he appeared confused and disoriented immediately before a collapse. During the period of unconsciousness he would demonstrate no involuntary movements, orofacial automatisms, or cyanosis but he would become pale and “ashen” while staring straight ahead with a glazed look. On resolution of the episode his colour would return to normal and within 2 minutes he would have fully recovered. Unusually during one reported episode of unconsciousness he was seen to briefly extend the fingers of both hands.

He was admitted to his local hospital and CT, MRI, interictal EEG, and 24 hour ECG were normal. No episodes were witnessed while he was an inpatient but they were thought to be hypoxic in origin and therefore he was started on phenytoin, with no benefit. Carbamazepine was added, again with minimal effect.

The patient was then referred to the Epilepsy Assessment Centre of The National Society for Epilepsy and National Hospital for Neurology and Neurosurgery for further investigation and management. Cardiac and neurological examination was normal as were MRI and routine interictal EEG. Sixteen channel ambulatory EEG using an Oxford Instruments digital EEG receiver was performed continuously for 340 hours before an episode was captured. Interictally rare spikes were seen over the right frontocentrotemporal region during sleep. The onset of the episode was not witnessed and the patient was found on the floor, regaining consciousness at about 07:06. The event EEG showed a short run of bilateral semilunar rhythmic 2–3 Hz activity at 07:04:34 (figure A), persisting for 8 seconds before being obscured by muscle and movement artefact. Twenty four seconds later, 07:04:58, the ECG changed from sinus rhythm at 90 bpm to a brief period of sinus bradycardia, followed by a period of asystole with only very occasional ventricular complexes seen over the next 10 seconds before a few seconds of bradycardia then tachycardia, sinus rhythm was restored. Throughout the episode the QT interval on the ECG remained within normal limits. The EEG became viable again 16 seconds into the asystolic period, at which time it was dominated by diffuse low amplitude slow activity at <1–2 Hz which persisted for 10 seconds (figure C). This was followed by marked attenuation of the EEG activity over the next 10 seconds before large amplitude generalised rhythmic <1Hz activity became apparent. Diffuse theta activity was seen for a further 15 seconds before the EEG returned to its resting state.

A VVI permanent pacemaker was inserted. The phenytoin was withdrawn and replaced by lamotrigine. Carbamazepine was left unchanged. The patient was discharged, his medication left unaltered, and at follow up 9 months later reported no further episodes.

Cardiac dysrhythmias are an uncommon but serious consequence of partial seizures. Our case is unusual because of the duration of the episodes and the series of 26 patients with 74 temporal lobe seizures in which simultaneous EEG and ECG recordings were acquired, ictal arrhythmias occurred in 52% of seizures, the commonest being irregular abrupt changes in heart rate, (both acceleration and deceleration) occurring towards the end of the period of EEG abnormality. Interictally, patients with epilepsy seem no more likely than age and sex matched healthy subjects to experience arrhythmias although in one study patients with epilepsy had a faster ventricular rate and a longer QT interval than control subjects. It has been hypothesised that there is laterisation with respect to central autonomic cardiac control with an increase in heart rate seen after an increased stimulation of amobarbital and inactivation of the left hemisphere and a decrease in heart rate on right hemispheric inactivation. Experimental stimulation of the rostral posterior insular cortex in anaesthetised rats has been shown to induce tachycardia and more caudal region stimulation to cause bradycardia. Additionally, prolonged stimulation resulted in ventricular ectopics, heart block, QT prolongation, and death. In preclinical temporal lobectomy patients stimulation of the left insular cortex (particularly posteriorly) produced bradycardia and a depressor response significantly more often than tachycardia and a pressor effect. It was suggested that an epileptic discharge in the insular cortex may result in cardiac arrhythmias. Recurrent episodes of loss of consciousness are a common clinical problem. An accurate diagnosis relies principally on the patient’s and witnesses’ accounts of events. Further investigations are frequently required which are often normal unless an episode is captured during monitoring. Recording solely the EEG or the ECG may result in erroneous conclusions being drawn and insufficient or inappropriate therapy being instituted. Distinction between a primary cardiac arrhythmia and a secondary central arrhythmia is possible only with simultaneous EEG/ECG recordings.
delayed (8.7 ms (normal<8.0)). Sensory nerve conduction studies showed a reduced amplitude of sensory nerve action potentials and conduction slowing in all the nerves tested. Electromyography carried out in the biceps femoris, flexor carpi ulnaris, brachioradialis, quadriceps femoris, biceps femoris, tibialis anterior, and gastrocnemius muscles showed polyphasic motor unit potentials of long duration, but denervation potentials were rare. A left sural nerve biopsy showed scattered tomacula thickening of the myelin sheath and some abnormally thin axonal myelin sheaths. The density of myelinated fibres was reduced (5726/mm²). A gene analysis disclosed a 53% gene dose of PMP-22 related to normal controls, using Southern blots of DNA digested with EcoRI. Given the possibility of superimposing demyelinating neuropathy, especially chronic inflammatory demyelinating polyneuropathy, oral prednisolone (60 mg/day) was given for 1 month. However, the patient’s clinical condition did not respond to this treatment. Pulmonary dysfunction and proximal muscle weakness were almost steady during the next 3 years.

We examined the patient’s elder sister (64 years old), elder brother (62 years old), and younger sister (58 years old), although they had no neurological complaints. All of them had experienced generalised hyporeflexia or areflexia but no weakness or sensory loss, and nerve conduction studies showed moderate conduction slowing with accentuation at the common entrapment sites, suggesting demyelinating neuropathy. Our patient recalled experiencing recurrent episodes of transient entrapment mononeuropathies, and the familial occurrence of asymptomatic entrapment neuropathy was detected by nerve conduction studies. The presence of tomacula, and genetic analysis confirmed a diagnosis of HNPP. However, the patient’s dominant clinical features—respiratory failure and proximal muscle weakness—were atypical for HNPP. Although respiratory muscle weakness has been reported in hereditary motor and sensory neuropathy (HMSN), there has been no report of respiratory insufficiency associated with HNPP to our knowledge.

The weakness of the truncal muscles, including the respiratory accessory muscle, is a possible cause of respiratory failure in our patient. On the other hand, he had experienced hypotension in the supine posture and paradoxical movement of the abdomen, which suggested diaphragmatic weakness. Also, chest radiography showed poor movement of the diaphragm. Although the prolongation of distal latency in the phrenic nerve was mild considering the severity of respiratory failure, assessment of axonal loss is not possible with phrenic nerve stimulation. In fact, phrenic nerve latency is not necessarily associated with pulmonary dysfunction in HMSN.

Diffuse proximal weakness in our patient is an uncommon finding as for HNPP. Mancardi et al. reported on three patients with progressive sensory-motor polyneuropathy associated with 17p11.2 deletion, and the initial symptom of one patient was proximal weakness in one arm. We propose that our patient represents a clinical phenotypic variability among HNPP. It may be necessary to pay attention to respiratory function in HNPP.

We thank Dr T Yamamoto from the University of Occupational and Environmental Health for the gene analysis and Mr T Nagase from Chiba University for his technical help with the sural nerve biopsy.

Spinal accessory neuropathy and internal jugular thrombosis after carotid endarterectomy

Spinal accessory neuropathy is a rare complication of carotid endarterectomy (CEA). Internal jugular venous thrombosis after CEA has also been reported rarely, but is likely more common; as internal jugular
venous thrombosis is often asymptomatic, or presents with non-specific pain, it is probably unrecognized in many cases. Concurrence ipsilateral spinal accessory neuropathy and internal jugular venous thrombosis after CEA is expected to be rare, and this is underscored by the lack of published cases. Despite this apparent rarity, a common pathogenetic mechanism for postoperative spinal accessory neuropathy and internal jugular venous thrombosis may well be present, at least in some cases, which may lead to the consideration of the possibility of both when either is discovered.

We report on a patient who developed right spinal accessory neuropathy and internal jugular vein thrombosis after right CEA. A 59-year-old man underwent right CEA for possibly symptomatic stenosis. Angiography had shown 90% stenosis of the right common carotid. The operation was done under general anesthesia. The carotid bifurcation was unusually distal, necessitating a long dissection and high retraction. No immediate postoperative complications were evident. The next day, the patient complained of mild pain at the operative site, but did not notice any weakness. The pain spread into his right shoulder within several days; at that time, he also noted difficulty raising his right arm. His symptoms worsened further a few weeks later, the symptoms persisted, and he presented for neurological evaluation 4 months after CEA. At that time, he had some induration along the incision site and a palpable supraclavicular cord. Right arm abduction produced more prominent scapular winging and was limited to 90 degrees due to pain and weakness. Electrodagnostic studies were consistent with partial right accessory nerve neuropathy with minor denervation of the right trapezius. Cervical ultrasonography and MRI demonstrated right internal jugular venous thrombosis. The patient was treated with a shoulder support, analgesics, and low-dose aspirin. There was no significant clinical change 1 year after CEA. Repeat electrodagnostic studies were consistent with chronic right spinal accessory neuropathy, and repeat ultrasonography showed persistent right internal jugular venous thrombosis. Right accessory nerve neuropathy was first reported as a complication of CEA in 1982. Since then, there have been several case reports and small series.1 A 1996 review of reports of cranial neuropathy after CEA disclosed only one patient with spinal accessory neuropathy in over 3000 cases.3 Although the authors did not include several other reports2 which, taken together, may suggest to a somewhat higher incidence, the overall small number of reported cases in proportion to the hundreds of thousands of CEsAs that have been done worldwide suggests that clinically significant spinal accessory neuropathy is a rare complication. Most cases of spinal accessory neuropathy after CEA may be more frequent.

The cause of spinal accessory neuropathy after CEA is usually not well established, but intraoperative nerve stretching or compression from retraction is most often invoked.4 Delayed onset (after 3 weeks) has been noted in some; for these patients, postoperative inflammation and scarring seem more likely causes. Spinal accessory nerve transection or ischemia/infarction (arterial or venous) are other possibilities. As in our patient, high carotid dissection and retraction have been reported to precede spinal accessory neuropathy.5,4

The spinal accessory nerve courses along the internal jugular vein and near the internal carotid artery, typically well above the carotid bifurcation. This should be recognized that a high incision and retraction resulting from a high carotid bifurcation would place the nerve at risk. Whether this realization may lead to any technical modification to decrease the risk of spinal accessory neuropathy in those with a high bifurcation is unclear.

From our search, internal jugular venous thrombosis after CEA has been reported in only one case.2 As Southcott et al noted, retraction of the internal jugular during CEA may cause complete occlusion, leading to thrombosis from venous stasis or endothelial injury. Other causes of internal jugular venous thrombosis include jugular cannulation, blunt cervical trauma, and a hypercoagulable state. Internal jugular venous thrombosis may occur even after neck dissection, often with recanalisation after several months.5

The presence of induration about the incision site and a palpable supraclavicular cord in our patient led us to suspect venous thrombosis. Even though the authors did not include several other reports of spinal accessory neuropathy and internal jugular venous thrombosis may well be present, at least in some cases, which may lead to the consideration of the possibility of both when either is discovered.

Ischaemic stroke in a sportsman who consumed MaHuang extract and creatine monohydrate for body building

We report the first case of extensive cerebral infarct in a young sportsman consuming high doses of MaHuang extract and creatine monohydrate. This should alert the community to possible serious adverse effects of energy supplements.

A 33-year-old man had a severe aphasia on awakening in the morning of 23 January 1999. He did not complain of the other symptoms. He was referred to our department on 26 January 1999. He had a Wernicke aphasia with a slight right sided face and arm weakness and a right Babinski sign. His blood pressure was 140/60 and his pulse 54 per minute. Brain CT showed signs of extensive left middle cerebral artery infarct. Cervical ultrasound duplex scanning and cerebral angiography were normal. Cerebral CSF examination 24 hours after admission showed no coagulopathy. D-dimers were within the normal range (360 ng/ml, normal <500 ng/ml). Creatinine was in the normal range (102 µmol/litre). Transoesophageal echocardiography and ECG were also normal except for a patent foramen ovale.

The patient had no vascular risk factors, in particular no tobacco use, and he was perfectly fit until his stroke. He was a sportsman with 2 hours daily intensive training for body building. He was working as a baggage handler in an international airline company. During a recent journey to Miami, Florida, he bought tablets of “energy pills” in a shopping store to enhance his athletic performances. The first drug contained MaHuang extract (corresponding to 20 mg ephedra alkaloids), 200 mg caffeine, 100 mg L-carnitine, and 200 µg chromium per two capsules. The second drug contained 6000 mg creatine monohydrate, 1000 mg taurine, 100 mg inosine, and 5 mg coenzyme Q10 per scoop. He consumed 40–60 mg ephedra alkaloids, 400–600 mg creatine monohydrate daily for about 6 weeks before his stroke.

Although a paradoxical embolism through a patent foramen ovale in this patient cannot be ruled out as he recently returned from a transatlantic air flight, there was no deep venous thrombosis and D-dimers were normal. However, ephedrine has an indirect sympathomimetic action, which may have deleterious side effects. This may be particularly true when used at high doses in combination with sympathomimetic drugs as in our patient. Renal dysfunction has also been reported after oral creatine supplements. Our patient had a slight increase in creatine concentration although.
it remained in the normal range. Whether the use of high doses of caffeine can enhance the cardiovascular effect of ephedrine remains a possibility as stroke after taking a combination of caffeine and amphetamine has been reported.1

Drug addiction in sportsmen and sportswomen is becoming a major concern in our societies, involving both professionals and amateurs. As energy supplements, thought to enhance performance, are easily available in some countries without the need of medical prescription, everybody should be aware that these so called “benign” drugs may have major adverse effects.

This first case report of an extensive cerebral infarct in a young sportsman consuming high doses of MaHuang extract and creatine monohydrate should alert the sport community to this possible adverse effects of energy supplements, particularly when used in multiple combination.

K VAHEDI
V DOMIGO
P AMARENCO
M-G BOUSSER
Service de Neurologie, Hôpital Lariboisière, Paris, France

Correspondence to: Dr K Vahedi, Service de Neurologie, Hôpital Lariboisière, 2 Rue A Paré, 75010 Paris, France
email vahedi@ccr.jussieu.fr

Petroclival meningioma as a cause of ipsilateral cervicofacial dyskinesias

Hyperkinetic movement disorders of facial and neck muscles such as blepharospasm, hemifacial spasm, facial myokimia, and cervical dystonia have rarely been associated with unilateral brainstem or posterior fossa pathologies. We report a case of unilateral cervicofacial dyskinesias due to an ipsilateral petroclival meningioma.

A 32 year old left handed woman complained about left sided facial dysesthesia of the upper quadrant of her face for 1 year. In addition she had intermittent ipsilateral headache. A left sided facial palsy and hypogeusia developed. When progressive hearing loss and persistent ipsilateral tinnitus occurred she sought medical advice. She was referred to our department for further treatment after a large tumour in the left cerebellopontine angle had been demonstrated by MRI. On admission, the left corneal reflex was absent. There was marked hypoaesthesia of the first two divisions of the left trigeminal nerve and a mild left facial palsy. There was also hypogeusia of the left half of the tongue. Speech was slightly dysarthric. During examination dystonic and choreic movements of the left facial muscles were seen. The dystonic grimacing increased when the patient was being observed. There were also intermittent jerky dystonic head movements with turning of the head to the left, associated with slight elevation of the left shoulder. The facial movement disorder was clearly different from hemifacial spasm. There were no tonic or clonic synchronous contractions of facial muscles and no signs of involuntary coactivation. The patient barely noted the dyskinesias. Audiometry showed a hearing threshold at 30 Db on the left side and lack of stapedius reflex on the left side. Oculovestibular response to caloric stimulation was

(A) Axial T2 weighted SE MR images of a 32 year old woman with left sided cervicofacial dyskinesias show a large left petroclival meningoma compressing the brainstem. (B) Coronal inversion recovery MR scans demonstrate marked displacement and distortion of the brainstem due to the petroclival meningioma. (C) Gadolinium enhanced axial T1 weighted SE MR scans 3 months postoperatively show complete removal of the tumour and normalisation of the displacement of the brain stem.
decreased on the left side. Furthermore, there was mild left dysdiadochokinesia.

Neurography of the facial nerve was normal on both sides. Needle myography of the left frontalis and orbiculari oculi did not show signs of denervation.

An MRI study showed a large gadolinium enhancing tumour within the left cerebellar pontine angle extending to the cavum Meckeli with marked displacement of the brainstem to the contralateral side (figure A and B). Cerebral angiography showed a discrete blush of the tumour as typically seen in meningiomas. The tumour was totally removed by a combined transpetrosal supratentorial and infratentorial presigmoidal approach. The postoperative course was uneventful and there were no new deficits. The facial palsy improved slightly as well as the trigeminal hypoaesthesia. Audiometry remained unchanged. Postoperative imaging showed no residual tumour and the displacement of the brain stem within the posterior fossa had resolved (figure C). Marked improvement of the left sided craniofacial dyskinesias occurred during the next weeks.

The postoperative improvement of the dystonic and choreic grimacing and the cervical dystonia indicates a causal association between the petroclival meningioma and the segmental hyperkinetic movement disorders. Such a relationship is suggested also by the absence of a familial history of movement disorders and the absence of previous exposure to neuroleptic medication. Hyperkinetic movement disorders due to tumours of the brainstem or of the posterior fossa have been reported only rarely. Asymmetric blepharospasm was recently found in a patient with an ipsilateral mesencephalic cyst.1 Hemifacial spasm was seen in patients with cerebellar pontine neoplasms, meningiomas, and epidermoid tumours of the cerebellopontine angle.2 Acoustic neuromas and anaplastic pontocerebellar glioma can be associated with facial myokymia and spas tic parietic facial contracture.3 Also, cervical dystonia due to tumours of the cerebellopontine angle have been reported recently.4

The pathophysiological mechanisms responsible for dystonic movement disorders caused by structural or functional lesions of the brainstem are not fully understood. The possibility of denervation supersensitivity of cranial nerve nuclei has been suggested. This pathophysiological mechanism is supported by the findings of blink reflex studies in patients with blepharospasm, spasmodic dysphonia, and cervical dystonia. Tolosa et al found significantly less inhibition of the test stimulus polysynaptic late response and marked enhancement of the recovery curve of the late response under such conditions compared with the response in healthy subjects.5

Our case provides further evidence that functional impairment by compression and distortion of the brain stem may cause hyperkinetic cervicofacial movement disorders. It is suggested also to know that such movement disorders are accessible to surgical treatment of the underlying pathology. Therefore, patients with cranial or cervical dystonia or choreic dyskinesia should undergo MR imaging to rule out a surgically treatable cause.

THOMAS POHLE
JOACHIM K KRAUSS
Department of Neurosurgery, Inselspital, University of Bern, Bern, Switzerland

JEAN-MARC BURGUNDER
Department of Neurology

Correspondence to: Dr J K Krauss, Department of Neurosurgery, University Hospital, Klinikum Mannheim, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
email joachim.krauss@nch.ma.uni-heidelberg.de

Acute multifocal cerebral white matter lesions during transfer factor therapy

Transfer factor is an active substance of unknown structure present in dialysable leucocyte extract which is assumed to transfer cell mediated immunity in an antigen specific fashion.1 The mechanisms of action of transfer factor are still far from clear; in vitro dialysable leucocyte extract increases macrophage activation and interleukin (IL) 1 production and enhances leucocyte chemotaxis and natural killer function. Transfer factor has been reported to stimulate the cell mediated antigen specific response in patients with various infections;1 therefore, treatment with transfer factor has been suggested in patients with selective deficits in cell mediated immunity such as in some refractory neoplasms and chronic infections. Moreover, it has been used in the treatment of uveitis.2 Administration of dialysable leucocyte extract has been found to be free of hypersensitivity, long lasting side effects, or complications, except for transitory hyperpyrexia.3

We report on a patient in whom multiple cerebral white matter lesions developed after taking dialysable leucocyte extract orally for uveitis. A 28 year old man was admitted to hospital because of headache, mental confusion, and right hemiparesis. He had recurrent bilateral uveitis from the age of 12 to 14 with relatives with right eye. In January 1995 retinal vasculitis was diagnosed at fundoscopy and in July 1995 he started oral transfer factor as dialysable leucocyte extract twice a week. He complained of generalised weakness after the second dose and the referring symptoms developed after the third dose.

Neurological examination on admission showed mental confusion and severe right spastic hemiparesis with Babinski’s sign. No fever or meningismus were present.

Laboratory examinations on admission showed a slight increase in total serum protein (8.4 g/l, normal 6.0–8.0 g/l), although the serum protein fraction was normal, antistreptolysin titres (355 UI/ml, normal <200 UI/ml), and anticardiolipin IgG (30 UI/ml, normal <200 UI/ml). Fibrinogenaemia, C reactive protein (8.4 g/l, normal 6.0–8.0 g/l), and venereal disease research laboratory test, erythrocyte sedimentation rate, fibrinogenemia, C reactive protein, rheumatoid factor, Wässer-Rose, protein electrophoresis, antinuclear, anti-DNA, antithrombocytar, anti-ENA, anti-smooth muscle, and antineutrophil cytoplasmic antibodies, lupus anticoagulants, cryoglobulins, immune complexes, complement fractions, and neoplastic markers.

Serological investigations showed IgG but not IgM against cytomegalovirus (CMV), Herpes simplex, Varicella zoster, Epstein-Barr virus, and JC virus. Polymerase chain reaction search for Herpes simplex 1 and 2, Varicella zoster, CMV, Epstein-Barr virus, and JC virus in the CSF was negative.

Bone MRI showed several extensive asymmetrical lesions in the subcortical and periventricular cerebral white matter, some of which exerted a mass effect on the nearby CSF spaces. All lesions exhibited thick ring-like enhancement after intravenous contrast administration (figure). The brain stem, cerebel-lum, and cervical spinal cord were spared.

The patient had a progressive spontaneous remission of symptoms and signs. The neurological examination 20 days after onset showed slightly increased deep tendon reflexes on the right side and was normal 40 days later; all laboratory analyses were normal except for antistreptolysin tities (265 UI/ml). Two MR scans at 1 and 4 months after onset showed progressive reduction of the extension of cerebral white matter lesions, which did not show contrast enhancement. A final MR scan 20 months after onset showed further regression of lesions without contrast enhancement but a new large lesion in the left occipital white matter, which showed moderate contrast enhancement. At present, after 5 years, the patient is in a good state of health and neurological examination and laboratory tests are normal.

The close temporal relation between assumption of dialysable leucocyte extract therapy and appearance of cerebral white matter lesions in our patient supports the possibility that the association of the two events might not be casual. Despite the absence of biopsy, we reasonably excluded...
the diagnosis of vasculitis or neuro-Bechet's disease although in the absence of biopsy. In fact, the clinical, laboratory, and MRI findings were not typical and a low titre of anti-cardiolipin antibodies is found in 2% of healthy subjects. The occurrence at different time of focal cerebral white matter lesions highly supports the diagnosis of multiple sclerosis, but some clinical and laboratory findings in our patient are not typical for this condition. Mental confusion is not common at the onset patient are not typical for this condition. Clinical and laboratory findings in the our cerebral white matter lesions highly supports in infections such as during vaccinations or viral infections. Of multiple cerebral lesions after therapy with leucocyte extract had triggered an autoimmune mechanism. Disseminated encephalitis and multiple autoimmunogens in multiple sclerosis. Disseminated encephalitis and multiple antibodies syndrome, a form of pervasive developmental disorder. No have symmetric calcifications of the basal ganglia, dentate nuclei and cortex, or Fahr's disease—whether idiopathic or associated with hypoparathyroidism—previously been associated with this handicap. We present the case of a 24 year old man with Asperger's syndrome, primary hypoparathyroidism, and multifocal brain calcifications. According to medical history, the patient's mother had received weekly injections of Depopovera during pregnancy. A single child born after a normal term delivery, he underwent surgery for an inguinal hernia at 3 weeks. Developmental milestones were only moderately delayed. At 9 months, he rolled instead of crawling. He walked at 15 months, spoke at 2 years with poor articulation, and still speaks in short, unelaborated sentences. His social and language development lagged in grade school and he occasionally got into fights. In late adolescence, antisocial behaviour took the form of shoplifting and repeated long distance calls to pornographic hot lines. As an adult, his social adaptation remains poor: he currently lives with his mother and works irregularly as a dishwasher in a restaurant. He is indifferent, isolated, and resists novelty. He enjoys repetitive and solitary activities such as slot machine games and playing the piano.

Neurological examination showed bilateral hyperreflexia, mild imprecision of fine finger movements, dysgraphaesthesia on sensory testing, and a manneristic gripping handshake. There were no extrapyramidal

Fahr's disease and Asperger's syndrome in a patient with primary hypoparathyroidism

Abnormal calcium phosphate metabolism has not previously been associated with Asperger's syndrome, a form of pervasive developmental disorder. Nor have symmetric calcifications of the basal ganglia, dentate nuclei and cortex, or Fahr's disease—whether idiopathic or associated with hypoparathyroidism—previously been associated with this handicap. We present the case of a 24 year old man with Asperger's syndrome, primary hypoparathyroidism, and multifocal brain calcifications.

According to medical history, the patient's mother had received weekly injections of Depopovera during pregnancy. A single child born after a normal term delivery, he underwent surgery for an inguinal hernia at 3 weeks. Developmental milestones were only moderately delayed. At 9 months, he rolled instead of crawling. He walked at 15 months, spoke at 2 years with poor articulation, and still speaks in short, unelaborated sentences. His social and language development lagged in grade school and he occasionally got into fights. In late adolescence, antisocial behaviour took the form of shoplifting and repeated long distance calls to pornographic hot lines. As an adult, his social adaptation remains poor: he currently lives with his mother and works irregularly as a dishwasher in a restaurant. He is indifferent, isolated, and resists novelty. He enjoys repetitive and solitary activities such as slot machine games and playing the piano.

Neurological examination showed bilateral hyperreflexia, mild imprecision of fine finger movements, dysgraphaesthesia on sensory testing, and a manneristic gripping handshake. There were no extrapyramidal calcifications of the basal ganglia, dentate nuclei and cortex, or Fahr's disease—whether idiopathic or associated with hypoparathyroidism—previously been associated with this handicap. We present the case of a 24 year old man with Asperger's syndrome, primary hypoparathyroidism, and multifocal brain calcifications.

According to medical history, the patient's mother had received weekly injections of Depopovera during pregnancy. A single child born after a normal term delivery, he underwent surgery for an inguinal hernia at 3 weeks. Developmental milestones were only moderately delayed. At 9 months, he rolled instead of crawling. He walked at 15 months, spoke at 2 years with poor articulation, and still speaks in short, unelaborated sentences. His social and language development lagged in grade school and he occasionally got into fights. In late adolescence, antisocial behaviour took the form of shoplifting and repeated long distance calls to pornographic hot lines. As an adult, his social adaptation remains poor: he currently lives with his mother and works irregularly as a dishwasher in a restaurant. He is indifferent, isolated, and resists novelty. He enjoys repetitive and solitary activities such as slot machine games and playing the piano.

Neurological examination showed bilateral hyperreflexia, mild imprecision of fine finger movements, dysgraphaesthesia on sensory testing, and a manneristic gripping handshake. There were no extrapyramidal

Fahr's disease and Asperger's syndrome in a patient with primary hypoparathyroidism

Abnormal calcium phosphate metabolism has not previously been associated with Asperger's syndrome, a form of pervasive developmental disorder. Nor have symmetric calcifications of the basal ganglia, dentate nuclei and cortex, or Fahr's disease—whether idiopathic or associated with hypoparathyroidism—previously been associated with this handicap. We present the case of a 24 year old man with Asperger's syndrome, primary hypoparathyroidism, and multifocal brain calcifications.

According to medical history, the patient's mother had received weekly injections of Depopovera during pregnancy. A single child born after a normal term delivery, he underwent surgery for an inguinal hernia at 3 weeks. Developmental milestones were only moderately delayed. At 9 months, he rolled instead of crawling. He walked at 15 months, spoke at 2 years with poor articulation, and still speaks in short, unelaborated sentences. His social and language development lagged in grade school and he occasionally got into fights. In late adolescence, antisocial behaviour took the form of shoplifting and repeated long distance calls to pornographic hot lines. As an adult, his social adaptation remains poor: he currently lives with his mother and works irregularly as a dishwasher in a restaurant. He is indifferent, isolated, and resists novelty. He enjoys repetitive and solitary activities such as slot machine games and playing the piano.

Neurological examination showed bilateral hyperreflexia, mild imprecision of fine finger movements, dysgraphaesthesia on sensory testing, and a manneristic gripping handshake. There were no extrapyramidal
sions. His IQ score was in the low range (WAISCI=85 at the age of 13; Barbeau-Pinar=82 at the age of 17). He also presented an impairment on the Tower of London test, which measures executive function, and in a task assessing the understanding of others’ intentions. These two findings are reliably present in pervasive developmental disorders, in this IQ range. In addition, his performance on the Tower of Toronto test disclosed impaired performance in procedural learning. Psychiatric assessment showed scores above the cut off for autism according to the autism diagnostic interview (ADI), a standardised interview that requires specific training and those administering it to have a 0.90 reliability with other researchers. The subject was positive for the diagnosis of autism, being above cut off values in the three relevant areas of communication, social interactions, restricted interests, and repetitive behaviours. Nevertheless, he did not present delay in language acquisition or morphological atypicalities in language development, which corresponds to DSM-IV criteria for Asperger’s syndrome.

Brain CT showed dense calcium deposits in the basal ganglia, thalamus, cerebellar dentate nucleus, and orbitofrontal cortex, consistent with Fahr’s disease (figure). SFCT showed increased activity in the basal ganglia relative to the cerebral cortex. A fine banded karyotype was normal. Serum calcium was 1.55 mM (normal 2.15–2.55 mM), phosphate 1.69 mM (normal 1.07–1.35 mM), ionised calcium was 1.55 mM (normal 2.15–2.55 mM). Serum parathyroid hormone was below 0.6 (normal 1.0–6.55 µM/L), and a nuclear scan showed no uptake in the parathyroid glands showed an absence of activity. With a combination of vitamin D3-calcium supplementation and cognitive-behavioural therapy, serum calcium, and phosphate concentrations normalised and his behaviour improved marginally.

Asperger’s syndrome is a subtype of pervasive developmental disorder of unknown aetiology. Evidence for involvement of specific brain regions in pervasive developmental disorder is scarce and inconclusive. Nevertheless, the tempo-orbital region is the most often involved in pervasive developmental disorders abnormal functioning of the frontal cortico-striatal network is suspected from replicated findings of executive function deficits and from occasional findings of frontal hypometabolism or abnormal macroscopic brain morphology. Abnormal cell counts and morphology in the cerebral hemispheres have also been reported, but the relation of these findings to autism is controversial.

Fahr’s disease consists of symmetric calcifications, located mainly in the basal forebrain and cerebellum, which are of various aetologies. Cognitive and behavioural abnormalities may be present when calcifications occur early in development. A fortuitous association between pervasive developmental disorder and ataxia, pericardia, given the paucity of published cases, is plausible in the presented patient. Nevertheless, our case suggests that abnormal phospho-calcium metabolism could produce an autistic syndrome when brain calcifications cause specific neuropsychological deficits, due to their localisation. For example, errors of social judgement may be related to calcifications of the orbitofrontal cortex, whereas dysfunction of frontal-basal ganglia circuits may contribute to repetitive and ritualistic activities. Additionally, developmental lesions of the basal ganglia and cerebellum may contribute to the abnormalities of sensory attention, procedural learning, and motor intention in this patient.

The finding that the clinical picture of autism can be found in a wide range of medical conditions giving rise to organic brain dysfunction is not new, but the relation between these conditions and autism are often considered meaningless. By contrast, this case, similarly to some others suggests that dysfunction in key brain circuits may result in behavioural and cognitive abnormalities considered indistinguishable from idiopathic pervasive developmental disorder. This case also suggests that careful biological assessment of this group of patients may disclose focal brain lesions associated with identifiable cognitive deficits. Could these clinical coincidences be instructive for a neurodevelopmental model of autism?

Hypertrophic atlantoaxial ligaments: an unusual cause of compression of the upper spinal cord

The craniovertebral junction can be affected by several pseudotumorous masses extradurally located, such as rheumatoid panus, hypertrophic non-union of odontoid fracture, post-traumatic cicatrix, syringobulbia, tumorous calcium pyrophosphate dihydrate crystal deposition, tophaceous gout, calcification of the posterior longitudinal ligament, syringoid disease-like pigmented villonodular synovitis, and syringo-chorioretinitis. Hypertrophy of the atlantoaxial ligaments as a consequence of degenerative disease was recently recognised as an individual entity. Only five previous cases have been published. We add another case to the short series available in the literature, emphasising that as the cause of the spinal cord compression is amenable to surgical removal, symptomatic patients should be diagnosed and treated without delay. A 66 year old woman presented with a rapid development of progressive spastic tetraparesis and an unremarkable medical history. There was no osteosclerosis or instability on plain cervical radiography and CT. A bone scan with Tc was unremarkable. Magnetic resonance imaging showed a retro-odontoid extradural mass that was homogeneous and isointense on T1 weighted signal, demor-
Selective hemihypesthesia due to tentorial coup injury against dorsolateral midbrain: potential cause of sensory impairment after closed head injury

A 63 year old woman who fell off her bicycle had a left temporal region head injury with evidence of initial loss of consciousness of 5 minutes and scalp excoration of that area. On arrival at our hospital 30 minutes later she was alert and oriented. Cranial nerve functions, including extraocular motion and hearing function, were preserved. Pain and temperature sensations of the right side, including her face, showed a 70% decrease compared with the left side; however, position and vibration sensations were normal. Other neurological examinations, including motor function, coordination, and deep tendon reflexes, were normal. The patient’s only complaints were left temporal headache and right hemihypesthesia.

Brain CT on admission showed a discrete and linear high density at the left ambient cistern without other intracranial lesions. On the next day CT showed an obscure low density at the dorsolateral midbrain in addition to the previous lesion (figure). Brain MRI, taken 3 days later, demonstrated an intraparenchymal lesion, at the surface of the left dorsolateral midbrain in high intensity on a T2 weighted image. The high intensity lesion corresponding to haematoma on CT was seen in the ambient cistern (figure). Taking both CT scans and MRI into consideration, this case was diagnosed as traumatic midbrain contusion.

The loss of pain and temperature sensation improved gradually and the patient was discharged 2 weeks later. T2 weighted images 1 month later showed a more localised lesion in the same area. The coronal slices showed a high intensity lesion at the level of lower midbrain coinciding with the tentorium level, disclosed as a low line between the occipital lobe and the cerebellar hemisphere (figure). The neurological deficits almost disappeared 6 months later.

Somatosensory impairment including pain is one of the most common complaints among patients with craniocevrical injury. Responsible lesions for sensory impairment, detectable by neuroimaging studies, almost always accompanies associated neurological deficits. To our knowledge, a selective injury at the spinothalamic or trigeminothalamic tracts due to closed head injury has not been highlighted in the neurological literature.

The MR images in our case showed a discrete lesion at the dorsolateral midbrain. Topographical study at this lower midbrain level showed that the lateral and ventral spinothalamic and ventral trigeminothalamic tracts pass at the surface of this level by carrying a superficial somatosensory input. The lesion shown in our MR images seemed to be localised to these tracts. The medial lemniscus for the deep sensation and lateral lemniscus and nucleus of inferior colliculus associated with hearing function run ventral and dorsal to these tracts, respectively; which were seemingly spared in our patient. The topographical anatomy seemed to correspond to the neurological manifestations of our patient.

The mechanism of midbrain injury in our patient was speculated to be due to tentorial coup injury based on MR images. The location of contusion was at the lower dorsolateral midbrain, coinciding with the tentorial edge level. Initiation of injury was the surface of the midbrain; however, due to the proximity of the tentorial edge to the midbrain on the injured side, tentorial contact to the midbrain supposedly occurred more readily. Brain MRI findings support the anatomical features of this tentorial coup injury. This injury is not rare in patients with severe head injury, accompanied by other intracranial lesions, and is often caused by lateral displacement of the brain stem relative to the tentorium. It is influenced by congenital variation in the size and shape of the tentorial incisura. The brain stem of the patient with a narrow incisura is more vulnerable to the direct contusive effects than that of a patient with a wider incisura. Therefore, even in minor head injury, this mechanism may occur in patients preconditioned with narrow tentorial incisura, which may have been the case in our patient.

The concept of tentorial coup injury against the midbrain is not new. It usually accompanies various degrees of consciousness disturbance and other long tract signs, sensory deficits as well as cerebellar and cranial nerve palsy due to the midbrain lesion or other associated intracranial lesions. The clinical manifestation of our patient may represent one of the mildest forms of the midbrain contusion. Therefore, when we see a patient with post-traumatic sensory deficit, the possibility of this tentorial injury should be kept in mind even in minor head injury.

NAOKATSU SAEKI
YOSHINORI HIGUCHI
Departments of Neurological Surgery, Chiba University, School of Medicine, Chiba, Japan
KENRO SUNAMI
Kawatetsu Chiba Hospital, Japan
AKIRA YAMAUARA
Departments of Neurological Surgery, Chiba University, School of Medicine, Chiba, Japan
Correspondence to: Naokatsu Saeki, Department of Neurological Surgery, Chiba University, School of Medicine, 1-8-1 Inohana, Chuoh-ku, Chiba-shi, Chiba Japan 260-8670
email saeki@med.m.chiba-u.ac.jp

CORRESPONDENCE

Toluene induced postural tremor

We read with interest the article by Miyagi et al and comment on the medical treatment of toluene induced tremor. Microdialysis experiments in rats have shown that inhalation of toluene increases extracellular γ-aminobutyric acid (GABA) concentrations within the cerebellar cortex which probably explains why GABA agonists including benzodiazepines (for example, clonazepam) are not very effective in toluene induced tremor and ataxia. Rat experiments also showed a 50% reduction in brain catecholaminergic neurons.1 Degeneration of certain cerebellar pathways is probably responsible for the loss of this dopaminergic innervation.2 Dopamine agonists could therefore be of potential interest in the treatment of toluene induced tremor. This hypothesis was explored in a recently described case,3 which showed remarkable clinical and iconographic similarities with that described by Miyagi et al: (a) long history of chronic toluene inhalation, (b) marked postural tremor, (c) progressive worsening of the symptoms despite abstinence from inhalant misuse, and (d) mild cerebellar atrophy and marked low signal intensity in globus pallidi, thalami, red nuclei, and substantia nigra on T2 weighted MRI. As regards specificity of this condition and needing two MR scans of the head. The first point is that this study was based on a sample of patients with tuberous sclerosis complex. In the absence of such a study we would be cautious about implementing screening programmes based on what may be misleading criteria.

Early diagnosis of subependymal giant cell astrocytoma in children with tuberous sclerosis

Nabbout et al have attempted to identify the risk factors for the progression of subependymal nodules into giant cell astrocytomas (SEGAs) in tuberous sclerosis complex. In attempting to develop screening strategies that avoid iatrogenic morbidity, patient inconvenience, and excess cost, it is essential that the natural history of these lesions in the general population of patients with tuberous sclerosis complex be understood well.

We think that there are two problems with this study that should make the physician cautious about accepting the factors identified by Nabbout et al as a basis for a screening programme. The first is that this study was performed in a population that had been referred to a tertiary medical centre, and then had been further selected by virtue of having had at least 3 years tertiary centre follow up and needing two MR scans of the head. The prevalence of astrocytomas and risk factors, and hence the positive predictive value of any screening tool are likely to be different from those described in the highly selected group studied in this paper. The second concern is that the authors have made a potentially misleading decision to exclude more than half their study sample because they do not have lesions close to the foramen of Monroe. It is not certain that all SEGAs arise from lesions close to the foramen. They may arise in the fourth ventricle. Furthermore, the late presentation of many lesions in the lateral ventricles has, in the past, precluded accurate determination of their point of origin. The study selects 24 of 60 patients who had met their entry criteria but does not state how many of the excluded 36 patients had no subependymal nodules or nodules that were not “near the foramen of Monroe”. Included in this group is given for what constitutes proximity to the foramen. The authors were apparently not blinded at the point when they selected which patients had lesions near to the foramen and therefore there is an obvious issue of potential selection bias.

The consequence of excluding these patients may have been that false significance is given to their results. The data they present are fragile. Consider, for example, the consequence of introducing from these 36 non-selected patients a hypothetical single case that had a family history of tuberous sclerosis complex and a subependymal nodule which entered with gadolinium. The effect would be to remove the stated statistical significance (using Fisher’s exact tests) between the outcome and both of these explanatory variables.

Identifying the risk factors that can tell us which subependymal lesions will become invasive is important. As subependymal nodules and SEGAs seem to be histologically identical it is unlikely that pathologists will provide an answer. The study of Nabbout et al suggests some new hypotheses and reiterates about accepting the factors identified by Fisher’s exact tests between the outcome and both of these explanatory variables.

Atypical form of amyotrophic lateral sclerosis: a new term to define a previously well known form of ALS

We read with interest the article by Sasaki et al concerning the atypical form of amyotrophic lateral sclerosis (ALS). The pattern of muscular atrophy in these patients differed from that of typical ALS in that severe muscle involvement was confined to the upper limbs, predominantly the proximal portion and shoulder girdle, sparing the face and the legs until late in the disease’s course or until the terminal stage.

Over the past few years, we have noticed a growing interest in the renaming of this clinical form of ALS, which has its origins and predomination in the proximal muscles of the upper limbs and little or no effect of either a bulbar nature or in the lower limbs. Thus Hu et al coined the term flail arm syndrome, to describe a subgroup of patients affected by ALS that predominantly showed signs of lower motor neuron disease in the upper limbs, without significant functional involvement of other regions on clinical presentation. This subgroup of patients was clinically characterised by the display of progressive atrophy and weakness affecting the proximal muscles in the upper limb muscles in a more or less symmetric manner.

Recently, along these lines, Katz et al described a series of patients affected by an adult onset motor neuron disorder restricted to the upper limbs, with severe proximal and varying degrees of distal involvement, calling it amyotrophic brachial diplegia syndrome.

Other terms used to refer to this form of ALS have been danging arm syndrome, suspended form, orangetan sign, dead arm sign, bibrachial palsy, rizomelic amyotrophy, and the idea of naming it a distinctive phenotype of a neurogenic

Correspondence to: Dr Dirk Deleu, College of Medicine, PO Box 35, Sultan Qaboos University, Al-Khod, Muscat-123, Sultanate of Oman
deleu@omamtel.net.om

3 Bjorneras S, Nalund LU. Biochemical changes in different brain areas after toluene inhalation. Toxicology 1989;48:36.

FINBAR J O’CALLAGHAN, ANDREW LUX, JOHN O’SHANNESY

Bath Unit for Research in Paediatrics, Royal United Hospital, Bath BA1 3NG, United Kingdom

Correspondence to: Dr Finbar J O’Callaghan, Bath Unit for Research in Paediatrics, Royal United Hospital, Bath BA1 3NG, United Kingdom

Department of Clinical Pharmacology and Neurology, College of Medicine, Sultan Qaboos University, PO Box 35, Al Khod, Muscat-123, Sultanate of Oman

Rebecca J. Lynette, Andrew Lux, John O’Shannessy.
"man-in-the-barrel" syndrome has even been suggested. Probably all these terms used to define this variation of ALS are synonyms for an older, well known condition, the scapulohumeral form, or the chronic anterior poliomyelitis reported by Vulpian in 1886 and known in Franco-German literature as Vulpian-Bernhardt’s form of ALS. At certain stages of the disease’s clinical course, it is probably difficult to differentiate it from progressive muscular atrophy (PMA). Some authors have said that PMA with late onset scapulohumeral distribution (over 45 years of age) generally leads to ALS as a matter of course. 1

Be that as it may, the truth is that this atypical form of amyotrophic lateral sclerosis behaves differently from typical ALS. The comparative study with the rest of the ALS group supplied important clinical findings, such as little or no functional impairment of the bulbar muscles or legs. Hu et al also made four important statistical discoveries. 1

(1) The prevalence of this form of ALS constituted 10% of the ALS group as a whole (p = 0.05). 2 The age of onset of this form was similar to the rest of ALS. (2) There was a clear predominance among men (the male/female ratio was similar to the rest of ALS. (3) There was a high percentage of patients with bulbar involvement. As Gamez et al cite, many terms have been coined to describe this peculiar pattern of the muscular atrophy such as dangling arm, orang utan sign, dead arm syndrome, “man-in-the-barrel” syndrome has even been suggested. Probably all these terms used to define this variation of ALS are synonyms for an older, well known condition, the scapulohumeral form, or the chronic anterior poliomyelitis reported by Vulpian in 1886 and known in Franco-German literature as Vulpian-Bernhardt’s form of ALS.

In fact, these patients had cervical abnormalities such as dissociated dysarthria, interruption of the corticobulbar fibres. In fact, lacunar infarctions around the internal capsule-corona radiata are likely to underlie this ascending and descending involvement. 3

To assess corticopontocerebellar tract function, Urban et al investigated cerebellar blood flow in patients with isolated dysarthria using HMPAO-SPECT. This study included that the corticopontocerebellar tract is preserved in isolated dysarthria because of no evidence for cerebellar diaschisis on SPECT. Their SPECT findings on cerebellar blood flow were similar to our results. However, we wonder whether cerebral cortical blood flow was preserved in their patients, because our SPECT study suggested frontal cortical dysfunction as an underlying mechanism of isolated dysarthria. Lateral projections may contribute to isolated dysarthria.

Correspondence to: Correspondence to: Dr Josep Gamez, Servicio de Neurologia, Hospital Gerai, Universitari Vall d’Hebron, Passeig Vall d’Hebron 119-135, 08035 Barcelona, Spain. email: 12784jg@cc.ub.edu

References

Sasaki replies: We thank Gamez et al for their interest in our article concerning the atypical form of amyotrophic lateral sclerosis (ALS). 1

Over many years, several researchers have recognised this peculiar distribution of muscular atrophy in clinical practice. The clinical manifestations consist of the muscular atrophy confined to the shoulder girdle and the arms (proximally dominant), absence of deep tendon reflexes in the arms, normal deep tendon reflexes in the legs, and subluxation of the shoulder joints. Some patients progress to bulbar involvement, as Gamez et al cite, many terms have been coined to describe this peculiar pattern of the muscular atrophy such as dangling arm, orang utan sign, dead arm sign, syndromic form, flail arm syndrome, amyotrophic bulbar diplegia syndrome, bibrachial palsy and man-in-the-barrel syndrome. Some researchers classified into a category of motor neuron disease (ALS or spinal progressive muscular atrophy). However, others could not exclude the possible cause of cervical diseases such as dissociated motor loss in the upper extremity. 2 In fact, these patients had cervical abnormalities such as dissociated dysarthria, interruption of the corticobulbar fibres. In fact, lacunar infarctions around the internal capsule-corona radiata are likely to underlie this ascending and descending involvement. 3

Finally, we are in complete agreement that the atypical form of ALS can cause difficulty in diagnosis. The problem lies in the fact that cervical spondylosis is a common condition. It is found in 83.5% of men and 80.7% of women over the age of 75. The presence of cervical spondylosis in patients with ALS is considered to be a subtype of ALS. In my opinion, “dangling arm syndrome” or “dead arm sign” seems to be the most suitable term depicting this type of motor neuron disease. 4

I agree with Hu et al reporting four important statistical discoveries in this form of ALS: the prevalence percentage of 10% of the whole ALS group, the similar age onset to the rest of ALS, a predominance among men (the male/female ratio was similar to the rest of ALS), and a longer median survival. It is clinically important to give wider publicity to the existence of this atypical form of ALS to avoid unnecessary surgical intervention for cervical abnormality.

JOSEP GAMEZ
CARLOS CERVERA
AGUSTÍN CODINÁ
Servicio de Neurologia, Hospital Gerai, Universitari Vall d’Hebron, Passeig Vall d’Hebron 119-135, 08035 Barcelona, Spain.

SHOICHI SASAKI
Department of Neurology, Neurological Institute, Tokyo Women’s Institute, Tokyo Women’s Medical College, 8-1 Kanasu-cho, Shinjuku-ku, Tokyo 162-8666, Japan

BUNGO OKUDA
HISAO TACHIBANA
Division of Neurology, Fifth Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya
Motor cortical excitability in Huntington's disease

We read with great interest the paper of Hanajima et al reporting that intracortical inhibition of the motor cortex is normal in patients with chorea of various origins. At variance with their results we previously found a reduced intracortical inhibition in a group of patients with genetically confirmed Huntington's disease. Hanajima et al suggest that the discrepancies between the two studies might be due to differences in patient selection as they included patients with early stage Huntington's disease to “study the pathophysiology of chorea unaffected by other disorders movement.” They postulated that our cases, because of the reported correlation with a dyskinesias rating scale, had a more advanced stage of the disease possibly with coexisting dystonia or rigidity. These assertions deserve some comments.

The mean disease duration of our nine patients with Huntington's disease was 6.2 (4.1) years which is actually shorter than the duration of the six patients reported by Hanajima et al (8.3 (5.9) years). Most of our patients could be considered in an early stage of the disease, the Unified Huntington's disease rating scale, and none presented dystonia, rigidity, or any other additional movement disorder. In this regard, however, it should be pointed out that bradykinesia is often associated with chorea in patients with Huntington's disease and may even precede the appearance of choreas.\(^1\) Chorea itself is often reduced in the more advanced Huntington's disease stages.\(^2\) It is unlikely, therefore, that any neurophysiological approach can test purely chorea even in the early Huntington's disease stages. In addition, different mechanisms are involved in Huntington's disease and other choreas as suggested by the lack of impairment of somatosensory evoked responses and long latency stretch reflexes in the second.\(^3\)

We were not really surprised at the results of Hanajima et al as we do share their opinion that patients with Huntington's disease may be characterised by large individual differences in the involvement of motor cortical areas. Actually, three patients in our study showed an amount of intracortical inhibition within the confidence limits of the control population. We also think that the impairment of intracortical inhibition is likely to develop during disease progression as we did not find any change in four patients, two of them already reported, with positive DNA testing but completely asymptomatic.

The discrepancies between the two studies are more likely to be explained, at least in part, by some methodological differences. For instance, the amplitude of the control response was larger in our set (approximately 1.0 mV compared with 0.3 mV in the study of Hanajima et al). This may induce a different sensitivity of the test, and the amount of intracortical inhibition in our normal controls is greater (see also\(^4\)) than in the study of Hanajima et al.

When interpreting the results of studies with paired transcranial magnetic stimulation pathophysiological it should be kept in mind that similar changes of intracortical inhibition have been shown in patients with various movement disorders (focal dystonia, myoclonus, parkinsonism, restless legs syndrome, Tourette's disorder), but also in different diseases such as amyotrophic lateral sclerosis.\(^5\) We think, therefore, that the impairment of intracortical inhibition cannot be regarded as the marker of a specific pathophysiological mechanism, but is likely to reflect a non-specific imbalance of inhibitory and facilitatory circuits within the motor cortex.

The authors reply:

We were very grateful for the response of Abbruzzese et al to our paper. We completely agree with their opinions.

The discrepancy between the two studies\(^2\) may not be mainly due to the different stage of the disease between the two groups of patients. Although the duration of the disease is one factor to judge the disease stage, the severity of the disease (stage of the disease) is also positively correlated with CAG repeat number.

We may have to take CAG repeat number into consideration in comparisons. Unfortunately, however, we have no way to do such comparisons between these two studies. We could say, at least, that the intracortical inhibition was normal even at the same stage of the disease as that of the patients of Abbruzzese et al, if studied with our method.

We also consider that methodsological differences are very important in paired magnetic stimulation. The results strongly depend on the intensities of both a conditioning and a test stimulus. Especially, the intensity of the conditioning stimulus is critical. We have no difficulty in showing normal inhibition, but have much difficulty in showing reduced or absent inhibition because of such marked dependence of the results on the intensities of stimuli. Therefore, we used the intensity of the conditioning stimulus before we confirmed inhibition in studies of patients.\(^3\) We used an intensity of 5% less than the active threshold as a conditioning stimulus. A facilitatory effect must often superimpose on the intracortical inhibition. This makes the interpretation difficult. Was the intensity of 80% of the resting threshold above the active threshold in their patients? In our experience, 80% of the resting threshold was sometimes above the active threshold. These factors must be considered in interpreting the results of paired magnetic stimulation.

Such a methodological problem is inherent in human studies because we have no direct way of detecting the threshold of the motor cortex. Our two results must be true. We may have two completely different interpretations of these results. (1) The intracortical inhibition is normal in Huntington’s disease. Abbruzzese et al showed the reduced inhibition because they used a high intensity conditioning stimulus with which the degree of the
intracortical inhibition is often decreased even in normal subjects. The 90% of the threshold for relaxed muscles must correspond to different values relative to the threshold for active muscles in patients from that in normal subjects. (2) The intracortical inhibition is disturbed and FVs and FVs in patients from that in normal subjects. This slight abnormality could be detected with their method but not with ours because their method has better sensitivity in detecting an abnormality than ours. Which ever is true, true, the intracortical inhibition must be normal or slightly disturbed in Huntington’s disease.

R HANAJIMA
Y UGAWA
Department of Neurology, Division of Neuroscience,
Graduate School of Medicine, University of Tokyo,
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan

Critical closing pressure: a valid concept?

Czosnyka et al2 recently published a study investigating the clinical significance of critical closing pressure (CCP) estimates in patients with head injury. We see problems both with the theoretical foundation of their CCP concept and with the interpretation of their results.

Firstly, the physiological meaning of both formulas of CCP presented (CCP1 and CCP2, respectively) is questionable. The implication of both presented equations is that the instantaneous value of cerebral blood flow velocity (FV(t)) at a given moment is equal to arterial blood pressure at the given time (ABP(t)) minus CCP divided by cerebrovascular resistance (CVR):

\[FV(t) = \frac{(ABP(t) - CCP)}{CVR} \]

(1)

At the time of systolic and diastolic pressure values (ABP, ADBP), respectively, it follows that systolic and diastolic FVs (FVd, FVs) should equal to (ABPs−CCP)/CVR and (AB DP−CCP)/CVR, respectively. However, it is well known that the vascular resistance valid for the static pressure/flow connection (CVR), concerning mean pressures and flows) is different from and in general much higher than resistances determining dynamic pressure/flow relations (CVR1) as in the case of pulsatile pressures. Therefore, equation 1 cannot be applied to describe dynamic flow. This can best be illustrated using the frequency domain approach (ABP=mean pressure; FV=mean flow velocity; A1=amplitude of the pulsatile pressure wave; F1=amplitude of the pulsatile flow wave):

\[FV(t) = \frac{(ABP(t) - CCP)}{CVR} \]

(2)

(3)

Inserting equations 2 and 3 into the frequency domain equation for CCP2 of the authors:

\[CCP2 = \frac{ABP-A1/F1}{FV} \]

(4)

leads to

\[CCP2 = \frac{ABP-CCV_1/CCV_0}{(ABP-CCP)} = \frac{ABP-CCV_1/CCV_0}{FV} \]

(5)

Obviously, CCP2 is only in the case of CCP1=CCV0 equal to CCP. Under the more realistic assumption that CVR1 is equal to about half of CVR0 it follows for CCP2:

\[CCP2 = 0.5ABP + 0.5CCP \]

(6)

With decreasing CVR1/CCV0 ratios, CCP2 becomes more and more dependent on ABP and independent of CCP. In any case, without exact knowledge of the CVR1/CCV0 ratio, equation 4 is useless for a valid CCP calculation.

The second criticism concerns the correlation of the calculated FVs with mean ABP found by the authors (r=0.5; p<0.05). According to the original idea of Burton,1 CCP represents a certain ABP value below which small vessels begin to collapse. CCP should, therefore, be a constant value independent of the actual ABP. On the other hand, this significant correlation can be explained by our equation 5, again indicating the missing physiological basis of the CCP concept of the authors.

Thirdly, it seems doubtful that CCP could be estimated using pressure and flow values from ABP ranges clearly above CCP and flow values clearly above zero flow, respectively. As long as small vessels do not collapse (ABP>CCP) it is not possible to decide whether their actual wall tension is determined more by transmural pressure or by active vasococonstruction. However, the relative contribution of both effects is critical for the limit of CCP.

Finally, I would be interested in the authors’ explanation of negative diastolic flow values as seen in Doppler spectra of arteries with a high vascular resistance (peripheral arteries, middle cerebral artery during strong hypocapnea). In the case of ABP<CCP and a small vessel collapse according to the model of the authors, CVR should increase towards ∞ and FVd towards zero (equation 1). Negative flow values could, consequently, not occur.

I suggest that the relation between pulsatile pressure and flow should be better described using the concept of different static and dynamic resistances (CVR0 and CVR1). The driving pressure of the mean FV is more accurately given by cerebral perfusion pressure (CPP=ABP−ICP) than by ABP−CCP. Therefore, equation 2 changes to

\[FV = \frac{(ABP-ICP)}{CVR} \]

(6)

and equation 5 to

\[CCP2 = \frac{ABP-1\{RCVR0+CVR1\}}{CVR0×CCP} \]

(7)

Equation 7 explains well the positive correlations found between CCP2 and ABP and between CCP2 and ICP, respectively, without assuming a connection between CCP2 and Burton’s concept of “critical closing pressure”.

ROLF R DIEHL
Department of Neurology, Krupp Hospital,
Alfried-Krupp-Straße, 54117 Essen, Germany

Czosnyka et al reply

We thank Diehl very much for the interesting letter provoking some mathematical considerations about cerebral haemodynamics.

We need to emphasise that our primary intention was to investigate Burton’s hypothesis in patients with head injury, that critical closing pressure (CCP) may be represented by a sum of intracranial pressure (ICP) and the tension in the arterial walls.

CCP=ICP+active tension of arterial walls

Aaslid proposed the mathematical formula taken for calculations:

\[CCP = ABP−CCV_0×FV_0/FV_0 = ABP−ABPV_0×FV/V_0 \]

where (ABP and FV are mean values of arterial pressure and MCA flow velocity, ABPs and FVs are systolic values, ABPpp and FVpp are peak to peak amplitudes). A graphical interpretation of this formula has been given in fig 1. CCP is an x intercept point of linear regression between subsequent systemic and diastolic values recorded within 6 seconds intervals of flow velocity (along y axis) and arterial pressure (along x axis).

In fact, the formula proposed by Michel et al4 is very similar. The only difference is that instead of the original waveforms of FV and ABP, first (fundamental harmonic components were taken for the same graphical construction—that is:

\[CCP = ABP−A1/F1×FV \]

in our paper5 we confirmed empirically that both CCP1 and CCP2 produced the same values in a group of patients after head injury, therefore, the mathematical consideration of Diehl (equations 1–5) must contain an error:

First of all we cannot see how equation (1) from Diehl’s letter can be derived from any of our formulae. Everyone who has tried to plot momentary values from ABP pulse waveform against momentary values of FV waveform knows that it never plots a straight line (as equation (1) implies). We rather see an ellipsoidal shape which is very seldom regular enough to be approximated by a straight section. Therefore, equation (1) in Diehl’s letter is not correct. In fact, CVR is a frequency dependent variable (represents vascular impedance) and if a linear theory can be applied, division in (1) should be substituted by a convolution with an inverse Fourier transform of “cerebrovascular admittance”.

Definition of CVR0 as FV/(ABP−CCP) is completely artificial and lacks a physiological basis. It is rather taken from the geometrical interpretation of figure 1 in. In our material equivalent of parameter CVR0 (as defined by Diehl) is 1.007 (SD 0.31) and CVR1 0.972 (SD 0.29), the difference is not statistically significant. Therefore, the suggestion that the CVR1/CCV0 ratio is 0.5 is not correct. Real CVR0 should be calculated as (ABP−ICP)/FV. We fully agree that equation (5) proposed by Diehl is “useless for valid CCP calculation”. We have not used it and have never suggested anyone could do so.

The second criticism was that our CCP positively correlated with ICP. It should not be a surprise. When ABP decreases, vasodilatation occurs and arterial wall tension decreases. Therefore preising ICP was constant, CCP should decrease. A rather weak (though significant) correlation suggests that not all of our patients were pressure reactive or ICP was not always constant.

The final issue concerning negative flow velocities is a trap. Diehl has prepared for himself. We never suggested that any factor interactable as cerebrovascular resistance (CVR0 or CVR1) should be involved in the concept of critical closing pressure. From the definition, closing is a strongly non-linear phenomenon, therefore applying linear theory here is very
risks. How risky—we can see from Dich's letter. Cerebrovascular resistance certainly never increases to infinity, only after death.

We fully agree with the considerations regarding equations (6) and (7). CCP can be understood as a combination of ABP and ICP with coefficients describing properties of the cerebrovascular bed. Whether it simplifies our knowledge—we personally find it doubtful.

Finally, we are truly obliged to Dich for an opportunity to have this interesting discussion.

MAREK CZOSNYKA
PIOTR SMELEWSKI
STEFAN PIECHNICK
Neurological and Movement Disorders Unit, Addenbrooke's Hospital, Cambridge CB2 2QQ, UK

Correspondence to: Dr Marek Czosnyka
email MC141@MEDSCHL.CAM.AC.UK

High frequency stimulation of the subthalamic nucleus and levodopa induced dyskinesias in Parkinson’s disease

Reduction in the neuronal activity of the subthalamic nucleus leading to diminished excitatory output of the globus pallidum internum is associated with chorea-ballism in monkeys.1 Levodopa induced dyskinesias are currently thought to share a similar pathophysiology2 but recent findings also suggest that abnormal patterns of neuronal firing in the globus pallidum internum may be as relevant.3 Data from both parkinsonian monkeys and patients with Parkinson’s disease submitted to lesion4 or functional blockade of the subthalamic nucleus5 are in keeping with such a general principle, but the threshold to induce dyskinesias in the parkinsonian state is higher than in intact animals.6 The case recently described by Figueiras-Mendez et al.1 Idealistically we would like to see the trajectory and length of the different recording tracks, the effects of microstimulation, and the postsurgery MRI with measurement of the tip of the electrodes. If, as assumed, the subthalamic nucleus was indeed correctly targeted in this patient, the pathophysiology of the basal ganglia will need to be revisited.

J A OBSEO
G LINAZASORO
J GURIDI
E RAMOS
Centro de Neurologia y Neurocirugia Funcional, Clinica Quiron, San Sebastian, Spain

J A OBSEO
M C RODRIGUEZ-OROZ
Hospitien, Tenerife, Spain

Hospital de Navarra, Pamplona, Spain

Correspondence to: Correspondence to: Professor J A Obeso, 30 Cizer Arteia, Cizer Mayor, 31180 Navarra, Spain.

Figueiras-Mendez et al reply:

We thank Obeso et al for their comments regarding our recent report.1 In summary, they raised some interesting points which need further clarification.

Recognition of the electrical activity of the subthalamic nucleus as a differential diagnostic criteria: (a) high frequency discharge (25 Hz or higher) within the nucleus,2 (b) a tonic (regular), phasic (irregular) or a rhythmic pattern of discharge;3 (c) response to voluntary/passive movements.4,5 When rhythmic discharges were recorded irregular passive manipulations were performed or the patients asked to move the limbs irregularly; (d) response to tremor therapy. Positive cells were so considered based on the correlation of the EMG and the accelerometer recorded simultaneously. Artificial manual stoppage by one experimenter (confirmed by visual inspection, silence in the EMG, and stoppage in the oscillating accelerometer) and/or spontaneous arrest in the tremor modified the firing frequency and discharge pattern or rhythmic cells corroborating the tremor nature of the cell; (e) the activity of the cells above the subthalamic nucleus and zona incerta with proper characteristics6 and7 (b) a change in the background basal noise when entering the subthalamic nucleus. A higher activity is observed; (d) the contrary is observed when leaving the subthalamic nucleus. A lower background noise level; (b) the activity of substantia nigra pars reticulata cells when further lowering the microelec- tode. These cells discharge at high frequency at regular intervals as identified in patients and primates. All these points were fulfilled by the patient reported.

Considering the questions in the letter by Obeso et al, we make the following comments: (a) Action potentials of large amplitude or rhythmic cells are easily recognised from the rest of the recording cells, and are not very common. The recordings shown in the article have amplitudes less than 0.3 mV and could not be considered large amplitude potentials. We start to record activity from 3 mm before entering the subthalamic nucleus, traverse the length of the subthalamic nucleus, and go further down several mm to encounter substantia nigra pars reticulata cells. Changes in the background activity are clearly recognised and are higher when entering the subthalamic nucleus. Enough cells are recorded along the tracks experimented to recognise a large amplitude potential. The
low background activity found in our recordings is only due to the better signal-to-noise ratio of the electrodes used. “Good recording electrodes” depend on many variables such as tip size, tip profile, insulation material, impedance, manufacture, etc. The signal-to-noise ratio of the cells in question has the same ratio as the subthalamic nucleus cell shown by Hutchinson et al. In our report, cells discharged tonically, but other voluntary movements were observed. One cell was considered tremorgenic. The stimulating electrode was placed in the trajectory of the electrode. Unfortunately, this point was not mentioned in the paper. It would surely have changed the opinion of Obeso et al.

In the feline patient, a total of eight neurons were recognised as belonging to the subthalamic nucleus in the right hemisphere, with a mean frequency of 74 Hz (range 38–109 Hz). Four of them responded to voluntary movements, and one was considered tremorgenic. The stimulating electrode was placed in the trajectory of the electrode. In the other track, nine neurons were recorded in the subthalamic nucleus. All of them followed the above mentioned criteria with a mean of 69 Hz (range 17–98 Hz). Five cells responded to the left hemisphere, and two voluntary movements. One of them was also positive to tremor. The stimulating electrode was placed in the lateral hemisphere. The other stimulating electrode was always tested in the surgery before cementing it and, only when the symptoms are considered of unquestionable benefit, it is left in the chosen place. The final position of the electrodes, assessed by velocimetry, was as follows: (a) posteroanteriorm: 1.5 mm behind the mean point of intercommisural line, (b) height: 6.5–6 mm below the intercommisural line, and (c) lateral: 12 mm for the right hemisphere, and 11.5 mm for the left hemisphere.

ROBERTO FIGUEIRAS-MÉNDEZ, FERNANDO MARIN-ZARZA, JOSÉ ANTONIO MOLINA, FÉLIX JAVIER JIMÉNEZ-JIMÉNEZ, JAVIER ORTÍ-PAREJA, CARLOS MAGARINOS, MIGUEL ÁNGEL LÓPEZ-PINO, VICENTE MARTÍNEZ

Correspondence to: Dr F Jiménez-Jimenez, C/Corregidor, Jose de Pasamonte 24 3ºD, E 28030 Madrid, Spain

Nitric oxide in acute ischemic stroke

The pivotal role of nitric oxide (NO) in cerebral ischemia has been elegantly highlighted in the recent editorial by O’Mahony and Kendall. Although studies of neuroprotective agents have been largely disappointing, pharmacological manipulation of NO may represent a novel means of protecting the brain from ischemic insult. One area not discussed in the recent review is nitric oxide neuroprotective effect of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors or “statins” in cerebral ischemia. Preliminary studies have shown that statins modulate brain nitric oxide synthase activity and NO release in a neuroprotective manner. Data from a murine model of ischemic stroke demonstrate that prophylactic statin therapy reduces infarct size by about 30%, and improves neurological outcome in nonmammalian animals. In this investigation, statin therapy directly upregulated endothelial NO synthase in the brain without altering expression of neuronal NO synthase. Recent findings also suggest that statin therapy inhibits the activation of inducible NO synthase. Lovastatin has been shown to inhibit cytokine-mediated upregulation of inducible NO synthase and production of NO in rat astrocytes and macrophages, and this inhibition may represent a novel means of suppressing inflammatory responses that accompany ischemia.

Most interestingly, these preliminary findings suggest that statin therapy may modify the friendly and unfriendly faces of brain NO in a synergistically neuroprotective manner. These and other variable effects of statins in cerebral ischemia are potentially of great importance in human neuroprotection and ongoing experiments address this. The Prospective Study of Pravastatin in the Elderly at Risk (PROSPER) study4 will help clarify their role in human cerebrovascular disease.

CARL J VAUGHAN
Division of Cardiology, Department of Medicine, Wills Medical College of Cornell University, The New York Presbyterian Hospital, Starr 4, 525 E. 68th Street, New York, New York 10021, USA
NORMAN DELANTY
Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA

Correspondence to: Dr Carl Vaughan email evaughan@nyms.med.cornell.edu

O’Mahony replies:

The comments of Vaughan and Delanty draw attention to the evidence that statin therapy upregulates the expression of nitric oxide synthase without affecting neuronal NO. Their contention is that statin therapy may be neuroprotective. Statins may indeed prevent strokes and reduce infarct size when given as prophylactic therapy. But it is much harder to prove the protective effects of statins in acute stroke. At present, there is no evidence indicating that acute administration of statins in animal models of ischemic stroke is neuroprotective. Their point about statins and endothelial NO is interesting, but not relevant to neuroprotective therapy in acute stroke.

DENIS O’MAHONY
Clinical Investigation Unit, Queen Elizabeth Hospital, Edgbaston, Birmingham B15 2TT, UK

BOOK REVIEWS

That neuroimmunology has come of age is demonstrated by the profusion of volumes published on the subject in recent years. This volume focuses on the central nervous system, and aims to satisfy the curiosity of both the effervescent clinician faced with a diagnostic conundrum and the experimental immunologist inquiring into the clinical relevance of his findings. At first sight it seems improbable that both of these goals might be achieved in one volume; this book however, succeeds admirably in what it sets out to do, as much as a result of its literary style as its content.

The intrusive authorial voice fell into disfavour in literary circles around the turn of the century because it was thought that calling attention to the act of narrating might detract from realistic illusion, so reducing the emotional intensity of what was being represented. It is a device much favoured by postmodern writers who expose the nature of fictional constructs. The intrusive medical author never dropped out of fashion, although in these days of evidence based prejudice, authorial omniscience might be considered suspect. The authors of this volume are intrusive in a guiding conversational manner that makes this book by far the most readable of the neuroimmunological texts.

The book opens with a highly accessible chapter on immunological mechanisms of the nervous system. There follows a chapter that integrates the neurobiology of multiple sclerosis with contemporary issues of aetiology, cell injury, and repair. Next, a chapter on inflammatory demyelinating disease and syndromes of isolated demyelination, acute disseminated encephalomyelitis and allied conditions, and some of the syndromes of demyelination that are now accepted as part of the range of multiple sclerosis. The chapters on demyelinating disease are drawn to a close by a discussion of existing and experimental therapies for multiple sclerosis.

The book concludes with chapters on paraneoplastic disorders of the CNS, stiff man syndrome, neurological complications of...

As Alzheimer’s disease becomes of increasing importance to society, basic science research in this field needs to provide the building blocks for both therapeutic interventions and accurate diagnosis. This publication is a collection of papers presented at an international Alzheimer’s disease research meeting in Leipzig in 1997. This conference aimed to bring together both clinical and basic science disciplines and this is reflected in the papers selected for this book. There are 31 papers included, covering topics from early symptomatology and cognitive features to immunochemistry and theoretical neuronal treatment strategies. The contributors to this book are some of the most authoritative in their field, predominantly based in Europe.

Covering all aspects of Alzheimer’s disease research from the correct diagnosis to basic science approaches of treatment is ambitious for such a compact book (315 pages), and although the editors succeed in collecting an interesting series of papers around these themes, they make no claims to be comprehensive in their scope. The papers included range from general research reports to reviews of the current literature. The review papers are generally excellent, concise, clear, well referenced, and illustrated—for example, there are excellent reviews of Alzheimer’s disease with vascular pathology (Pasquier et al) and Lewy body disease (McKeith et al), great updates on neuropathology (Jellinger and Bancher, Braak et al), and several worthy reviews of treatment strategies for Alzheimer’s disease including NSAIDS (Möller), antioxidants, and radical scavengers (Rosler et al). I found the review by Reisburg et al on ontogenetic models in the understanding of the management of Alzheimer’s disease particularly interesting. However, the papers of original research are of more limited interest to the general reader. Although, as mentioned, the quality of illustrations is good, there is some variability in the definition of abbreviations and occasional lapses into other European languages.

Certainly, I think this book would be of value for investigators interested in the neuropathology, immunopathology, and molecular biology of Alzheimer’s disease. It would make an excellent addition to libraries as a reference text for many researchers of varied interests.

CLARE GALTON

Alasdar Coles

Organ transplantation, once medical exotica, is now almost routine in the United Kingdom each year are performed cadaveric organ transplants of about 1800 kidneys (in addition to 160 live kidney donors), 700 livers, and 450 heart/lungs (UK Transplant Support Service). Several surgical techniques were established at the beginning of the century in canine models. Transplantation of these experiments to humans awaited safe and effective immunosuppression. Until the 1960s, the only forms of immunosuppression were radiation (total body or total lymphoid) and non-selective chemical reagents (benzene and toluene). Then the antiproliferative drug 6-mercaptopurine (6-MP) was introduced, shortly followed by a derivative, azathioprine, with improved oral bioavailability. Combined with corticosteroids, these allowed the first human solid organ transplants to be performed: in 1965 the first lung transplant in Mississippi and liver transplant in Colorado. Then in 1967 Christian Barnard captured the world’s imagination with the first heart transplant. His technique has been modified slightly since, but increasing success of organ transplantation rests mainly on improved immunosuppression with drugs that selectively suppress lymphocytes by inhibiting lymphokine generation (cyclosporin A, tacrolimus), renal transplantation (sirilomus, leflunomide), or differentiation (15-deoxyspergualin) pathways. As a result, over the last 10 years in the United Kingdom, the 1 year survival of grafts has improved from 80% to 90% (kidney), 55% to 75% (liver), and 70% to 90% (heart/lung).

Wijdicks estimates that 10% of transplantation patients have a significant neurological complication. The most common being neurotoxicity of immunosuppressive drugs, seizures, and failure to awaken. Yet this is the first text devoted to the neurological aspects of organ transplantation. It is therefore a timely subject in the excellentBlue Books Of Practical Neurology series. Twenty authors contribute (one Dutch, one Swiss, the rest American) to four chapters on the transplant procedures themselves followed by 10 chapters on neurological complications of transplantation including failure to awaken, and psychiatric, neuromuscular and demyelinating complications. Especially useful to the neurologist without much experience of transplantation are the comprehensive chapters on immunosuppressive drugs and the opportunistic infections associated with them (most commonlyListeria monocytogenes, Aspergillus fumigatus, and Cryptococcus neoformans). The peripheral nerve and plexus injuries associated with transplantation are painstakingly described; astonishingly a significant ulnar neuropathy occurs in up to 40% of kidney transplants. The Cincinnati Transplant Tumour Registry has recorded information on 10 813 cancers arising de novo in organ allograft recipients worldwide and here are presented the data in the 300 of these with CNS involvement. This is one of the shelves of any neurologist interested in organ transplantation.

Evolutionary biologists would probably tell us that the enchantment of stories is due to survival having been dependent on the passing of oral culture from one generation to the next. Information put in narrative form not only delights, but is easily recalled. Stories also construct meaning by interweaving observation, inference, motive, and consequence in a fashion that informs future action. Our experience of the world is constructed around such narratives. They define us as individuals, family members, professionals, and cultural groups.

This book is a series of essays on psychotherapy, psychiatry, and also medicine that sees the awareness and use of narrative in clinical practice as a construct that can both

CLARE GALTON

ALASDAIR COLES

Volume nine of the Current Issues in Neurodegenerative Disease series examines the interplay between cerebrovascular disease and dementia, particularly Alzheimer’s disease. Two hundred pages of what are essentially 20 brief review articles comprise this text, sadly written by any illustrator. Ploughing through the introduction to each chapter there is a certain sense of déjà vu, although on the positive side each contribution is extremely well referenced. The book is divided into five sections covering the historical concepts of vascular and Alzheimer’s dementias, the arguments for a pure vascular dementia, the role of Alzheimer’s disease in the genesis of dementia after stroke, the connections between white matter changes on neuroimaging to dementia, and finally a short section examining practical questions such as the management of stroke in patients with dementia. Although common symptoms are often their own right, stroke and Alzheimer’s disease do seem to cross paths more often than would be expected by chance alone, and more often than can be explained by the presence of unproved angiopathy and recurrent lobar haemorrhages. Perhaps common genetic factors are responsible and here the ApoE alleles are discussed. The comprehensive section on deep white matter lesions seeks to explain the connection further—and convinces the reader that there is still a lot which is not well understood. It is in this section particularly that illustrations are greatly missed. Brief mention is made of other conditions which may produce white matter changes and dementia such as CADASIL, cerebral lupus, and the primary antiphospholipid syndrome.

Stories also construct meaning by interweaving information and transhistorical errors and mistranslations detract a little further from a book which seems unlikely to appeal to most neurologists, although it will no doubt be a source of reference to those working in the field of cognitive disorders, particularly vascular dementias.

PETER MARTIN

Evolutionary biologists would probably tell us that the enchantment of stories is due to survival having been dependent on the passing of oral culture from one generation to the next. Information put in narrative form not only delights, but is easily recalled. Stories also construct meaning by interweaving observation, inference, motive, and consequence in a fashion that informs future action. Our experience of the world is constructed around such narratives. They define us as individuals, family members, professionals, and cultural groups.

This book is a series of essays on psychotherapy, psychiatry, and also medicine that sees the awareness and use of narrative in clinical practice as a construct that can both

Children’s Epilepsies and Brain Development is the fruit of a symposium held in 1997 to try and bridge the chasm between those working in the clinic or at the bedside and those in the laboratory. Both groups must collaborate and communicate to improve the management of children (and adults) with epilepsy.

The book is essentially a collection of monographs of heterogeneous content and style and the result, perhaps not surprisingly, is that some of the component parts are better than the sum. The clinically oriented section will clearly be of particular interest to those who treat children and their families. The chapters on infantile spasms and Lennox-Gastaut syndrome are informative and provide some new but speculative insights into the pathogenesis of spasms. However, it was surprising that severe myoclonic epilepsy of infancy did not merit a specific chapter in view of the unique electroclinical evolution and natural history of this syndrome. The crucial issue of the cognitive and behavioural sequelae of early and frequent seizures on the immature brain, which is probably of most concern to both clinicians and families, is succinctly addressed in two chapters—although a clear and consistent relation remains to be established.

The chapters covering basic neurophysiology, neurochemistry, and neuropathology, are erudite and fascinating but at times are merely comprehensible. Further work is needed, including answering the fundamental question—why does the first seizure occur—before the clinician and basic scientist are able to talk the same language—for the benefit of the patient with epilepsy.

The concept of Childhood Epilepsies and Brain Development is innovative and commendable and an easy read. Most of the monographs are interesting and informative, the overall impression is that the individual parts (the chapters) are better than the whole (the book). The lack of an index is a strange omission, perhaps with an eye on prolonged editorial atypical absence, and although this militates against it becoming a well-thumbed reference text, the book is an erudite addition to the mossy fibre-like sprouting of the epileptological literature.

RICHARD E APPLETON

Difficult clinical problems in psychiatry come in many forms. Diagnosis often causes difficulty, particularly in cases which demand some assessment of the role of physical illness in symptom formation. Perhaps for most psychiatrists practising in community settings risk assessment comes high on their list of concerns.

Unsurprisingly, given the psychopharmacological expertise of the editors, this book is particularly interested in treatment resistance. The first 6 chapters give excellent reviews of the management of clinically relevant topics—for example, refractory schizophrenia or the difficult panic patient. The emphasis is very much on pharmacological management.

The second half of the book is more of a mixed bag, both in terms of the areas covered and the quality of the chapters. Many of the chapters covering all aspects of the management and assessment of anorexia nervosa and chronic fatigue are followed by a thorough review of the pharmacological management of substance misuse. Then come two weak chapters on behavioural disturbances in old age and the violent patient in the community. This last chapter will be of particular interest to community psychiatrists and those I would recommend because some aspects of the practical management of violence are missing—for example, a documented risk-benefit analysis, good failsafe communication, or deciding when to detain. One of the last chapters is a very good account of the management of hyperactivity in childhood, with good practical advice on the use of methyphenidate.

Apart from the chapters on chronic fatigue and the treatment of tardive dyskinesia there is little in this book which is of immediate interest to neurologists. However general psychiatrists wishing to improve their prescribing skills will find this book useful.

SIMON FLEMINGER