LETTERS TO THE EDITOR

Postictal psychosis related regional cerebral hyperperfusion

Postictal psychosis is a known complication of complex partial seizure in particular temporal lobe epilepsy. It usually runs a benign and self-limiting course. A postictal phenomenon with focal cerebral hypofunction (similar to Todd’s palsy), rather than ongoing seizure activity, has been postulated. Surface EEG is either normal or showing non-specific slow waves. Hence, antipsychotic medications are prescribed instead of antiepileptic drugs. Until recently, the pathogenic mechanisms have remained unknown. In this communication, we report on two patients with postictal psychosis, during which a cerebral SPECT study showed a hyperperfusion signal over the right temporal lobe and contralateral basal ganglion. As hyperperfusion in ictal cerebral SPECT is closely linked to epileptic activities, our findings support a contrary explanation for postictal psychosis.

Prolonged video-EEG telemetry study was performed in patients who underwent presurgical evaluation for epilepsy surgery. Antiepileptic drugs were withdrawn to facilitate seizure recording. A diagnosis of temporal lobe epilepsy was based on analysis of the electroclinical events and, if applicable, postoperative outcome after anterior temporal lobectomy. Psychosis was diagnosed according to the fourth edition of the diagnostics and statistical manual of mental disorders (DSM-IV) criteria of brief psychotic disorders without marked stressor; HMPAO-SPECT was performed during the psychotic period, which ranged from 2–4 days after the last seizure. Interictal cerebral SPECT, brain MRI, and a Wada test were performed as part of presurgical evaluation.

Patient 1 was a 34 year old Chinese woman with complex partial seizures since the age of 18. Her seizure control was suboptimal on a combination of antiepileptic drugs. Brain MRI showed a small hippocampus on the right. Interictal EEG showed bilateral temporal sharp waves and ictal recordings confirmed a right temporal epileptogenic focus. A Wada test confirmed right hippocampal memory dysfunction. Six hours after her last secondary generalised tonic-clonic seizure after video-EEG telemetry, she began to develop emotional lability, talking nonsense, motor restlessness, and auditory hallucination. Cerebral SPECT showed a clear hyperperfusion signal over the right lateral temporal neocortex and contralateral basal ganglion. An interictal cerebral SPECT study was repeated at 4 weeks after postictal psychosis which showed a complete resolution of hyperperfusion signal in the right temporal lobe and basal ganglia. Anterior temporal lobectomy was performed and she became seizure free after surgery.

Patient 2 was a 44 year old man with intractable complex partial seizures since the age of 30. His seizures were intractable to multiple antiepileptic drugs. Brain MRI showed left hippocampal sclerosis. Interictal cerebral SPECT showed a relative hyperfusion area over the left hemisphere. Interictal surface EEG was non-lateralising but ictal EEG disclosed a right hemispheric onset. On withdrawal of antiepileptic drugs, seven complex partial seizures with secondary generalised tonic clonic seizures were recorded within a period of 72 hours. His usual antiepileptic drugs were then restarted. Thirty hours after his last secondary generalised tonic-clonic seizure, he began to develop emotional lability, talking nonsense, restlessness, auditory hallucination, persecutory delusion, and delusion of superstition. Cerebral SPECT study, performed 2 days later while his psychotic features persisted, showed two relative hyperperfused areas over the right temporal neocortex and contralateral basal ganglion in addition to the original hyperperfused area over the left hemisphere. An antipsychotic agent (thioridazine) was...

Interictal SPECT and SPECT performed during postictal psychosis. (Top) A SPECT study of patient 1 showing areas of relative hyperperfusion over the right temporal neocortex (red arrows) and the left basal ganglia (blue and yellow arrows) during postictal psychosis. (Bottom) SPECT study of patient 2 showing areas of hyperperfusion over the right temporal neocortex and the left basal ganglia. Arrows indicate areas of hyperperfusion.
started after the cerebral SPECT. His psychotic symptoms resolved 2 weeks later with full recovery.

Cerebral SPECT performed during the interictal period (IP) and during postictal psychosis (PP) were analysed visually and areas of hypofunction were identified. Quantitative data at regions of interest (ROIs) were measured on coronal and axial slices containing basal ganglia (BG), mesial (MT), and lateral (LT) temporal lobe structures. Asymmetry index (ASI) was calculated as (ROI focus–ROI contralateral)/ROI focus+ROI contralateral)×100%. We set an arbitrary change of ASI >100% to be significant. As there were only two patients, statistical testing was not performed.

Both patients showed postictal psychosis and had a regional increase in rCBF over the right temporal neocortex and the left basal ganglia compared with their interictal study (figure). Quantitative analysis for patient 1 showed changes of ASI during IP and PP over right MT was +75% (+6.4647 to −1.65289); over the right LT was +116.7% (1.07927 to 12.55476); and over the left BG was +206.8% (2.07373 to 2.21574). Quantitative analysis for patient 2 showed changes of ASI during IP and PP over right MT was +3.8% (13.14127 to 12.64156); over right LT was +178.6% (10.4696 to 18.70575); and over left BG was +155.9% (5.8556 to 3.27522).

Postictal psychosis is a distinct clinical event associated with temporal lobe epilepsy. The diagnosis of postictal psychosis requires a close temporal relation between bouts of complex partial seizures and the onset of psychosis. The psychosis usually develops after a cluster of complex partial seizures, which were usually precipitated by abrupt withdrawal of antiepileptic drugs. The cluster occurs in patients with poor drug compliance or during video EEG telemetry studies when antiepileptic drugs are withdrawn. The clinical course of postictal psychosis is usually benign and predictable. In our patients, the duration of psychotic disturbances lasted from 10 to 14 days, which is in keeping with the good prognosis. Antiepileptic drugs, such as haloperidol and fluphenazine are usually prescribed.

The underlying mechanism of postictal psychosis is unknown. Postictal cerebral hypofunction has been postulated as an analogue to Todd’s paralysis after seizure. However, the presence of increased rCBF during postictal psychosis, may suggest an alternative explanation as ictal SPECT has been shown to be highly sensitive and specific in demonstrating seizure foci. To conclude, our results are contradictory to the hypofunction theory of Todd’s paralysis after seizure. We think that these findings are consistent with the hypofunction theory of Todd’s paralysis after seizure.
The present findings indicate that the type III repeat C TN isoform, recognised by the Ab fragment TN-11, was found to occur in the vascular walls of anaplastic gliomas. Northern blot analysis showed that the mRNA of this isoform was undetectable in normal tissues and some malignancies, but was present in large amounts in fetal tissues, including brain, and in glioblastomas.

Recent advances in the pathology of cerebral AVMs suggest that these lesions might not be static. Tyrosine kinase, an endothelial cell specific receptor upregulated in glioblastomas, was found to be highly expressed in both AVMs and in the vessels of cerebral tissue bordering the malformations, by contrast with the down regulation occurring in the vasculature of the normal brain. The pattern of distribution of structural proteins was consistent with the hypothesis of diffuse activation of angiogenesis, without specific relation to individual vessel types.

Furthermore, use of the cell proliferation marker MB1-1 showed endothelial proliferation in arterioles, venules, and capillaries of the cerebral tissue neighbouring AVMs. The presence of proliferating and remodelling potentials, or from a specific response to haemodynamic stress in vascular structures subjected to increased blood flow and pressure. Occurrence of these features also in vessels lying in areas peripheral to the nidus might be related to recruitment of the neighbouring vasculature, possibly dependent on focal ischaemia in the setting of arteriovenous shunting. However, the presence in apparently normal vasculature of molecules typically occurring in fetal tissues and malignancies indicates that cerebral AVMs may not be static lesions. Further studies are needed to ascertain whether this phenomenon results merely from haemodynamic stress or actually reflects an intrinsic growth potential. Should this second be the case, current therapeutic strategies would possibly require revision.

This study was partially supported by the National Research Council (CNR), AIRC and the Ministry of University and Scientific Research (MURST). We thank Sergio De serli, EE, for his technical help and Mr. Thomas Wiley for manuscript revision.

Hashimoto’s encephalopathy presenting as “myxoedematous madness”

The neuropsychiatric sequelae of hypothyroidism range from lethargy and mental slowing to the florid psychotic illness referred to as “myxoedematous madness” 1. The last condition is characterised by frank hypothyroidism accompanied by psychosis, and may respond completely to thyroxine. More recently described is a syndrome of subacute encephalopathy, associated with high titres of thyroid autoantibodies, raised CSF protein, EEG abnormalities, and perfusion deficits in the presence of normal structural neuroimaging. In most cases, the encephalopathy occurs without any gross change in circulating concentrations of thyroid hormones, suggesting that an inflammatory process is responsible for the cerebral dysfunction. In the absence of pathological data, the evidence for a specific pathogenetic mechanism is largely circumstantial: a small vessel vasculitis and immune complex deposition have both been suggested.

Although none of the published cases of Hashimoto’s encephalopathy has described psychosis as a primary feature, it is possible that “myxoedematous madness”, a condition first described in detail by Asher in 1949 2 lies in a range of encephalopathic phenomena mediated by autoimmune mechanisms. This suggestion would certainly be consistent with the range of clinical presentations of other autoimmune cerebral vasculitides. As autoimmune thyroiditis is the commonest cause of hypothyroid failure in this country, 3,4 small vessel vasculitis and immune complex deposition have both been present in at least some of Asher’s original cases. Although most had florid myxoedematous features at psychiatric presentation, this may simply reflect the ease of diagnosing subclinical thyroid disease before rapid laboratory assays became widely available. Many features of the present case, however, favoured an endocrine rather than an inflammatory mechanism, suggesting that the condition of “myxoedematous madness”, though rare, remains a valid diagnostic entity. A 63 year old market stallholder without medical or psychiatric history was brought to a local psychiatric hospital by the police. His business had been in decline for several months, and his family had noticed uncharacteristic emotional lability. In the weeks preceding admission he had experienced delusions and hallucinations, and exhibited uncharacteristic behaviour. He had reported a vision of the crucifixion, and hearing the voice of his dead mother. He claimed that his house was occupied by the devil, drove around aimlessly in his car, and appeared constantly fearful and withdrawn. On the day of admission he had made a bonfire in the garden and burned his wife’s clothes, family photographs, furniture, and newspaper papers. When his wife and son tried to intervene he
became aggressive and threatened them with a saw. The general practitioner was called and suspected an acute new psychosis, and a severe depressive illness. Police assistance was requested because of the patient’s continuing violent behaviour.

On admission he was unkempt but cooperative and orientated. He denied depression, but displayed no insight into the irregularity of his behaviour. No psychotic features were seen, although during the admission he consistently rationalised all reported psychiatric phenomena. He was aggressive towards staff and made repeated attempts to abscond. General physical examination was unremarkable. Neurological examination was normal except for spoken language which was fluent and grammatical, but contained word finding pauses, circumscriptions, and occasional semantic errors (for example, “I just want to get my feet back on the table”). Formal neuropsychological testing, and a screen of laboratory tests for reversible causes of encephalopathy, were performed on admission, and results are presented below (column A). Attention is drawn to his mild naming deficit, and poor performance on the Rey figure, which was due to planning rather than visuospatial performance on the Rey figure, which was affected minimally, if at all, from the first examination.

In summary, therefore, this patient presented in clear consciousness with a first episode of acute psychosis, and evidence of subtle executive and linguistic neuropsychological disturbance, on the background of gradual behavioural and affective change. He was profoundly hypothyroid due to an autoimmune origin; a recent report described a patient’s failure to recognise his own hand. Originally defined as “a patient’s failure to recognise the aetiology of his illness occurred fully, and the antithyroid microbial antibody titre fell markedly after thyroxine replacement, although his mild neuropsychological deficits remained unchanged. Corticosteroids were not used at any stage.

The response to thyroxine does not, in itself, imply that the cerebral illness had an endocrine origin; a recent report described a patient with a subacute encephalopathic illness and compensated hypothyroidism in the presence of increased antimicrosomal antibodies, all of which responded to thyroxine replacement alone. In that case, however, both EEG and SPECT were normal, the SPECT showing multiple areas of severely reduced perfusion, which normalised with treatment. By contrast, in the present case the EEG was normal and the SPECT abnormality was marginal and changed little, if at all, with treatment. The evidence for a significant vascular component to the illness is, therefore, unconvincing.

The mild and relatively circumscribed neuropsychological deficits coupled with florid psychotic phenomena, also contrast with the profound global disturbance of cognition usually associated with Hashimoto’s encephalopathy. This distinction suggests that microvascular disease and thyroid hormone depletion may emphasise different aspects of the clinical range in Hashimoto’s encephalopathy. Although the present case would support Asher’s conclusion that the psychiatric features of Hashimoto’s encephalopathy typically respond to thyroid replacement, it additionally suggests that subtle neurological deficits may be apparent even in the absence of obvious cerebral perfusion deficits, and that these may not be fully reversible.

Alien hand sign in Creutzfeldt-Jakob disease

The clinical picture of Creutzfeldt-Jakob disease (CJD) includes various movement disorders such as myoclonus, parkinsonism, hemiballism, and dystonia. We report on a patient with CJD who manifested the alien hand sign. We suggest that CJD should be included in the differential diagnosis of diseases which present with an alien hand.

Creutzfeldt-Jakob disease, one of the human prion diseases, is characterised by rapidly progressive motor and sensory deterioration.1 Involuntary movements occur in above 90% of the patients in the course of the disease, the most common being myoclonus.1 Other movement disorders range from tremor, chorea, ballism, dystonia, and hemiballism.1 We report on a patient with CJD who presented with an alien hand.

Alien hand is a rare and striking phenomenon defined as “a patient’s failure to recognise the action of one of his hands as his own”2. One of the patient’s hands acts as a stranger to the body and is uncooperative. Thus, there is loss of feeling of ownership but not loss of sensation in the affected hand. Originally described in callosal tumours,3 the aetiology of alien hand also includes surgical callosotomy,4 infarction of the medial frontal cortex,5 hippocampal atrophy,6 and corticobasal degeneration.7,8

A 70 year old, right handed Jewish man born in Argentina, living in Israel for the past 20 years, was admitted to the Neurology Department. Until a month prior to admission, he was apparently healthy and helped in the accounting office of the village where he lived. His neurological illness had presented insidiously during the past month with staleness of gait and actions.

He also manifested behavioural changes, became aggressive, and had visual hallucinations, perceiving insects and mice moving through his visual field. Often, he expressed his fear from seeing that the “ceiling was

Table 1 Laboratory and neuropsychological results at presentation (A) and at 12 month follow up (B)

<table>
<thead>
<tr>
<th>Laboratory (units)</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full blood count</td>
<td>Normal</td>
<td>Normal</td>
</tr>
<tr>
<td>Erythrocyte sedimentation rate</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>Urea and electrolytes</td>
<td>Normal</td>
<td>Normal</td>
</tr>
<tr>
<td>Liver function tests</td>
<td>Normal</td>
<td>Normal</td>
</tr>
<tr>
<td>Antinuclear antibody</td>
<td>Negative</td>
<td>Negative</td>
</tr>
<tr>
<td>B12 and folate</td>
<td>Normal</td>
<td>Not tested</td>
</tr>
<tr>
<td>VDRL</td>
<td>Normal</td>
<td>Not tested</td>
</tr>
<tr>
<td>Thyroid stimulating hormone (mU/L)</td>
<td>5.4</td>
<td>0.97</td>
</tr>
<tr>
<td>Free T4 (pmol/L)</td>
<td>1:25:00</td>
<td>Not tested</td>
</tr>
<tr>
<td>Antithyroid microsomal antibody titres</td>
<td>25/30</td>
<td>25</td>
</tr>
<tr>
<td>Psychometric (normal/predicted range):</td>
<td>10th percentile</td>
<td>18th percentile</td>
</tr>
<tr>
<td>WAIS-R (verbal)</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>WAIS-R (performance)</td>
<td>30/10</td>
<td>23</td>
</tr>
<tr>
<td>FAS verbal fluency (>30)</td>
<td>30</td>
<td>25</td>
</tr>
<tr>
<td>Digit span forwards (>5)</td>
<td>25</td>
<td>23</td>
</tr>
<tr>
<td>Rey-Osterreith complex figure (copy) (#)</td>
<td>25.5</td>
<td>24</td>
</tr>
<tr>
<td>Rey-Osterreith complex figure (recall) (%)</td>
<td>Not tested</td>
<td>75%</td>
</tr>
<tr>
<td>Cognitive estimates test (<6)</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>Digit span forwards (>5)</td>
<td>30</td>
<td>27th percentile</td>
</tr>
<tr>
<td>Digit span forwards (>5)</td>
<td>25.5</td>
<td>Not tested</td>
</tr>
<tr>
<td>Rey-Osterreith complex figure (copy) (#)</td>
<td>24</td>
<td>Not tested</td>
</tr>
<tr>
<td>Rey-Osterreith complex figure (recall) (%)</td>
<td>75%</td>
<td>Not tested</td>
</tr>
</tbody>
</table>

J R HODGES
MRC Cognition and Brain Sciences Unit, 15 Chaucer Road, Cambridge CB2 2EF, UK

A CRANFORD
J R HODGES

Correspondence to: Dr P Garrard, University of Cambridge Neurology Unit, Box 165, Addenbrooke’s Hospital, Cambridge CB2 2ZQ, UK

e-mail garrard@cnb.cmu.edu
falling over him.” His wife mentioned bizarre, useless movements of his left hand which were present from the beginning of the disease. On admission, he was awake, bradyphrenic, and partially collaborative. His conversation, haemorrhagic, disrupted by halting and stammering. The affect was sad and he had partial insight for his mental dysfunction. He was disoriented for time, place, and situation. He could understand speech and was able to follow instructions involving two consecutive components. Naming was preserved. Prominent dysgraphia and dyscalculia were noticed. Immediate recall and short term memory were severely disturbed, whereas long term memory, especially for personal life events, was relatively spared. Abstract thinking was severely affected. Bimanual movements, such as clapping, were extremely difficult.

The cranial nerves were normal as were ocular fundi. The motor examination showed normal force. Deep reflexes were symmetric and plantar responses were flexor. The right leg was hyper-reflexic, and the left was normal. Deep reflexes were symmetric. The plantar responses were flexor. The right arm had a dystonic posture. His gait was ataxic on a wide base. At times, the left arm would spontaneously rise in front of the patient during speaking or while using his right hand. He was unaware of these movements until they were brought to his attention. When questioned about their purpose, the patient denied that they were voluntary. No grasping of either hand or foot was found. The patient had no cortical sensory loss. The laboratory data including blood chemistries, haematological, and sedimentation rate were normal, as were folate acid, vitamin B12 concentrations, and thyroid function. Venereal disease research laboratory and HIV tests were negative. The cerebrospinal fluid had normal content. Brain CT showed mild cerebral atrophy. An EEG showed severe diffuse slowing at admission. Within a week, repeated EEGs showed triphasic waves with a periodic pattern of 1-1.5 Hz. During the next 2 weeks, the patient developed myoclonic jerks. Severe dysphasia and cognitive decline were accompanied by confusion and aggression. He became grossly ataxic, and unable to walk and perform any of his daily activities even with help. Transferred to a chronic care hospital, he died five weeks later. Postmortem examination was not allowed.

This short fatal neurological disease manifested by fulminant dementia, myoclonic jerks, and extrapyramidal and cerebellar dysfunction was strongly suggestive of CJD. The periodic EEG pattern reinforced this diagnosis. Our patient’s alien hand was part of the otherwise characteristic clinical picture of CJD but appeared early in the disease course when no myoclonic jerks were present. We are aware of only one report of alien hand in CJD. MacGowan et al. described two patients with CJD and a myoclonic alien hand syndrome. In one patient the left arm “was noted to have spontaneous movements which appeared purposeful...wandered out of her view.” In the other, the alien limb was observed to “suddenly push a button, grasp her blouse and removing a hair pin. Although our patient had no myoclonus or pyramidal signs when the alien hand appeared, in their patients it was associated with spontaneous or stimulus sensitive myoclonus, spastic hemiparesis, and cortical sensory loss.

The literature seems to describe distinct forms of alien hand. All share the occurrence of involuntary movements contrary to the patient’s stated intent, but the types of movement differ. In the callosal form, there are purposeful movements of the non-dominant hand. In the fronto-temporal form, there is grasping and utilisation behaviour of the dominant hand. In the corticobasal degeneration, there are aseismatic movements of either hand.1,7 When a consequence of various cerebrovascular pathology, alien hands can perform complex acts such as trying to tear clothes or undoing buttons. The description by MacGowan et al.7 has characteristics of the callosal form (especially in patient 2). However, our case suggests that the alien hand sign in CJD may appear in a different type, performing less complex movements which resemble those reported by Riley et al. in corticobasal degeneration. These authors described the alien limb as “involuntarily rising and touching the mouth and eyes” (patient 1). The patient thought that she “was powerless to stop this movement” and when directed to stop responded that “she didn’t”. Another patient’s left arm was at times “elevated in front of him”, while he was “unaware of this situation until his attention was called to it” (patient 10).

Another related phenomenon coined as “arm levitation” was reported in progressive supranuclear palsy. In these patients the arm involuntarily raised and performed semi-purposeful movements.

One common denominator between CJD, corticobasal degeneration, and progressive multifocal leukoencephalopathy, in which an alien hand sign has also been described, is multifocality. In corticobasal degeneration, it was proposed that more than one site is affected or that a “release” phenomenon occurs accounting for the aetiology of alien hand.1 In CJD, bilateral cortical damage to motor areas might be the origin of their subsequent isolation and disconnection.

We suggest that CJD should be added to the differential diagnosis of diseases presenting with an alien hand with or without myoclonus.

We are indebted to Professor Eran Zardel, Department of Physiology, University of California, Los Angeles, USA.

Recurrent peripheral neuropathy in a girl with celiac disease

The involvement of the peripheral nervous system (PNS) in children with celiac disease is particularly rare. Furthermore, in both children and adults with celiac disease, neurological complications are chronic and progressive.1

We report on a 12 year old girl affected by celiac disease, who on two separate occasions presented with an acute peripheral neurological syndrome after accidental reintroduction of gluten in her diet. This patient was born uneventfully to healthy non-consanguineous parents with no family history of neurological or metabolic diseases. At the age of 6 months she was diagnosed as having celiac disease according to the European Society of Paediatric Gastroenterology and Nutrition criteria.3 Since then she was on a strict gluten free diet and was asymptomatic until the age of 10 years when severe diarrhoea, vomiting, and abdominal pain manifested 6 days after the intake of corn flakes, which she thought to be gluten free. No previous infections had been noticed. One week after the onset of these symptoms she experienced acute weakness and pins and needles sensation confined to her legs. At that time her parents stopped her intake of corn flakes on the suspicion that these were responsible for the symptoms. Despite this, symptoms worsened during the next 2 days, confining her to bed.

At hospital admission, she was alert and mentally stable. Results of general physical examination were unremarkable. Neurological examination disclosed symmetric, predominantly distal, weakness of the legs; the knee jerks and ankle reflexes were depressed; plantar reflexes were flexor. Distal stocking glove decreased in pin prick and temperature with sparing of propioception and light touch. Coordination tests were normal.

Laboratory investigations showed a white cell count of 9300/mm³. The results of the following investigations were within the normal limits: haemogram, erythrocyte sedimentation rate, serum uric acid, creatinine, glucose, transaminase, bilirubin, immunoglobulins (Igs), lead, iron, copper, urinalysis, urinary porphyrin, folic acid, and vitamins A, B, B₁₂, and E. Antibodies to Campylobacter jejuni, antinuclear antibodies, and antineutrophil cytoplasmic antibodies were negative.

We report on a 12 year old girl a
basic protein were not tested. Nerve conduc-
tivity studies were consistent with a predomi-
antly motor demyelinating peripheral neu-
ropathy (table). Her symptoms improved
spontaneously and she was discharged home
after 2 weeks. For 2 years she was asympto-
matic on a gluten free diet.

At the age of 12 she presented acutely with
severe abdominal pain and diarrhea 8 days after a weekly
intake of bread meant to be gluten free. Two weeks
later, due to persisting gastrointestinal symptoms, her parents excluded the bread
from her diet. After 2 further weeks, while the
abdominal pain was gradually improving, she had a new episode of acute weakness in the
lower limbs and sensory abnormalities in-
cluding burning paraesthesiae. On neurologi-
cal examination the legs showed marked
demarcation in muscle power; absent deep
tendon reflexes, and a reduction in pain and
temperature; light touch, perception of posi-
tion, and vibration were preserved. Walking
was impaired and the patient was bedridden.
Otherwise the examination was normal.

A haemogram showed white cell counts of
9700/mm³. Laboratory investigations were
within normal values as in the past. IgA and
IgG A, IgA EMA, and IgA AMA were assayed
by ELISA and IF were again negative. Nerve
conduction studies confirmed the presence of a predominant motor demyelinating neu-
ropathy (table). The parents refused consent for a lumbar puncture or nerve biopsy.

Over the next 2 weeks her neurological dis-
abilities spontaneously improved until full
recovery was complete. After 4 weeks, AGA,
EMA, and ARA were still negative.

On her most recent admission, 1 year after
the onset of her first neurological symptoms,
she is still on a strict gluten free diet and has
no residual symptoms or signs.

The natural history of celiac disease is well
known and the typical celiac enteropathy is
often associated with several other disorders.
However, as celiac disease is a relatively com-
mon and lifelong condition, it is likely that
some of these associations may occur by
chance.

This patient, who was diagnosed as having
frank celiac disease at the age of 6 months,
became asymptomatic on a gluten free diet; and (2) the response to a gluten free diet was reasonably rapid, occurring within weeks.

The present case, however, differs clinically from those with neurological involvement pre-
viously reported. In the paediatric age group,
in fact, neurological complications of celiac
disease are rarely encountered and are mostly
confined to the CNS; to the best of our
knowledge, there are only two previously
reported cases of PNS involvement in children
with celiac disease. In both cases, however,
these were chronic axonal polyneuropathies
presenting during a gluten free diet.1

In both episodes in the present case neuro-
physiology was strongly supportive of a
demyelinating peripheral neuropathy, which is
most commonly attributed to a direct
immune mediated attack to the myelin. By
contrast, wallerian and axonal degeneration
could be caused by vasculitis, and nutritional,
metabolic, and toxic factors.

An autoimmune pathogenesis in associa-
tion with strong evidence of a genetic
susceptibility has been proposed for celiac
disease. Although it is well established that
AGA, EMA, and ARA are reliable indicators
of sensitisation to gluten at least at the time of
diagnosis, in the clinical practice at follow up,
during a gluten challenge, pathological values
of these antibodies may not be detected.4

In the present case the time course of the disease
might be suggestive of an antibody mediated
response. However, we could not detect
pathological concentrations of AGA, EMA,
or ARA antibodies either during the course of
the disease or at follow up.

It is known that in celiac disease many
immunological perturbations can occur out-
side the gastrointestinal tract. Crossing of the
antigens through a damaged small intestinal
mucosa, deposition of immune complexes in
target organs, a reduction in immune surveil-
lance, mechanism of molecular mimicry, and
activated T cell response may contribute to
the pathogenesis of the diseases associated
with celiac disease. Direct toxic effects of
gladin and vitamin deficiency are other pos-
sible pathogenic mechanisms of damage to
the nervous system. Although we ruled out a
vitamin deficiency it is still questionable
whether a toxic neuropathy can be the case.

In conclusion, this case shows two major
issues: an acute polyneuropathy can be a
complication of celiac disease in childhood
and its benign course could help in the
understanding of the underlying pathogenic
mechanisms.

We are grateful to Professor Angela Vincent
(Oxford) for her helpful suggestions in reviewing
the manuscript.

AGATA POLIZZI
MARIAROSA FINOCCHIARO
ENCO PARANO
PIERO PAVONE
Division of Paediatric Neurology, Department of
Paediatrics, University of Catania
Catania, Italy

Correspondence to: Dr Agata Polizzi, Division of
Paediatric Neurology, Department of Paediatrics,
University of Catania, Viale A Doria 6, 95125
Catania, Italy email: apolizzi@ctonline.it

1. Cooke WT, Thomas Smith W. Neurological
disorders associated with adult coeliac disease.

disease, epilepsy and cerebral calcifications.

Nervous system involvement in patients with
celiac patients. In: Mearin ML, Mulder CJF, eds.
Coeliac disease. Dor drecht: Kluwer Academic,

Coeliac disease associated with peripheral neu-
ropathy in a child: a case report. Neuropediatrics

antibodies in the various stages of coeliac
disease in children. Pediatr Med Chir 1988;10:

Frontal release signs in older people with
peripheral vascular disease

A growing body of research examining
neurological aspects of clinically “silent” cera-
brovascular disease suggests that neurologi-
cal signs indicative of generalised organic
brain damage may occur in the absence of
completed stroke.1 These soft signs include
primitive reflexes (frontal release signs), rep-
ting an anatomical and functional deaffer-
entation of cortical from subcortical struc-
tures. Primitive reflexes are known to occur in
a wide variety of states of brain damage,
including Alzheimer's disease2 and vascular dementia.3 It is likely that the presence of undetected
cerebrovascular disease accompanying pe-
ripheral vascular disease is underestimated,
as peripheral vascular disease is known to be
a risk factor for transient ischaemic attacks. A
study assessing 373 older patients with
peripheral vascular disease found that 72 of
the 144 patients who had not experienced a
transient ischemic attack or completed stroke
were found to have a degree of carotid stenosis
of between 60% and 99%.4

In the present study, the prevalence of
primitive reflexes was assessed in an older
population of community-living individuals
with peripheral vascular disease and a non-
vascular control group. Independent
predictors of these reflexes were also exam-
ined in peripheral vascular disease. Both
groups were drawn from the same geo-
 graphical area. All were interviewed and examined outside hospital by myself. Interviewees were
community residents from the catchment
area of an inner city London teaching hospi-
tal.

Twenty five consecutive non-amputees on
the waiting list for femoropopliteal bypass
operation were compared with 25 postopera-
tive patients who had undergone elective hip
or knee replacement and a period of
rehabilitation. All participants were aged 65
and over at the time of interview. Patients with
peripheral vascular disease all had clini-
cal ischaemia. Controls were interviewed
between 6 months and 1 year after their
operation. Both groups had no history of
stroke or transient ischaemic attack.

A more detailed description of instruments
is provided elsewhere.5 All subjects were

J Neurol Neurosurg Psychiatry. first published as 10.1136/jnnp.68.1.112 on 1 January 2000. Downloaded from http://jnnp.bmj.com/ on September 18, 2023 by guest. Protected by copyright.
examined using a rating scale for the examination of frontal release signs (FRSS), with nine operationally defined items, each on a seven point semiquantitative scale. The nine reflexes were paratonia and palpomental, hand grasp, foot grasp, glabellar, rooting, snout, visual/tactile sucking reflexes. Neuropsychological measures included the assessment of frontal lobe function (trailmaking tests A and B, behavioural dyscontrol scale, and the controlled word association test) and generalised cognitive impairment (CAMCOG). Depression was assessed using the Hamilton rating scale for depression, 15 item geriatric depression scale, and diagnostic criteria for DSM IV major depressive disorder. Family history of depression, suicide, and suicidal ideation within the past year were also recorded, as were blood pressure and a checklist for chronic physical illness.

Total FRSS scores and scores on FRSS subscales were compared between groups using the Mann-Whitney U test for independent samples. In the peripheral vascular disease group, a correlation matrix for total FRSS score against DSMIV depression, CAMCOG score, behavioural dyscontrol scale score, verbal fluency score (total number of words beginning with F, A, and S) and trailmaking test times was examined using the Spearman correlation coefficient, coercion, sex, blood pressure, and chronic physical illness. Behavioural dyscontrol scale scores, trailmaking A/B test times, and verbal fluency scores were first converted into binary variables according to whether they were above or below the median value for the group. CAMCOG score was divided into subjects scoring 69 or above or less than 69. Those associations with a two tailed significance of 0.1 or less were then entered into a logistic regression equation using the stepwise method.

Patients with peripheral vascular disease had a higher mean score on the frontal release signs scale than controls (5.8 (SD 4.6) vs 1.7 (SD 1.0)), Mann-Whitney U = 144.500, Z = -3.33, two tailed p<0.001, as well as on glabellar and rooting reflexes (table). Only one variable (trailmaking B test time) was entered into the equation; this accounted for 19% of the variance in FRSS score (R=0.46, 95% confidence interval (95% CI) (B) 1.3–8.0, p=0.01).

In peripheral vascular disease, there is limited information available concerning the infarcted and neurological sequelae of coexisting cerebrovascular disease. Phillips et al found greater impairment in psychomotor speed and abstract reasoning in patients with peripheral vascular disease than age/sex matched controls, with less significant differences between the groups in verbal fluency, concentration, abstract thought, perception, and constructional skills. Another study by the same group found poorer performance in patients with peripheral vascular disease than age/sex matched controls on visual memory, trailmaking B test, and visuospatial skills. Patients with peripheral vascular disease were also equally impaired in these areas compared with a matched group of stroke patients. Small numbers of patients, which may also have obscured other significant findings between the two groups, limit the present study. However, there is some evidence that clinically relevant cerebrovascular disease may accompany peripheral vascular disease and that concomitant disruption of frontal/subcortical brain function may not present with hard neurological signs. As it is possible that silent brain infarction was present in patients with peripheral vascular disease, further studies incorporating brain imaging are required before there can be a clearer understanding of the relation between peripheral and central vascular pathology.

In peripheral vascular disease amputee patients, there is limited evidence concerning the infarcted limb and neurological sequelae of coexisting cerebrovascular disease. Phillips et al found greater impairment in psychomotor speed and abstract reasoning in patients with peripheral vascular disease than age/sex matched controls, with less significant differences between the groups in verbal fluency, concentration, abstract thought, perception, and constructional skills. Another study by the same group found poorer performance in patients with peripheral vascular disease than age/sex matched controls on visual memory, trailmaking B test, and visuospatial skills. Patients with peripheral vascular disease were also equally impaired in these areas compared with a matched group of stroke patients.

Patients with peripheral vascular disease had a higher mean score on the frontal release signs scale than controls (5.8 (SD 4.6) vs 1.7 (SD 1.0)), Mann-Whitney U = 144.500, Z = -3.33, two tailed p<0.001, as well as on glabellar and rooting reflexes (table). Only one variable (trailmaking B test time) was entered into the equation; this accounted for 19% of the variance in FRSS score (R=0.46, 95% confidence interval (95% CI) (B) 1.3–8.0, p=0.01).

In peripheral vascular disease, there is limited information available concerning the infarcted and neurological sequelae of coexisting cerebrovascular disease. Phillips et al found greater impairment in psychomotor speed and abstract reasoning in patients with peripheral vascular disease than age/sex matched controls, with less significant differences between the groups in verbal fluency, concentration, abstract thought, perception, and constructional skills. Another study by the same group found poorer performance in patients with peripheral vascular disease than age/sex matched controls on visual memory, trailmaking B test, and visuospatial skills. Patients with peripheral vascular disease were also equally impaired in these areas compared with a matched group of stroke patients.
density lipoprotein (3.92 mmol/l) and triglycerides (4.30 mmol/l) and low high density lipoprotein (0.73 mmol/l). Serum phenytoin concentration was therapeutic at 74 μmol/l. An ECG was normal.

Ophthalmological consultation and formal visual field testing demonstrated a concentrically constricted field of mild degree in the right eye and tunnel vision in the left eye. The patient consented to overnight video-EEG monitoring and was seen on multiple occasions to move his left arm and/or leg in a normal fashion, at one point using the left arm to readjust his bed covers shortly after arousal from sleep, before glancing briefly at the video camera and completing the task with his right arm. The prolonged EEG was normal.

A formal neuropsychological assessment performed in hospital documented impaired attention, concentration, and working memory, as well as several atypical calculation and spelling errors, the second involving unusual “near miss” letter substitutions or reversals (for example, “anxiety”, “executive”, and “inattentive, but was able to answer questions normally at the 1 year follow up.

The clinical and laboratory findings described above indicate beyond any doubt the non-organic nature of this patient’s left hemiplegia/hemianaesthesia. His seizure-like episodes at presentation are presumed to have been non-epileptic in origin (as had been suspected during his previous admission to hospital) although this cannot be definitively proved.

The inability to copy line drawings or to draw a clock is, from a neurologist’s perspective, typically associated with parietal lobe dysfunction, usually of the non-dominant hemisphere, especially if associated with left hemispatial neglect. To our knowledge, this is the first reported case of factitious clock drawing and constructional apraxia. Bedside mental status testing also demonstrated the more common simulated deficits of impaired attention and absent three word recall. In retrospect, the severe neglect on clock drawing was perhaps “too good to be true”, especially in the light of the near normal line bisection demonstrated on the same day. The mirror image distortion of the house was also very unusual and, furthermore, the mirror reversal itself is evidence of lack of clinical neglect. The distortion of the cube, however, could easily be misinterpreted as evidence of organic constructional impairment if seen in the absence of the other relevant clinical and laboratory information.

During follow up, the patient admitted to feeling tremendous occupation related stresses, and described how he had come to both fear and detest his job. Given the clear benefit to the patient of removal from his work environment, the relapse of his hemiplegia/hemianaesthesia, and the intentionality required to feign poor clock drawing and constructional apraxia, there is much to support a diagnosis of malingering. Nevertheless, classification as a factitious disorder is at least as justifiable in view of the patient’s willingness to undergo medical investigations, including video monitoring.

It is unclear how or when the patient acquired the information needed to mimic a constructional apraxia. Previous bedside neuropsychological evaluations may have served to familiarise him with the format of such testing, acting as an impetus to research the issue of stroke and focal brain deficits (which might also have occurred after his father’s stroke), much in the same way he is now researching conversion disorder, thereby discovering what expected answers should look like. Despite repeated questioning, however, no evidence could be gathered from the patient to support this speculation.

Anosognosia and mania associated with right thalamic haemorrhage

Both anosognosia and secondary mania are associated with right hemispheric lesions. These two non-dominant syndromes, however, are rarely described as occurring together. We present a patient with a right thalamic haemorrhage giving rise to profound denial of hemiplegia and elated mood. This case suggests mechanisms for the common production of mania and anosognosia.

A 53 year old, right handed, black man, with a history of alcohol misuse and dependence and untreated hypertension, was brought to the emergency room a few hours after developing an intense headache and left sided numbness and weakness.

On admission he was described as “belligerent,” “agitated,” and “confused.” Blood pressure was 240/160. Neurological examination disclosed left lower facial droop, decreased left corneal and gag reflexes, and left hemiparesis with dense sensory deficits. With increasing obtundation, the patient was transferred to the intensive care unit and intubated. Brain MRI showed a large frontotemporal right sided, hyperacute thalamic bleed with mass effect and oedema. The patient was extubated 2 days later and 4 days after the stroke he was described as being drowsy and inattentive, but was able to answer questions...
appropriately. Neurological examination showed contralateral gaze preference, supra-nuclear vertical gaze palsy, difficulty converging, left sided flaccid hemiparesis, and dense, left sided hemianesthesia. Deep tendon reflexes were absent on the left and Babinski's reflex was present on the left (adduction). Visual extinction and neglect were present.

At the time of onset of right sided weakness the patient insisted that he was “fine,” and an ambulance was called over his objections. After being extubated, the patient acknowledged that he had had a stroke, but, despite his hemiparesis, insisted that he was ready to go home and go back to work. His belief in his ability to walk led to near falls, and he was moved back to the nurses’ station for closer observation. He told the nurses that someone else’s arm was in his bed. On one occasion, holding up his left arm with his right, he told the nurses to “take it away; it keeps scratching me.” That the left arm “smelled funny” was another reason he wanted the nurses to take it away.

Four weeks after the stroke he first acknowledged that his left arm belonged to him, after having previously believed otherwise. By this time he had a moderate hemiplegia and recognised “a little weakness,” but continued to insist that he was well and able to return to work. By the 6th week another patient more consistently acknowledged that he was weak on the left side of his body. A request for disabled housing “so that I won’t be a burden to my family” seemed to indicate an appreciation of his impaired insight. He was following, within an hour of making such statements the patient might insist that after a week’s exercise he would be ready to return to work. His awareness of his hemiplegia fluctuated for 8 weeks after stroke before becoming fixed, but remained shallow after 12 weeks; he no longer planned to return to work and applied for social security disability insurance “because they say I’m disabled.”

The patient’s mood was remarkably cheerful and optimistic. A week after the stroke he was noted to praise extravagantly the hospital food, and the nurses found him “talkative.” When he arrived on our ward 11 days after the stroke he was in good mood, his friends were present, and he was talking and joking. He remained well-oriented and watched television with the hospital staff and boasted of having fathered 64 children. His girlfriend was surprised when he kissed her and boasted of having fathered 64 children. “because they say I’m disabled.”

His awareness of his hemiparesis fluctuated with the patient might insist that after a week’s

impairment, but this insight was fleeting; his initial recall of two paragraphs scored formally within the low average range and after a 30 minute delay, he was able to recall most of the information initially encoded, scoring formally within the average range.

Structural brain MRI on admission to the emergency room showed a large right thalamic hemorrhage with mass effect and oedema, with oedema extending into the cerebral peduncle with increased susceptibility consistent with deoxyhaemoglobin. Also present was increased T2 signal bilaterally in the cerebral cortex. Functional MRI performed 44 days after the stroke demonstrated a 2 cm right thalamic haematomata. Functional MRI performed the same day demonstrated a 2 cm area of absent cerebral blood volume at the posterior margin of the right thalamus without any evidence of decreased cerebral blood volume within the right parietal, frontal, or temporal cortex.

This is a case of anosognosia of hemiplegia and mania co-occurring in a patient with a large right thalamic haemorrhage. Although anosognosia and mania are not generally thought of as occurring together, when Babinski introduced the term anosognosia he did so as an example of a case in which the patient, though obviously conscious, was “a little overexcited,” and in a later paper he presented a case in which there was “a certain agitation, which expresses itself by exaggerated logorrhea, a decrease in attention, and a tendency to erotic ideas.”

Weinstein and Kahn noted that euphoria was common in patients with anosognosia. Moreover, although Cutting emphasised that apathy is the mood more usually associated with anosognosia, 10% of his patients with anosognosia were described as having “euphoric mood.”

Right sided thalamic lesions are known to produce both anosognosia and mania, but the relation of each to the pathology is unclear. Only some of the patients with right hemispheric lesions are manic or agnostic. These two syndromes may be related to dysfunction of different neural networks and only occur together when a disease process affects both networks.

Another possibility is that these syndromes are aetiologically related. Could anosognosia be a manifestation of mania? Although it is easy to conceive how elevated mood might facilitate anosognosia of hemiplegia (or other types of anosognosia), it is difficult to explain the presence of denial in ownership and displeasure of the left arm (other anosognosic phenomena) on the basis of euphoria.

Moreover, Starkstein et al, finding that similar frequencies and severities of major and minor depression were present in patients with and without anosognosia, suggest that a particular mood state may not necessarily influence insight.

Several explanations have been proposed to explain the phenomenon of anosognosia. All the models involve dysfunction of the cerebral cortex, especially the prefrontal cortex is interesting that in this case contralateral M1 failed to demonstrate decreased CBV in the parietal lobe.

In summary, we present a case of mania accompanying anosognosia of hemiplegia. The coexistence of mania and anosognosia may be more common than previously appreciated. The association with anosognosia implies that the mechanisms implicated in the pathogenesis of secondary mania may be similar to those of anosognosia. The absence of evidence of abnormal parietal, temporal, or frontal lobe function by functional MRI in this case is intriguing.

ELIZABETH LIEBSON
Department of Psychiatry, Tufts, New England Medical Center, 750 Washington Street, Box 1007, Boston, MA 02111, USA. Telephone 061 617 636 1633; email eliebson@opal.tufts.edu

Epileptic cardiac asystole

A patient is reported on with habitual episodes of collapse and loss of consciousness associated with EEG evidence of focal epileptiform discharges. Simultaneous ECG recordings disclosed 25 seconds of cardiac ventricular asystole occurring 24 seconds after the onset of focal seizure activity. After changes to antiepileptic medication and the insertion of a permanent cardiac pacemaker he had made no further episodes. In cases of epileptic cardiac dysrhythmia, isolated EEG or ECG recordings may prove insufficient and prolonged simultaneous EEG/ECG monitoring may be required.

Cardiac arrhythmias subsequent to epileptic seizures have been recognised for more than 90 years. They provoke diagnostic confusion and may be a mechanism of sudden unexplained death in epilepsy. Whereas sinus tachycardia was noted to accompany more than 90% of epileptic seizures, isolated bradycardia was seen much
less commonly (only 1 of 74 seizures recorded). A review in 1996 of the “ictal bradycardia syndrome” showed only 15 documented cases in the literature of either bradycardia or asystole associated with seizures. Most patients had temporal lobe seizures. The longest duration of asystole previously reported is in a 17 year old man with temporal lobe epilepsy who sustained a 22 second pause in cardiac output. More typically the asystolic periods in documented cases are in the region of 5–10 seconds. Shorter duration asystole may not compromise cerebral function sufficiently to cause loss of consciousness. Implantation of a cardiac pacemaker is advocated but does not ensure that lapses of consciousness are eliminated if these are directly related to the seizure rather than to the secondary asystole. We report on a patient with epileptic cardiac asystole of 25 seconds duration demonstrated by prolonged simultaneous EEG/ECG monitoring which responded well to pacemaker insertion.

A previously well 34 year old right handed builder was referred with a 1 year history of fortnightly episodes of loss of consciousness. There was no associated warning, aura, chest pain, or palpitations and the patient was only aware of the episode once consciousness was
restored and he found himself lying on the floor. On recovery there was no confusion, drowsiness, dysphasia, or diuresis. Often, however, he sustained soft tissue injuries to his face and scalp.

Witnesses reported that the patient would, without warning, suddenly collapse to the ground where he would remain unrousable, inaccessible, and motionless for 90 to 120 seconds. On two occasions he appeared confused and disorientated immediately before a collapse. During the period of unconsciousness he would demonstrate no involuntary movements, orofacial automatisms, or cyanosis but he would become pale and “ashen” while staring straight ahead with a glazed look. In one episode of the episode his heart rate would return to normal and within 2 minutes he would have fully recovered. Unusually during one reported episode of unconsciousness he was seen to briefly extend the fingers of both hands.

He was admitted to his local hospital and CT, MRI, interictal EEG, and 24 hour ECG were normal. No episodes were witnessed while he was an inpatient but they were thought to be of mixed paroxysmal or tonic-clonic origin and therefore he was started on phenytoin, with no benefit. Carbamazepine was added, again with minimal effect.

The patient was then referred to the Epilepsy Assessment Centre Of The National Society for Epilepsy and National Hospital for Neurology and Neurosurgery for further investigation and management.

Cardiovascular and neurological examination was normal as were MRI and routine interictal EEG. Sixteen channel ambulatory EEG using an Oxford Instruments digital EEG receiver was performed continuously for 340 hours before an episode was captured. Interictally rare spikes were seen over the right hemisphere but he would become pale and “ashen” while staring straight ahead with a glazed look. In one episode of the episode his heart rate would return to normal and within 2 minutes he would have fully recovered. Unusually during one reported episode of unconsciousness he was seen to briefly extend the fingers of both hands.

Electroencephalographic (EEG) recordings were acquired, ictal arrhythmias occurred in 52% of seizures, the commonest being irregular abrupt changes in heart rate, (both acceleration and deceleration) occurring towards the end of the period of EEG abnormality. Interictally, patients with epilepsy seem no more likely than age and sex matched healthy subjects to experience arrhythmias although in one study patients with epilepsy had a faster ventricular rate and a longer QT interval than control subjects.

It has been hypothesised that there is laterisation with respect to central autonomic cardiac control with an increase in heart rate seen after an increase in density of aminobutyric acid and inactivation of the left hemisphere and a decrease in heart rate on right hemispheric inactivation. Experimental stimulation of the rostral posterior insular cortex in anaesthetised rats has been shown to induce tachycardia and more caudal region stimulation to cause bradycardia. Additionally, prolonged stimulation resulted in ventricular ectopics, heart block, QT prolongation, and death. In predental temporal lobectomy patients stimulation of the left insular cortex (particularly posteriorly) produced bradycardia and a depressor response significantly more often than tachycardia and a pressor effect. It was suggested that an epileptic discharge in the insular cortex may result in cardiac arrhythmias.

Recurrent episodes of loss of consciousness are a common clinical problem. An accurate diagnosis relies principally on the patient’s and witnesses’ accounts of events. Further investigations are frequently required which are often normal unless an episode is captured during the monitoring period. Recording solely the EEG or the ECG may result in erroneous conclusions being drawn and insufficient or inappropriate therapy being instituted. Distinction between a primary cardiac arrhythmia and a secondary central arrhythmia is possible only with simultaneous EEG/ECG recordings.

FERGUS J RUGG-GUNN JOHN S DUNCAN SHEK LM J M SMITH Epilepsy Research Group, University Department of Clinical Neurology, Institute of Neurology, The National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK

Correspondence to: Professor John S Duncan, National Society for Epilepsy, Chalfont St Peter, Gerrards Cross, Bucks SL9 0RJ, UK email j.duncan@inol.ac.uk

Respiratory insufficiency in a patient with hereditary neuropathy with liability to pressure palsy

Hereditary neuropathy with liability to pressure palsies (HNPP) is an autosomal dominant disorder, the molecular basis of which is a 1.5 Mb deletion in chromosome 17p11.2 including the peripheral myelin protein-22 (PMP-22) gene. HNPP typically presents recurrent pressure palaies of peripheral nerves, such as the axillary, median, radial, ulnar, or peroneal nerves, at common entrapment sites. Respiratory muscle weakness has not been previously reported in HNPP. We describe a patient with both respiratory failure and proximal muscle weakness who was a prominent feature.

The patient started to have dyspnoea on exertion at the age of 44. At the age of 47, he noticed a slowly progressive weakness of the pelvic girdle and lower limbs. At the age of 57, he experienced difficulty in going up stairs. However, he was almost independent in daily life. At the age of 60, he was admitted to Queen Elizabeth Red Cross Hospital with respiratory insufficiency and apnoea with a coma due to CO, narcosis (PCO₂ 117.6, PO₂ 64.0). Responding to mechanical ventilatory support, he completely recovered consciousness within a day. His respiratory condition in the daytime improved to that previously. However, he needed mechanical ventilation during sleep because of nocturnal hyperventilation.

The patient had no history of diabetes mellitus, pulmonary or other cardiovascular problems. There was no familial history of neurological disorder, including entrapment neuropathies. After a few months, he noted that in his teens he had experienced some episodes of right peroneal and right axillary nerve palsies which resolved themselves over a few months.

In a neurological examination, the patient’s mental state and cranial nerves were normal. Evidence of muscular atrophy and facial weakness was present. The thorax showed poor respiratory movement, and the patient showed paradoxical movement of the abdomen in the supine position. Tendon reflexes were hypoactive in all limbs. The patient’s sensations of touch and pain were mildly impaired in the four limbs. His vibration sense was normal. His vital capacity was 1.9 l (55% of the normal mean) in the sitting position, but 1.3 l (38%) in the supine position. The percentage of forced expiratory volume in 1 second was normal (90%). The thorax showed poor respiratory movement at inspiration and expiration showed poor movement of the diaphragm but no abnormality in the lung field. Routine haematological and serological studies gave normal results. No monoclonal or polyclonal proteins were detected. IgG and IgM antibodies to gangliosides GM1 and GD1b were negative. Analysis of CSF showed 1 lymphocyte/m³ and 25 mg/dl protein. Motor nerve conduction studies showed prolonged distal latencies in the right median (8.8 ms (normal value in our laboratory <4.6)) and ulnar (6.2 ms (normal<3.6)) nerves, and moderate decreased conduction velocities in the right median (45 m/s (normal<45)), ulnar (45 m/s (normal>45), tibial (35 ms (normal>38)), and peroneal (29 ms (normal>41)) nerves. There were moderate decreases in the amplitude of compound action potentials in all the nerves tested, and an amplitude reduction of 50% was detected across the cubital tunnel of the right ulnar nerve. Minimum F wave latencies were prolonged in all the nerves tested. The latency in the right phrenic nerve was highly prolonged.
Delayed (8.7 ms (normal<8.0)). Sensory nerve conduction studies showed a reduced amplitude of sensory nerve action potentials and conduction slowing in all the nerves tested. Electromyography carried out in the supraspinatus, deltoid, biceps, flexor carpi ulnaris, brachioradialis, quadriceps femoris, biceps femoris, tibialis anterior, and gastrocnemius muscles showed polyphasic motor unit potentials of long duration, but denervation potentials were rare. A left sural nerve biopsy showed scattered tomacular thickening of the myelin sheath and some abnormal thin axonal myelin sheaths. The density of myelinated fibres was reduced (5726/mm² normally thin axonal myelin sheaths. The density of myelinated fibres was reduced (5726/mm² normally thin axonal myelin sheaths. The density of myelinated fibres was reduced (5726/mm²). A gene analysis disclosed a 53% gene dose of PMP-22 related to normal controls, using Southern blot of DNA digested with EcoRI. Given the possibility of superimposing demyelinating neuropathy, especially chronic inflammatory demyelinating polyneuropathy, oral prednisolone (60 mg/day) was given for 1 month. However, the patient’s clinical condition did not respond to this treatment. Pulmonary dysfunction and proximal muscle weakness were almost steady during the next 3 years.

We examined the patient’s elder sister (64 years old), elder brother (62 years old), and younger sister (58 years old), although they had no neurological complaints. All of them had experienced generalised hyporeflexia or areflexia but no weakness or sensory loss, and nerve conduction studies showed moderate conduction slowing with accentuation at the common entrapment sites, suggesting demyelinating neuropathy.

Our patient recalled experiencing recurrent episodes of transit entrapment mononeuropathies, and the familial occurrence of asymptomatic entrapment neuropathy was detected by nerve conduction studies. The presence of tomacula, and genetic analysis confirmed a diagnosis of HNPP. However, the patient’s dominant clinical features—respiratory failure and proximal muscle weakness—were atypical for HNPP. Although respiratory muscle weakness has been reported in hereditary motor and sensory neuropathy (HMSN), there has been no report of respiratory insufficiency associated with HNPP to our knowledge.

The weakness of the truncal muscles, including the respiratory accessory muscle, is a possible cause of respiratory failure in our patient. On the other hand, he had experienced hypventilation in the supine posture and paradoxical movement of the abdomen, which suggested diaphragmatic weakness.

Also, chest radiography showed poor movement of the diaphragm. Although the prolongation of distal latency in the phrenic nerve was mild considering the severity of respiratory failure, assessment of axonal loss is not possible with phrenic nerve stimulation. In fact, phrenic nerve latency is not necessarily associated with pulmonary dysfunction in HMSN.

Diaphragmatic weakness in our patient is an uncommon finding as for HNPP. Mancardi et al. reported on three patients with progressive sensory-motor polyneuropathy associated with 17p11.2 deletion, and the initial symptom of one patient was proximal weakness in one arm. We propose that our patient represents a clinical phenotypic variability among HNPP. It may be necessary to pay attention to respiratory function in HNPP.

We thank Dr T Yamamoto from the University of Occupational and Environmental Health for the gene analysis and Mr T Nagase from Chiba University for his technical help with the sural nerve biopsy.

Spinal accessory neuropathy and internal jugular thrombosis after carotid endarterectomy

Spinal accessory neuropathy is a rare complication of carotid endarterectomy (CEA). Internal jugular venous thrombosis after CEA has also been reported rarely, but is likely more common; as internal jugular...
venous thrombosis is often asymptomatic, or presents with non-specific pain, it is probably unrecognised in many cases.1 Concurrent ipsilateral spinal accessory neuropathy and internal jugular venous thrombosis after CEA is expected to be rare, and this is underscored by the few published cases. Despite this apparent rarity, a common pathogenetic mechanism for postoperative spinal accessory neuropathy and internal jugular venous thrombosis may well be present, at least in some cases, which may lead to the consideration of the possibility of both when either is discovered.

We report on a patient who developed right spinal accessory neuropathy and internal jugular venous thrombosis after right CEA. A 59 year old man underwent right CEA for possibly symptomatic stenosis. Angiography had shown 90% stenosis of the right internal carotid. The operation was done under general anaesthesia. The carotid bifurcation was unusually distal, necessitating a long dissection and high retraction. No immediate postoperative complications were evident. The next day, the patient complained of mild pain at the operative site, but he did not notice any weakness. The pain spread into his right shoulder within several days; at that time, he also noted difficulty raising his right arm. His symptoms worsened further a few weeks later. The symptoms persisted and he presented for neurological evaluation 4 months after CEA. At that time, he had some induration along the incision site and a palpable supraclavicular cord. There was moderate atrophy of the right sternocleidomastoid and trapezius, with right shoulder drooping and minor right scapular winging. Right arm abduction produced more prominent scapular winging and was limited to 90 degrees due to pain and weakness. Electrodiagnostic studies were consistent with partial right spinal accessory neuropathy with minor denervation of the right trapezius. Cervical ultrasonography and MRI demonstrated right internal jugular venous thrombosis. The patient was treated with a shoulder support, analgesics, and low dose aspirin. There was no significant clinical change 1 year after CEA. Repeat electrodiagnostic studies were consistent with chronic right spinal accessory neuropathy, and repeat ultrasonography showed persistent right internal jugular venous thrombosis. The right spinal accessory neuropathy was the only complication reported. It was the first reported as a complication of CEA in 1982.4 Since then, there have been several case reports and small series.1 A 1996 review of reports of cranial neuropathy after CEA disclosed only one patient with spinal accessory neuropathy in over 3000 cases.1 Although the authors did not include several other reports5 which, taken together, may seem to suggest a somewhat higher incidence, the overall small number of reported cases in proportion to the hundreds of thousands of CEsAs that have been done worldwide suggests that clinically significant spinal accessory neuropathy is a rare complication. Major spinal accessory neuropathy after CEA may be more frequent. The cause of spinal accessory neuropathy after CEA is usually not well established, but intraoperative nerve stretching or compression from retraction is most often invoked.6 Delayed onset (after 3 weeks) has been noted in some; for these patients, postoperative inflammation and scarring seem more likely causes. Spinal accessory nerve transection or ischemia/infarction (arterial or venous) are other possibilities. As in our patient, high carotid dissection and retraction have been reported to precede spinal accessory neuropathy.4,7

The spinal accessory nerve courses along the internal jugular vein and near the internal carotid artery, typically well above the carotid bifurcation. It is thought that a high incision and retraction resulting from a carotid bifurcation would place the nerve at risk. Whether this realisation may lead to any technical modification to decrease the risk of spinal accessory neuropathy in those with a high bifurcation is unclear.

From our search, internal jugular venous thrombosis after CEA has been reported in only one case.7 As Southcott et al noted, retraction of the internal jugular during CEA may cause complete occlusion, leading to thrombosis from venous stasis or endothelial injury. Other causes of internal jugular venous thrombosis include jugular cannulation, blunt cervical trauma, and a hypercoagulable state. Internal jugular venous thrombosis may occur immediately after neck dissection, often with recanalisation after several months.8

The presence of induration about the incision site and a palpable supraclavicular cord in our patient led us to suspect venous thrombosis. Internal jugular venous thrombosis may be asymptomatic. Potential symptoms of internal jugular venous thrombosis include headache, dysphagia, and anterolateral neck pain, tenderness, and swelling. In addition to perivenous induration, fever and leukocytosis may occur.1

Common pathogenetic mechanisms for spinal accessory neuropathy and internal jugular venous thrombosis may include intraoperative traction, haematoma, and postoperative inflammation and scarring. Although the onset of either spinal accessory neuropathy or internal jugular venous thrombosis in our patient cannot be determined precisely, it is likely that both developed at about the same time. The delayed worsening of the spinal accessory neuropathy in this case suggests postoperative scarring or inflammation. The lack of improvement after a year, in some other cases of spinal accessory neuropathy after CEA, implies considerable axonal injury, but does not clarify the manner of injury.

GEORGE WOODWARD
RAM VENKATESH
Department of Neurology, University of Kansas, and Neurology Section, VA Eastern Kansas Health Care System, VA, USA

Correspondence to: Dr George Woodward, Neurology Section (111), VA Medical Centre, Leavenworth, Kansas 66048, USA. Telephone 001 913 682 2000 extension 2441; fax 001 913 758 4225.

Ischaemic stroke in a sportsman who consumed MaHuang extract and creatine monohydrate for body building

We report the first case of extensive cerebral infarct in a young sportsman consuming high doses of MaHuang extract and creatine monohydrate.

A 33 year old man had a severe aphasia on awakening in the morning of 23 January 1999. He did not complain of any other symptoms. He was referred to our department on 26 January 1999. He had a Wernicke aphasia with a slight right sided face and arm weakness and a right Babinski sign. His blood pressure was 140/60 and his pulse 54 per minute. Brain CT showed signs of extensive left middle cerebral artery infarct. Cervical ultrasound duplex scanning and cerebral angiography were normal. Cerebral CSF examination with other drugs as energy supplement monohydrate, 1000 mg taurine, and 5 mg coenzyme Q10 per scoop. He consumed 40–60 mg ephedra alkaloids, 400–600 mg caffeine, 100 mg L-carnitine, and 200 mg creatine monohydrate daily for about 6 weeks before his stroke.

Although a paradoxical embolism through a patent foramen ovale in this patient cannot be ruled out as he recently went on a transatlantic air flight, there was no deep venous thrombosis and D-dimeres were normal. However, ephedrine has an indirect sympathomimetic action and is responsible for arteriolar vasconstriction in addition to other catecholaminergic effects. Both ischaemic and haemorrhagic stroke associated with ephedrine use have been reported.1 Acute myocardial infarction and acute psychosis have also been reported after taking ephedrine and other sympathomimetic drugs.1 Ephedrine and its metabolites are natural products that are used in non-prescription medicines for multiple uses. The MaHuang extract, which contains ephedrine, is used among young sportsmen and sportswomen as an energy supplement in non-prescription tablets in some countries.

Although no cardiovascular side effects have been reported with the use of creatine monohydrate, this compound, used in association with other drugs as energy supplement may have deleterious side effects. This may be particularly true when used at high doses in combination with sympathomimetic drugs as in our patient. Renal dysfunction has also been reported after oral creatine supplements. Our patient had a slight increase in creatine concentration although...
it remained in the normal range. Whether the use of high doses of caffeine can enhance the cardiovascular effect of ephedrine remains a possibility as stroke after taking a combination of caffeine and amphetamine has been reported.

Drug addiction in sportsmen and sportswomen is becoming a major concern in our societies, involving both professionals and amateurs. As energy supplements, thought to enhance performance, are easily available in some countries without the need of medical prescription, everybody should be aware that these so called “benign” drugs may have major adverse effects.

This first case report of an extensive cerebral infarct in a young sportsman consuming high doses of MaHuang extract and creatine monohydrate should alert the sport community to this possible adverse effects of energy supplements, particularly when used in multiple combination.

K VAHEDI
V DOMIGO
P AMARENCO
M-G BOUSSER
Service de Neurologie, Hôpital Lariboisière, Paris, France

Correspondence to: Dr K Vahedi, Service de Neurologie, Hôpital Lariboisière, 2 Rue A Paré, 75010 Paris, France
email vahedi@ccr.jussieu.fr

Petroclival meningioma as a cause of ipsilateral cervicofacial dyskinesias

Hyperkinetic movement disorders of facial and neck muscles such as blepharospasm, hemifacial spasm, facial myokimia, and cervical dystonia have rarely been associated with unilateral brainstem or posterior fossa pathologies. We report a case of unilateral cervicofacial dyskinesias due to an ipsilateral petroclival meningioma.

A 32 year old left handed woman complained about left sided facial dysaesthesia of the upper quadrant of her face for 1 year. In addition she had intermittent ipsilateral headache. A left sided facial palsy and hypogeusia developed. When progressive hearing loss and persistent ipsilateral tinnitus occurred she sought medical advice. She was referred to our department for further treatment after a large tumour in the left cerebellopontine angle had been demonstrated by MRI. On admission, the left corneal reflex was absent. There was marked hypoaesthesia of the first two divisions of the left trigeminal nerve and a mild left facial palsy. There was also hypogeusia of the left half of the tongue. Speech was slightly dysarthric. During examination dystonic and choreic movements of the left facial muscles were seen. The dystonic grimacing increased when the patient was being observed. There were also intermittent jerky dystonic head movements with turning of the head to the left, associated with slight elevation of the left shoulder. The facial movement disorder was clearly different from hemifacial spasm. There were no tonic or clonic synchronous contractions of facial muscles and no signs of involuntary coactivation. The patient barely noted the dyskinesias. Audiometry showed a hearing threshold at 30 Db on the left side and lack of stapedius reflex on the left side. Oculovestibular response to caloric stimulation was

(A) Axial T2 weighted SE MR images of a 32 year old woman with left sided cervicofacial dyskinesias show a large left petroclival meningioma compressing the brainstem. (B) Coronal inversion recovery MR scans demonstrate marked displacement and distortion of the brainstem due to the petroclival meningioma. (C) Gadolinium enhanced axial T1 weighted SE MR scans 3 months postoperatively show complete removal of the tumour and normalisation of the displacement of the brain stem.
decreased on the left side. Furthermore, there was mild left dysphagia.

Neurography of the facial nerve was normal on both sides. Needle myography of the left frontalis and orbicularis oculi did not show signs of denervation.

An MRI study showed a large gadolinium enhancing tumour within the left cerebello-pontine angle extending to the cavum Meckeli with marked displacement of the brainstem to the contralateral side (figure A and B). Ventriculography showed a discrete blush of the tumour as typically seen in menigiomas. The tumour was totally removed by a combined transpetro-supertentorial and infratentorial presigmoidal approach. The postoperative course was uneventful, and there were no new deficits. The facial palsy improved slightly as well as the trigeminal hypesthesia. Audiometry remained unchanged. Postoperative imaging showed no residual tumour and the displacement of the brain stem within the posterior fossa had resolved (figure C). Marked improvement of the left sided cranialfacial dyskinesias occurred during the next weeks.

The postoperative improvement of the dystonic and choreic grimacing and the cervical dystonia indicates a causal association between the petroclival meningioma and the segmental hyperkinetic movement disorders. Such a relation is supported also by the absence of a familial history of movement disorders and the absence of previous exposure to neuroleptic medication. Hyperkinetic movement disorders due to tumours of the brainstem or of the posterior fossa have been reported only rarely. Asymptomatic blepharospasm was recently found in a patient with an ipsilateral mesencephalic cyst.1 Hemifacial spasm was seen in patients with atypical neoplasms, meningiomas, epidermoid tumours of the cerebello-pontine angle.2 Acoustic neurinomas and anaplastic pontocerebellar glioma can be associated with facial myokymia and spastic parietic facial contracture.3 Also, cervical dystonia due to tumours of the cerebellum-pontine angle have been reported recently.4

The pathophysiological mechanisms responsible for dystonic movement disorders caused by structural or functional lesions of the brainstem are not fully understood. The possibility of denervation supersensitivity of cranial nerve nuclei has been proposed previously. Alternatively, enhanced excitability of brainstem interneurons has been suggested. This pathophysiological mechanism is supported by the findings of blink reflex studies in patients with blepharospasm, spasmodic dysphonia, and cervical dystonia. Tolosa et al found significantly less inhibition of the test stimulus polysynaptic late response and marked enhancement of the recovery curve of the late response under such conditions compared with the response in healthy subjects.5

Our case provides further evidence that functional impairment by compression and distortion of the brain stem may cause hyperkinetic cervicofacial movement disorders. It is not supported also by that such movement disorders are accessible to surgical treatment of the underlying pathology. Therefore, patients with cranial or cervical dystonia or choreic dyskinesia should undergo MR imaging to rule out a surgically treatable cause.

THOMAS POHLE
JOACHIM K KRAUSS
Department of Neurosurgery, Inselspital, University of Bern, Berna, Switzerland

JEAN-MARC BURGUNDER
Department of Neurology

Correspondence to: Dr J K Krauss, Department of Neurosurgery, University Hospital, Klinikum Mannheim, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.

email: joachim.krauss@nch.ma.uni-heidelberg.de

Acute multifocal cerebral white matter lesions during transfer factor therapy

Transfer factor is an active substance of unknown structure present in dialysable leucocyte extract which is assumed to transfer cell mediated immunity in an antigen specific fashion.1 The mechanisms of action of transfer factor are still far from clear; in vitro dialysable leucocyte extract increases macrophage activation and interleukin (IL) 1 production and enhances leucocyte chemotaxis and natural killer function. Transfer factor has been reported to stimulate the cell mediated antigen specific response in patients with various infections;2 therefore, treatment with transfer factor has been suggested in patients with selective deficits in cell mediated immunity such as some refractory neoplasms and chronic infections. Moreover, it has been used in the treatment of uveitis.3 Administration of dialysable leucocyte extract has seemed to be free of hypersensitivity, long lasting side effects, or complications, except for transitory hyperpyrexia.4

We report on a patient in whom multiple cerebral white matter lesions developed after taking dialysable leucocyte extract orally for right eye. A 28 year old man was admitted to hospital because of headache, mental confusion, and right hemiparesis. He had recurrent bilateral uveitis from the age of 12 to 14 with rupture of the right eye. In January 1995 retinal vasculitis was diagnosed at fundoscopy and in July 1995 he started oral transfer factor as dialysable leucocyte extract twice a week. He complained of generalised weakness after the second dose and the referring symptoms developed after the third dose.

Neurological examination on admission showed mental confusion and severe right spastic hemiparesis with right Babinski’s sign. No fever or meningismus were present.

Laboratory examinations on admission showed a slight increase in total serum protein (9.3 g/l, normal 6.0–8.0 g/l), and antinuclear, anti-DNA, anti-neutrophil, anti-ENA, anti-smooth muscle, and antineutrophil cytoplasmic antibody, lupus anticoagulants, cryoglobulins, immune complexes, complement fractions, and neoplastic markers.

Serological investigations showed IgG but not IgM against cytomegalovirus (CMV), Herpes simplex, Varicella zoster, Epstein-Barr virus, and JC virus and T cells in CSF were normal. No oligoclonal bands or antibody against CMV, Herpes simplex, Varicella zoster, Epstein-Barr virus, and JC virus in CSF were normal. No oligoclonal bands or antibody against CMV, Herpes simplex, Varicella zoster, Epstein-Barr virus, and JC virus in CSF were normal.

Cell, protein, and glucose concentrations in CSF were normal. No oligoclonal bands or antibody against CMV, Herpes simplex, Varicella zoster, Epstein-Barr virus, and JC virus were present. Polymerase chain reaction search for Herpes simplex 1 and 2, Varicella zoster, CMV, Epstein-Barr virus, and JC virus in the CSF was negative.

Brain MRI showed several extensive asymmetrical lesions in the subcortical and periventricular cerebral white matter, some of which exerted a mass effect on the nearby CSF spaces. All lesions exhibited thick ring-like enhancement after intravenous contrast administration (figure). The brain stem, cerebellum, and cervical spinal cord were spared.

The patient had a progressive spontaneous remission of symptoms and signs. The neurological examination 20 days after onset showed slightly increased deep tendon reflexes on the right side and was normal 40 days later; all laboratory analyses were normal except for antistreptolysin títres (265 UI/ml). Two MR scans at 1 and 4 months after onset showed progressive reduction of the extension of cerebral white matter lesions, which did not show contrast enhancement. A final MR scan 20 months after onset showed further regression of lesions without contrast enhancement but a new large lesion in the left occipital white matter, which showed moderate contrast enhancement. At present, after 5 years, the patient is in a good state of health and neurological examination and laboratory tests are normal.

The close temporal relation between assumption of dialysable leucocyte extract therapy and appearance of cerebral white matter lesions in our patient supports the possibility that the association of the two events might not be casual. Despite the absence of biopsy, we reasonably excluded
the diagnosis of vasculitis or neuro-Bechet's disease although in the absence of biopsy. In fact, the clinical, laboratory, and MRI findings were not typical and a low titre of anticardiolipin antibodies is found in 2% of healthy subjects.1

The occurrence at different time of focal cerebral white matter lesions highly supports the diagnosis of multiple sclerosis, but some clinical and laboratory findings in the our patient are not typical for this condition. Mental confusion is not common at the onset of multiple sclerosis whereas it is often found in acute disseminated encephalitis.2 In addition, CSF without oligoclonal banding argues against a diagnosis of multiple sclerosis, whereas it is commonly found in acute disseminated encephalitis.3 On the other hand the possibility that acute disseminated encephalitis may recur has been accepted4 and on the basis of the patient's clinical picture and CSF, we favoured such a diagnosis.

The pathogenic mechanisms underlying the triggering, development, and duration of multiple sclerosis and acute disseminated encephalitis are still far from clear despite the progress made in unravelling them. Some findings suggest that acute disseminated encephalitis and multiple sclerosis lie at the two poles of an autoimmune range, in which autoantigen reactivity is only temporary and the basal ganglia, dentate nuclei and cortex, or Fahr's disease5—whether idiopathic or associated with hypoparathyroidism—previously been associated with this handicap. We present the case of a 24 year old man with Asperger's syndrome, primary hypoparathyroidism, and multifocal brain calcifications.

According to medical history, the patient's mother had received weekly injections of Depopovera during pregnancy. A single child born after a normal term delivery, he underwent surgery for an inguinal hernia at 3 weeks. Developmental milestones were only moderately delayed. At 9 months, he rolled instead of crawling. He walked at 15 months, spoke at 2 years with poor articulation, and still speaks in short, unelaborated sentences. His social and language development lagged in grade school and he occasionally got into fights. In late adolescence, antisocial behaviour took the form of shoplifting and repeated long distance calls to pornographic hot lines. As an adult, his social adaptation remains poor: he currently lives with his mother and works irregularly as a dishwasher in a restaurant. He is indifferent, isolated, and resists novelty. He enjoys repetitive and solitary activities such as slot machine games and playing the piano.

Neurological examination showed bilateral hyperreflexia, mild impression of fine finger movements, dysgraphaesthesia on sensory testing, and a manneristic gripping handshake. There were no extrapyramidal

Brain CT, axial section: dense calcific deposits in the basal ganglia, thalamus, and orbitofrontal cortex consistent with Fahr's disease.

Fahr's disease and Asperger's syndrome in a patient with primary hypoparathyroidism

Abnormal calcium phosphate metabolism has not previously been associated with Asperger's syndrome, a form of pervasive developmental disorder. Nor have symmetric calcifications of the basal ganglia, dentate nuclei and cortex, or Fahr's disease6—whether idiopathic or associated with hypoparathyroidism—previously been associated with this handicap. We present the case of a 24 year old man with Asperger's syndrome, primary hypoparathyroidism, and multifocal brain calcifications.

According to medical history, the patient's mother had received weekly injections of Depopovera during pregnancy. A single child born after a normal term delivery, he underwent surgery for an inguinal hernia at 3 weeks. Developmental milestones were only moderately delayed. At 9 months, he rolled instead of crawling. He walked at 15 months, spoke at 2 years with poor articulation, and still speaks in short, unelaborated sentences. His social and language development lagged in grade school and he occasionally got into fights. In late adolescence, antisocial behaviour took the form of shoplifting and repeated long distance calls to pornographic hot lines. As an adult, his social adaptation remains poor: he currently lives with his mother and works irregularly as a dishwasher in a restaurant. He is indifferent, isolated, and resists novelty. He enjoys repetitive and solitary activities such as slot machine games and playing the piano.

Neurological examination showed bilateral hyperreflexia, mild impression of fine finger movements, dysgraphaesthesia on sensory testing, and a manneristic gripping handshake. There were no extrapyramidal

Correspondence to: Dr Francesco Giuseppe Foschi, Seminastica Medica, Dipartimento di Medicina Interna, Epatologia e Cardioangiology, Università degli Studi di Bologna, Policlinico Sant'Orsola, via G Massarenti 9, 40138 Bologna, Italy. Telephone 0039 51 308943; fax 0039 51 308966; email: fgfoschi@tin.it

FRANCESCO G FOSCHI
LORENZO MARISIGLI
MAURO BERNARDI
Seminastica Medica, Dipartimento di Medicina Interna, Epatologia e Cardioangiology, Università di Bologna, Italy.大脑白质病变

FABRIZIO SALVI
Dipartimento di Scienze Neurologiche, Ospedale Bellaria, Bologna, Italy.大脑白质病变

MARIO MASCALDI
Cattedra di Radiologia, Università di Pisa, Italy.大脑白质病变

GIOVANNI GASBARRINI
Cattedra di Medicina Interna, Università Cattolica del Sacro Cuore, Roma, Italy.大脑白质病变

GIUSEPPE F STEFANINI
Divisione di Medicina Interna, Ospedale di Faenza (Ravenna), Italy.
symptoms. His IQ score was in the low range (WAIS-C=85 at the age of 13; Barbeau-Pinard=82 at the age of 17). He also presented an impairment on the Tower of London test, which measures executive function, and in a task assessing the understanding of others’ intentions. These two findings are reliably present in pervasive developmental disorders, in this IQ range. In addition, his performance on the Tower of Toronto test disclosed impaired performance in procedural learning. Psychiatric assessment showed scores above the cut off for autism according to the autism diagnostic interview (ADI-R), a standardised interview that requires specific training and those administering it to have a 0.90 reliability with other researchers. The subject was positive for the diagnosis of autism, being above cut off values in the three relevant areas of communication, social interactions, restricted interests, and repetitive behaviours. Nevertheless, he did not present delay in language acquisition or morphological atypicalities in language development, which corre- sponds to DSM-IV criteria for Asperger’s syndrome.

Brain CT showed dense calcium deposits in the basal ganglia, thalamus, cerebellum dentate nucleus, and orbitofrontal cortex, consistent with Fahr’s disease (figure). SPECT showed increased activity in basal ganglia relative to the cerebral cortex. A fine banded karyotype was normal. Serum calcium was 1.55 mM (normal 2.15–2.55 mM), phosphate 1.69 mM (normal 0.70–1.35 mM), albumin 45 g/L, and calcium was 0.80 mM at pH 7.4 (normal 1.19–1.34 mM); urinary calcium was 0.8 mM (normal 2.5–6.3 mM). Serum parathyroid hormone was below 0.6 pmol/L (normal 1.0–6.5 pmol/L), and a nuclear scan of the parathyroid glands showed an absence of activity. With a combination of vitamin D3-calcium supplementation and cognitive-behavioural therapy, serum calcium, and phosphate concentrations normalised and his behaviour improved marginally.

Asperger’s syndrome is a subtype of pervasive developmental disorder of unknown aetiology. Evidence for involvement of specific brain regions in pervasive developmental disorder and autism is scarce and inconclusive.1 Although the tempo-occipital region is the most often involved in pervasive developmental disorders2 abnormal functioning of the frontal cortex is suspected from reported findings of executive function deficits and from occasional findings of frontal hypometabolism or abnormal macroscopic brain morphology.3 Abnormal cell counts and morphol- ogy in the cerebellar hemispheres have also been reported, but the relation of these findings to autism is controversial.4

Fahr’s disease consists of symmetric calcifications, located mainly in the basal forebrain and cerebellum, which are of various aetiologies. Cognitive and behavioural abnor- malities may be present when calcifications occur early in development. A fortuitous association between pervasive developmental disorder and paracalculia, given the paucity of published cases, is plausible in the pre- sented patient. Nevertheless, our case suggests that abnormal phospho-calcium metabolism could produce an autistic syndrome when brain calcifications cause spec- ific neuropsychological deficits, due to their localisation. For example, errors of social judgement may be related to calcifications of the orbitofrontal cortex, whereas dysfunction of frontal-basal ganglia circuitry may contrib- ute to repetitive and ritualistic activities. Additionally, developmental lesions of the basal ganglia and cerebellum may contribute to the abnormalities of sensory attention, procedural learning, and motor intention in this patient.

The finding that the clinical picture of autism can be found in a wide range of medi- cal conditions giving rise to organic brain dysfunction is not new, but the relation between these conditions and autism is often considered meaningless.5 By contrast, this case, similarly to some others6 suggests that dysfunction in key brain circuits may result in behavioural and cognitive abnor- malities currently indistinguishable from idiopathic pervasive developmental disorder. This case also suggests that careful biological assessment of this group of patients may disclose focal brain lesions associated with iden- tifiable cognitive deficits. Could these clinical coincidences be instructive for a neurodevel- opmental model of autism?

Hypertrophic atlantoaxial ligaments: an unusual cause of compression of the upper spinal cord

The craniovertebral junction can be a possible cause of high spinal cord compression. The craniovertebral junction can be a possible cause of high spinal cord compression. The craniovertebral junction can be a possible cause of high spinal cord compression. The craniovertebral junction can be a possible cause of high spinal cord compression. The craniovertebral junction can be a possible cause of high spinal cord compression.

Preoperative sagittal T1 weighted MRI of the cervical spine with gadolinium enhancement. A retro-odontoid and extradural mass displacing the spinal cord is seen at the craniovertebral junction.

scan with 99mTc was unremarkable. Magnetic resonance imaging showed a retro-odontoid extradural mass that was homogeneous and isointense on T1 weighted signal, demon- strated no enhancement after intravenous gadolinium contrast, and was compressing the upper cervical spinal cord (figure). The laboratory tests were normal, confirming the absence of rheumatoid arthritis, metabolic disease, or gout. Surgical removal via a tran- soral approach with a minimal bony resection was direct and provided sufficient space to obtain spinal cord decompression. It was fol- lowed by a posterior C1–C2 fusion. Macro- scopically, the lesion had no capsule and resembled a hypertrophic ligamentum flava. Microscopically, it was non- inflammatory, hypocellular, and ligamentary pieces found within the mass appeared fibrous and almost disintegrated. The patient regained normal neurological function. Over a 3 year follow up period there was no recur- rence.

We focus attention on hypertrophic atlantoaxial ligamentary disease as a degenerative disease that must be considered within the possible causes of high spinal cord compres- sion.
Selective hemihypesthesia due to tentorial coup injury against dorsolateral midbrain: potential cause of sensory impairment after closed head injury

A 63 year old woman who fell off her bicycle had a left temporal region head injury with evidence of initial loss of consciousness of 5 minutes and scalp excoriation of that area. On arrival at our hospital 30 minutes later she was alert and oriented. Cranial nerve functions, including extraocular motion and hearing function, were preserved. Pain and temperature sensations of the right side, including her face, showed a 70% decrease compared with the left side; however, position and vibration sensations were normal. Other neurological examinations, including motor function, coordination, and deep tendon reflexes, were normal. The patient’s only complaint was left temporal headache and right hemihypesthesia.

Brain CT on admission showed a discrete and linear high density at the left ambient cistern (figure). The topographical anatomy seemed to be due to tentorial coup injury against the midbrain. It is influenced by congenital variation in the size and shape of the tentorial incisura.1 The brain stem of the patient with a narrow incisura is more vulnerable to the direct concussive effects than that of a patient with a wider incisura. Therefore, even in minor head injury, this mechanism may occur in patients preconditioned with narrow tentorial incisura, which may have been the case in our patient.

The concept of tentorial coup injury against the midbrain is not new.1 It usually accompanies various degrees of conscious disturbance and other long tract signs, sensory deficits as well as cerebellar and cranial nerve palsy due to the midbrain lesion or other associated intracranial lesions.1,11 The clinical manifestation of our patient may represent one of the mildest forms of the midbrain contusion. Therefore, when we see a patient with post-traumatic sensory deficit, the possibility of this tentorial injury should be kept in mind even in minor head injury.

The MR images in our case showed a discrete lesion at the dorsolateral midbrain. Topographical study at this lower midbrain level showed that the lateral and ventral spinothalamic and ventral trigeminothalamic tracts pass at the surface of this level by carrying a superficial somatosensory input.1 The lesion shown in our MR images seemed to be located to these tracts. The medullar lemniscus for the deep sensation and lateral lemniscus and nucleus of inferior colliculus associated with hearing function in ventral and dorsal to these tracts, respectively; which were seemingly spared in our patient.1 The topographical anatomy seemed to correspond to the neurological manifestations of our patient.

The mechanism of midbrain injury in our patient was speculated to be due to tentorial coup injury based on MR images. The location of contusion was at the lower dorsolateral midbrain, coinciding with the tentorial edge level. Initiation of injury was the surface of the midbrain; however, due to the proximity of the tentorial edge to the midbrain on the injured side, tentorial contusion to the midbrain supposedly occurred more readily. Brain MRI findings support the anatomical features of this tentorial coup injury. This injury is not rare in patients with severe head injury, accompanied by other intracranial lesions, and is often caused by lateral displacement of the brain stem relative to the tentorium. It is influenced by congenital variation in the size and shape of the tentorial incisura.1,11 The brain stem of the patient with a narrow incisura is more vulnerable to the direct concussive effects than that of a patient with a wider incisura. Therefore, even in minor head injury, this mechanism may occur in patients preconditioned with narrow tentorial incisura, which may have been the case in our patient.

The concept of tentorial coup injury against the midbrain is not new.1 It usually accompanies various degrees of conscious disturbance and other long tract signs, sensory deficits as well as cerebellar and cranial nerve palsy due to the midbrain lesion or other associated intracranial lesions.1,11 The clinical manifestation of our patient may represent one of the mildest forms of the midbrain contusion. Therefore, when we see a patient with post-traumatic sensory deficit, the possibility of this tentorial injury should be kept in mind even in minor head injury.

NAOKATSU SAEKI
YOSHINORI HIGUCHI
Departments of Neurological Surgery, Chiba University, School of Medicine, Chiba, Japan
KENRO SUNAMI
Kawasaki Chiba Hospital, Japan
AKIRA YAMAURA
Departments of Neurological Surgery, Chiba University, School of Medicine, Chiba, Japan
Correspondence to: Dr. Naokatsu Saeki, Department of Neurological Surgery, Chiba University, School of Medicine, 1–8–1 Inohana, Chuoh-ku, Chiba-shi, Chiba Japan 260–8670
email saeki@med.m.chiba-u.ac.jp

Toluene induced postural tremor

We read with interest the article by Miyaigi et al and comment on the medical treatment of toluene induced tremor. Microdialysis experiments in rats have shown that inhalation of toluene increases extracellular γ-amino butyric acid (GABA) concentrations within the cerebellar cortex which probably explains why GABA agonists including benzodiazepines (for example, clonazepam) are not very effective in toluene induced tremor and ataxia. Rat experiments also showed a 50% reduction in brain catecholaminergic neurons. Degeneration of certain cerebellar pathways is probably responsible for the loss of this dopaminergic innervation. Dopamine agonists could therefore be of potential interest in the treatment of toluene induced tremor. This hypothesis was explored in a recently described case, which showed remarkable clinical and iconographic similarities with that described by Miyaigi et al: (a) long history of chronic toluene inhalation, (b) marked postural tremor, (c) progressive worsening of the symptoms despite absence from inhalant misuse, and (d) mild cerebral atrophy and marked low signal intensity in globus pallidi, thalami, red nuclei, and substantia nigrae on T2 weighted MRI. As our patient’s tremor was progressive, medical treatment with a dopamine agonist was considered. One particular agent (amantadine) caught our attention because it had a long history of chronic toluene inhalation. This hypothesis was confirmed by the patient’s response to amantadine hydrochloride (100 mg twice daily) and we believe that it could be considered. One particular agent (amantadine) caught our attention because it had a marked postural tremor, a long history of chronic toluene inhalation, progressive worsening of the symptoms despite absence from inhalant misuse, and mild cerebral atrophy and marked low signal intensity in globus pallidi, thalami, red nuclei, and substantia nigrae on T2 weighted MRI.

Early diagnosis of subependymal giant cell astrocytoma in children with tuberous sclerosis

Nabbout et al have attempted to identify the risk factors for the progression of subependymal nodules into giant cell astrocytomas (SEGAs) in the tuberous sclerosis complex. In attempting to develop screening strategies that avoid iatrogenic morbidity, patient inconvenience, and excess cost, it is essential that the natural history of these lesions in the general population of patients with tuberous sclerosis complex be understood well.

We think that there are two problems with this study that should make the physician cautious about accepting the factors identified by Nabbout et al as a basis for a screening programme. The first is that this study was performed in a population that had been referred to a tertiary medical centre, and then had been further selected by virtue of having had at least 3 years’ tertiary centre follow up and needing two MR scans of the head. The prevalence of astrocytomas and risk factors, and hence the positive predictive value of any screening tool in the general population of patients with tuberous sclerosis complex is likely to be different from those described in the highly selected group studied in this paper.

The second point is that the authors have made a potentially misleading decision to exclude more than half their study sample because they do not have lesions close to the foramen of Monroe. It is not certain that all SEGAs arise from lesions close to the foramen. They may arise in the fourth ventricle. Furthermore, the late presentation of many lesions in the lateral ventricles has, in the past, precluded accurate determination of their point of origin. The study selects 24 of 60 patients who had met their entry criteria but does not state how many of the excluded 36 patients had no subependymal nodules or nodules that were not “near the foramen of Monroe”. This lack of definition is given for what constitutes proximity to the foramen. The authors were apparently not blinded at the point when they selected which patients had lesions near to the foramen and therefore there is an obvious issue of potential selection bias.

The consequence of excluding these patients may have been that false significance is given to their results. The data they present are fragile. Consider, for example, the consequence of introducing from these 36 non-selected patients a hypothetical single case that had a family history of tuberous sclerosis complex and a subependymal nodule which enhanced with gadolinium. The effect would be to remove the stated statistical significance (using Fisher’s exact tests) between the outcome and both of these explanatory variables.

Identifying the risk factors that can tell us which subependymal lesions will become invasive is important. As subependymal nodules and SEGAs seem to be histologically identical it is unlikely that pathologists will provide an answer. The study of Nabbout et al is a new step in a process that stimulates better strategies. However, the definitive answer will not be provided by studies of selected samples but by follow up of a population based sample of patients with tuberous sclerosis complex. In the absence of such a study we would be cautious about implementing screening programmes based on what may be misleading criteria.

Atypical form of amyotrophic lateral sclerosis: a new term to define a previously well known form of ALS

We read with interest the article by Sasaki et al concerning the atypical form of amyotrophic lateral sclerosis (ALS). The pattern of muscular atrophy in these patients differed from that of typical ALS in that severe muscle involvement was confined to the upper limbs, predominantly the proximal portion and shoulder girdle, sparing the face and the legs until late in the disease’s course or until the terminal stage.

Over the past few years, we have noticed a growing interest in the renaming of this clinical form of ALS, which has its origins and predomination in the proximal muscles of the upper limbs and little or no effect of either a bulbar nature or in the lower limbs. Thus Hu et al coined the term ‘thalamus syndrome’, to describe a subgroup of patients affected by ALS that predominantly showed signs of lower motor neuron disease in the upper limbs, without significant functional involvement of other regions on clinical presentation. This subgroup of patients was clinically characterised by the display of progressive atrophy and weakness affecting the proximal muscles in the upper limb muscles in a more or less symmetric manner.

Recently, along these lines, Katz et al described a series of patients affected by an adult onset motor neuron disorder restricted to the upper limbs, with severe proximal and varying degrees of distal involvement, calling it amyotrophic brachial diplegia syndrome. Other terms used to refer to this form of ALS have been danging arm syndrome, suspended form, orangutan sign, dead arm sign, bifacial palsy, ramiolitic amyotrophy, and the idea of naming it a distinctive phenotype of a neurogenic...
"man-in-the-barrel" syndrome has even been suggested.

Probably all these terms used to define this variation of ALS are synonyms for an older, well known condition, the scapulohumeral form, or the chronic anterior poliomyelitis reported by Vulpian in 1886 and known in Franco-German literature as Vulpian-Bernhardt’s form of ALS.

At certain stages of the disease’s clinical course, it is probably difficult to differentiate it from progressive muscular atrophy (PMA). Some authors have said that PMA with late onset scapulohumeral distribution (over 45 years of age) generally leads to ALS as a matter of course. 1 Be that as it may, the truth is that this atypical form of amyotrophic lateral sclerosis behaves differently from typical ALS. The comparative study with the rest of the ALS group supplied important clinical findings, such as little or no functional impairment of the bulbar muscles or legs. Hu et al also made four important statistical discoveries.

1. The prevalence of this form of ALS constituted 10% of the ALS group as a whole (p = 0.05). 2 The age of onset of this form was similar to the rest of ALS. (3) There was a longer median survival (a median survival of 57 months compared with 39 months in the ALS group).

Some of these patients have a long ALS clinical course, in that they usually preserve ambulatory ability, albeit with gait disorders, for more than 5 years after the onset of symptoms.

On a personal level, we also note two findings characteristic of these patients. In the initial stages of the illness, there is no effect on the diaphragm and the respiratory muscle failure occurs much later than in the typical form of ALS. This can be seen in the follow up of the results obtained in the respiratory function tests (FVC, PImax, and PEmax).

We do not know the reason for either the characteristic distribution of weakness or muscle atrophy. A meticulous study shows that there is an atrophy of the deltoideus (as an active ligament in scapulohumeral articulation), would explain the presence of subluxation of the shoulder joints in these patients.

Finally, we are in complete agreement that the "dead arm syndrome" seems to be the most peculiar pattern of muscular atrophy such as dangling arm, orang utan sign, dead arm sign, and others. As a consequence, the upper limbs function as an underlying mechanism of isolated dysarthria. Lingual paresis was clinically preserved in isolated dysarthria because of no damage to the corticobulbar fibres. In fact, lacunar infarctions around the internal capsule-corona radiata are likely to underlie these ascending and descending motor tracts.

To assess corticopontocerebellar tract function, Urban et al investigated cerebellar blood flow in patients with isolated dysarthria using HMPAO-SPECT. They suggested that the corticopontocerebellar tract is preserved in isolated dysarthria because of no evidence for cerebellar diaschisis on SPECT. Their SPECT findings on cerebellar blood flow were similar to our results. However, we wonder whether cerebral cortical blood flow was preserved in their patients, because our SPECT study suggested frontal cortical dysfunction as an underlying mechanism of isolated dysarthria. Languedocian authors have also found evidence in three of seven patients reported by Urban et al in and two of 12 by us. This indicates that isolated dysarthria originates in incoordination of multiple organs necessary for speech articulation as well as cerebral language areas, resulting in dysfunction of these cortices.1 Therefore, we postulated that isolated dysarthria results from interruption of corticosubcortical networks indispensable for speech output, involving the thalamocortical and corticostriatal fibres as well as the corticobulbar fibres. In fact, lacunar infarctions around the internal capsule-corona radiata are likely to underlie these ascending and descending motor tracts.

We read with interest the article by Urban et al. Using transcranial magnetic stimulation, the authors demonstrated electrophysiological evidence for a central monoparesis of the tongue in patients with isolated dysarthria from stroke. As in their patients, transcranial magnetic stimulation induced absent or delayed corticobulbar responses at the tongue, the authors ascribed isolated dysarthria to interruption of the corticobulbar pathway, involving the thalamocortical and corticostriatal fibres as well as the corticobulbar fibres. In fact, lacunar infarctions around the internal capsule-corona radiata are likely to underlie these ascending and descending motor tracts.

Finally, we are in complete agreement that the "dead arm syndrome" seems to be the most peculiar pattern of muscular atrophy such as dangling arm, orang utan sign, dead arm sign, and others. As a consequence, the upper limbs function as an underlying mechanism of isolated dysarthria. Lingual paresis was clinically preserved in isolated dysarthria because of no damage to the corticobulbar fibres. In fact, lacunar infarctions around the internal capsule-corona radiata are likely to underlie these ascending and descending motor tracts.

Motor cortical excitability in Huntington’s disease

We read with great interest the paper of Hanajima et al reporting that intracortical inhibition of the motor cortex is normal in patients with chorea of various origins. At variance with their results we previously found a reduced intracortical inhibition in a group of patients with genetically confirmed Huntington’s disease. Hanajima et al suggest that the discrepancies between the two studies may be due to differences in patient selection as they included patients with early stage Huntington’s disease to “study the pathophysiology of chorea unaffected by other disorders movement.” They postulated that our cases, because of the reported corre-lation with a dyskinetic rating scale, had a more advanced stage of the disease possibly with coexisting dystonia or rigidity. These assertions deserve some comments.

The mean disease duration of our nine patients with Huntington’s disease was 6.2 (4.1) years which is actually shorter than the duration of the six patients reported by Hanajima et al (8.3 (5.9) years). Most of our patients could be considered in an early stage of the disease, the Unified Huntington’s disease rating scale, and none presented dystonia, rigidity, or any other additional movement disorder. In this regard, however, it should be pointed out that bradykinesia is often associated with chorea in patients with Huntington’s disease and may even precede the appearance of choreic dyskinesias.1 Chorea itself is often reduced in the more advanced Huntington’s disease stages.1 It is unlikely, therefore, that any neurophysiological approach can test purely chorea even in the early Huntington’s disease stages. In addition, different mechanisms are involved in Huntington’s disease and other choreas as suggested by the lack of impairment of somatosensory evoked responses and long latency stretch reflexes in the second.2

We were not really surprised at the results of Hanajima et al as we do share their opinion that patients with Huntington’s disease may be characterised by large individual differences in the involvement of motor cortical areas. Actually, three patients in our study showed an amount of intracortical inhibition within the confidence limits of the control population. We also think that the impairment of intracortical inhibition is likely to develop during the disease progression as we did not find any change in four patients, two of them already reported,2 with positive DNA testing but completely asymptomatic.

The discrepancies between the two studies are more likely to be explained, at least in part, by some methodological differences. For instance, the amplitude of the control response was larger in our set (approximately 1.0 mV compared with 0.3 mV in the study of Hanajima et al). This may induce a different sensitivity of the test, and the amount of intracortical inhibition in our normal controls is greater (see also3) than in the study of Hanajima et al.

When interpreting the results of studies with paired transcranial magnetic stimulation pathophysiological it should be kept in mind that similar changes of intracortical inhibition have been shown in patients with various movement disorders (focal dystonia, myoclonus, parkinsonism, restless legs syndrome, Tourette’s disorder), but also in different diseases such as amyotrophic lateral sclerosis.4 We think, therefore, that the impairment of intracortical inhibition cannot be regarded as the marker of a specific pathophysiological mechanism, but is likely to reflect a non-specific imbalance of inhibitory and facilitatory circuits within the motor cortex.

G ABBRUZZESE
R MARCHESE
C TROMPETTO

Department of Neurological Sciences and Vision, Movement Disorders Clinic, University of Genova, Via De Toni 5, I-16132 Genova, Italy

intracortical inhibition is often decreased even in normal subjects. The 80% of the threshold for relaxed muscles must correspond to different values relative to the threshold for active muscles in patients from that in normal subjects. (2) The intracortical inhibition is different in FVs and FVp. This slight abnormality could be detected with their method but not with ours because their method has better sensitivity in detecting an abnormality than ours. Whichever is true, the intracortical inhibition must be normal or slightly disturbed in Huntington’s disease.

R HANAJIMA
Y UGAWA
Department of Neurology, Division of Neuroscience, Graduate School of Medicine, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan

Critical closing pressure: a valid concept?

Czosnyka et al recently published a study investigating the clinical significance of critical closing pressure (CCP) estimates in patients with head injury. We see problems both with the theoretical foundation of their CCP concept and with the interpretation of their results.

Firstly, the physiological meaning of both formulae of CCP presented (CCP1 and CCP2, respectively) is questionable. The implication of both presented equations is that the instantaneous value of cerebral blood flow velocity (FBV(t)) at a given moment t is equal to arterial blood pressure at the given time (ABP(t)) minus CCP divided by cerebrovascular resistance (CVR):

FBV(t) = (ABP(t)−CCP)/CVR

(1)

At the time of systolic and diastolic pressure values (ABPs, ABPd), respectively, it follows that systolic and diastolic FVs (FVs, FVd) should be equal to (ABPs−CCP)/CVR and (ABPd−CCP)/CVR, respectively. However, it is well known that the vascular resistance valid for the static pressure/flow connection (CVR0, concerning mean pressures and flows) is different from and is in general much higher than resistances determining dynamic pressure/flow relations (CVR1) as in the case of pulsatile pressures. Therefore, equation 1 cannot be applied to describe dynamic flow. This can best be illustrated using the frequency domain approach (ABP=mean pressure; FVs=mean flow velocity; ABPs=amplitude of the pulsatile pressure wave; FVs=amplitude of the pulsatile flow wave):

FBV(t) = (ABP(t)−CCP)/CVR

(2)

Inserting equations 2 and 3 into the frequency domain equation for CCP2 of the authors:

CCP2=ABP−A1/F1×FBV

(4)

leads to

CCP2=ABP−CVR1×FBV/ABP−CVR1

(5)

where CCP2 is only in the case of CVR1=CVR0 equal to CCP. Under the more realistic assumption that CVR1 is equal to about half of CVR0 it follows for CCP2:

CCP2=0.5ABP+0.5CCP

With decreasing CVR1/CCR0 ratios, CCP2 becomes more and more dependent on ABP and independent of CCP. In any case, without exact knowledge of the CVR1/CCR0 ratio, equation 4 is useless for a valid CCP calculation.

The second criticism concerns the correlation of the calculated CCP2 values with mean ABP found by the authors (r=0.5; p<0.05). According to the original idea of Burton, CCP represents a certain mean ABP value below which small vessels begin to collapse. CCP should, therefore, be a constant value independent of the actual ABP. On the other hand, this significant correlation can be explained by our equation 5, again indicating the missing physiological basis of the CCP concept of the authors.

Thirdly, it seems doubtful that CCP could be estimated using pressure and flow values from ABP ranges clearly above CCP and flow values clearly above zero flow, respectively. As long as small vessels do not collapse (ABP>CCP) it is not possible to decide whether their actual wall tension is determined more by transmural pressure or by active vasconstrictor. However, the relative contribution of both effects is critical for the limit of CCP.

Finally, we would be interested in the authors’ explanation of negative diastolic flow values as seen in Doppler spectra of arteries with a high vascular resistance (peripheral arteries, middle cerebral artery during strong hypocapnia). In the case of ABPd<CCP and a small vessel collapse according to the model of the authors, CVR should increase towards zero (equation 1). Negative flow values could, consequently, not occur.

I suggest that the relation between pulsatile pressure and flow should be better described using the concept of different static and dynamic resistances (CVR0 and CVR1). The driving pressure of the mean FV is more accurately given by cerebral perfusion pressure (CPP=ABP−ICP) than by ABP−CCP. Therefore, equation 2 changes to:

FBV=FBP×(ABP−ICP)/CVR

(6)

and equation 5 to

CCP2=ABP−(1−CVR1/CVR0)×FBP

(7)

Equation 7 explains well the positive correlations found between CCP2 and ABP and between CCP2 and ICP, respectively, without assuming a connection between CCP2 and Burton’s concept of “critical closing pressure”.

ROLF R DIELH
Department of Neurology, Krupp Hospital, Alfred-Krupp-Straße, 45117 Essen, Germany

Czosnyka et al reply: We thank Dieth for the interesting letter provoking some mathematical considerations about cerebral haemodynamics.

We need to emphasise that our primary intention was to investigate Burton’s hypothesis in patients with head injury that critical closing pressure (CCP) may be represented by a sum of intracranial pressure (ICP) and the tension in the arterial walls.

CCP=ICP+active tension of arterial walls Aaslid proposed the mathematical formula taken for calculations:

CCP1=ABP−ABPpp/FVpp×FVpp=ABP−ABPpp/FVpp×FVpp

(8)

(where ABP and FV are mean values of arterial pressure and MCA flow velocity, ABPp and FVpp are systolic values, ABPpp and FVpp are peak to peak amplitudes). A graphical interpretation of this formula has been given in fig 1. CCP1 is an x intercept point of linear regression between subsequent systolic and diastolic values recorded within 6 second intervals of flow value (along y axis) and arterial pressure, respectively.

In fact, the formula proposed by Michel et al is very similar. The only difference is that instead of the original waveforms of FV and ABP, first (fundamental) harmonic components were taken for the same graphical construction—that is:

CCP2=ABP/A1/F1×FBP

In our paper we confirmed empirically that both CCP1 and CCP2 produced the same values in a group of patients after head injury, therefore the mathematical consideration of Dichi (equations 1–5) must contain an error!

First of all we cannot see how equation (1) from Dieth’s letter can be derived from any of our formulae. Everyone who has tried to plot momentary values from ABP pulse waveform against momentary values of FV waveform knows that it never plots a straight line (as equation (1) implies). We never suggested that we were looking for a “clouds” of systolic and diastolic values of ABP and FV waveforms (fig 1 in one) one can rather see an ellipsoidal shape which is very seldom regular enough to be approximated by a straight section. Therefore, equation (1) in Dieth’s letter is not correct. In fact, CVR is a frequency dependent variable (represents vascular impedance) and if a linear theory can be applied, division in (1) should be substituted by a convolution with an inverse of Fourier transform of “cerebrovascular admittance”.

Definition of CVR0 as FV/(ABP−CCP) is completely artificial and lacks a physiological basis. It is rather taken from the geometrical interpretation of figure 1 in. In our material equivalent of parameter CVR0 (as defined by Diehl) is 1.007 (SD 0.31) and CVR1 0.972 (SD 0.29), the difference is not statistically significant. Therefore, the suggestion that the CVR1/CVR0 ratio is 0.5 is not correct. Real CVR0 should be calculated as (ABP−ICP)/FV. We fully agree that equation (5) proposed by Diehl is “useless for valid CCP calculation”. We have not used it and have never suggested anyone could do so.

The second criticism was that our CCP positively correlated with ABP. It should not be a surprise. When ABP decreases, vasodilatation occurs and arterial wall tension decreases. Therefore presuming ICP was constant, CCP should decrease. A rather weak (though significant) correlation suggests that not all of our patients were pressure reactive or ICP was not always constant.

The final issue concerning negative flow velocities is a trap. Dieth has prepared for himself: We never suggested that any factor interpretable as cerebrovascular resistance (CVR0 or CVR1) should be involved in the concept of critical closing pressure. From the definition, closing is a strongly non-linear phenomenon, therefore applying linear theory here is very
High frequency stimulation of the subthalamic nucleus and levodopa induced dyskinesias in Parkinson's disease

Reduction in the neuronal activity of the subthalamic nucleus leading to diminished excitation of the globus pallidum internum is associated with chorea-ballism in monkeys. Levodopa induced dyskinetic is currently thought to share a similar pathophysiology but recent findings also suggest that abnormal patterns of neuronal firing in the subthalamic nucleus are in keeping with such a general principle, but the threshold to induce dyskinesias in the parkinsonian state is higher than in intact animals. The case recently described by Figueras-Mendez et al. is extremely interesting as it suggests that functional inhibition of the subthalamic nucleus by high frequency stimulation blocks levodopa induced dyskinesias. This is clear at odds with the current pathophysiological model of the basal ganglia. Thus, the findings of Figueras-Mendez et al. rises the intriguing possibility that dyskinesias depend or are mediated by neuronal firing in a given region of the subthalamic nucleus, which was blocked by high frequency stimulation. Measurement of afferent synaptic activity by the technique of 2-deoxyglucose (2-DG) uptake showed an increment in the subthalamic nucleus, which was compatible with increased inhibition from the globus pallidum externum, particularly in the ventromedial tip of the nucleus. This contrasts with the findings in monkeys with chorea induced by pharmacological blockade of the globus pallidum externum, in which 2-DG uptake was maximal in the dorsolateral portion of the subthalamic nucleus, where the sensorimotor region lies. A recent anatomical study also showed that the cortical-subthalamic nucleus connection is somatotopically segregated, so that fibres from the supplementary motor area project to the most medial portion and fibres from the primary and premotor areas terminate in the lateral region of the subthalamic nucleus. All this heterogeneity may have pathophysiological relevance, describing one aspect of which could be the findings in the patient reported by Figueras-Mendez et al. However, before the findings of this case may be used to sustain a new hypothesis on the role of the subthalamic nucleus in the origin of levodopa induced dyskinesias, there is a crucial issue to resolve—namely, the location of the tip of the stimulation electrodes.

There are several points leading us to question the actual site of action of the electrode: (1) Stimulation of the subthalamic nucleus in Parkinson's disease has been associated with the production of dyskinetic lesions only when reduced by levodopa intake. Moreover, Benabid et al. who pioneered this technique, consider the induction of dyskinetic by high frequency stimulation of the subthalamic nucleus as a good indicator of a very positive response. However, depending on the position of the thalamus from the globus pallidum internum are placed dorsocaudally to the subthalamic nucleus and could be blocked by high frequency stimulation. (2) When the recording electrode is projected to the subthalamic nucleus in sagittal planes 11 mm or less, neuronal activity is characterised by action potentials of large amplitudes (0.5–1 mV) with low background activity, tonically firing neurons, and absent sensorimotor responses (“driving”). All these characteristics seemed to be present in the patient discussed here. Neuronal activity in the sensorimotor region of the subthalamic nucleus is different from the above but on occasions the distinction may not be easy. Accordingly, it is very important to document in more detail the findings in the case of Figueras-Mendez et al. Ideally we would like to see the trajectory and length of the different recording tracks, the effects of microstimulation, and the post-surgery MRI with measurement of the distance to the tip of the electrodes. If, as assumed, the subthalamic nucleus was indeed correctly targeted in this patient, the pathophysiology of the basal ganglia will need to be revisited.

PIOTR SMIELEWSKI
ACADEMIC NEUROSURGICAL UNIT, BOX 167, ADDENBROE'S HOSPITAL, CAMBRIDGE CB2 2QQ, UK

Address correspondence to: Professor Piotr Smielewski. Email: Piotr.Smielewski@addenbrookes.nhs.uk

J Neurol Neurosurg Psychiatry 2000:68:112–126

Correspondence to: Correspondence to: Professor Piotr Smielewski. Email: Piotr.Smielewski@addenbrookes.nhs.uk

J Neurol Neurosurg Psychiatry 2000:68:112–126

Correspondence to: Correspondence to: Professor Piotr Smielewski. Email: Piotr.Smielewski@addenbrookes.nhs.uk

Nitrile oxide in acute ischaemic stroke

The pivotal role of nitrile oxide (NO) in cerebral ischaemia has been elegantly highlighted in the recent editorial by O’Mahony and Kendall. Although studies of neuroprotective agents have been largely disappointing, pharmacological manipulation of NO may represent a novel means of protecting the brain from ischaemic insult. One area not discussed in the recent editorial was the role of neuroprotective effect of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors or “statins” in cerebral ischaemia. Preliminary studies have shown that statins modulate brain nitrile oxide synthase activity in a neuroprotective manner. Data from a murine model of ischaemic stroke demonstrate that prophylactic statin therapy reduces infarct size by about 30%, and improves neurological outcome in normocholesterolaemic animals. In this investigation, statin therapy directly upregulated endothelial NO in the brain without altering expression of neuronal NO. Recent findings also suggest that statin therapy influences the activity of inducible NOS. Lovastatin has been shown to inhibit cytokine mediated upregulation of inducible NO and production of NO in rat astrocytes and macrophages, and this inhibition may represent a negative suppressing inflammatory responses that accompany ischaemia. Most interestingly, these preliminary findings suggest that statin therapy may modify the endothelial and neuronal faces of brain NO in a synergistically neuroprotective manner. These and other vascular effects of statins in cerebral ischaemia are potentially of great importance in human neuroprotection and ongoing clinical trials The Prospective Study of Pravastatin in the Elderly at Risk (PROSPER) study will help clarify their role in human cerebrovascular disease.

CARL J VAUGHAN
Division of Cardiology, Department of Medicine, Wills Medical College of Cornell University, The New York Proshyten Hospital, Starr 4, 525 E 68th Street, New York, New York 10021, USA

NORMAN DELANTY
Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA

Correspondence to: Dr Carl Vaughan
email: evaughan@nyms.med.cornell.edu

BOOK REVIEWS

That neuroimmunology has come of age is demonstrated by the profusion of volumes published on the subject in recent years. This volume focuses on the central nervous system, and aims to satisfy the curiosity of both the clinician faced with a diagnostic conundrum and the experimental immunologist inquiring into the clinical relevance of his findings. At first sight it seems improbable that both of these goals might be achieved in one volume; this book however, succeeds admirably in what it sets out to do, as much as a result of its literary style as its content.

The intrusive authorial voice fell into disfavour in literary circles around the turn of the century because it was thought that calling attention to the act of narrating might detract from realistic illusion, so reducing the emotional intensity of what was being represented. It is a device much favoured by postmodern writers, who expose the nuts and bolts of their fictional constructs. The intrusive medical author never dropped out of fashion, although in these days of evidence based prejudice, authorial omniscience might be considered suspect. The authors of this volume are intrusive in a guiding conversational manner that makes this book by far the most readable of the neuroimmunological texts.

The book opens with a highly accessible chapter on immune responses in the nervous system. There follows a chapter that integrates the neurobiology of multiple sclerosis with contemporary issues of aetiology, cell injury, and repair. Next, a chapter on inflammatory demyelinating disease examines syndromes of isolated demyelination, acute disseminated encephalomyelitis and allied conditions, and some of the syndromes of demyelination that are now accepted as part of the range of multiple sclerosis. The chapters on demyelinating disease are drawn to a close by a discussion of existing and experimental therapies for multiple sclerosis.

The book continues with chapters on paraneoplastic disorders of the CNS, stiff man syndrome, neurological complications of...

Organ transplantation, once medical exotica, is now almost routine in the United Kingdom each year are performed cadaveric organ transplants of about 1800 kidneys (in addition to 160 live kidney donors), 700 livers, and 450 heart/lungs (UK Transplant Support Service). Original surgical techniques were established at the beginning of the century in canine models. Transplantation of these experiments to humans awaited safe and effective immunosuppression. Until the 1960s, the only forms of immunosuppression were radiation (total body or total lymphoid) and non-selective chemical reagents (benzene and tolune). Then the antiproliferative drug 6-mercaptopurine (6-MP) was introduced, shortly followed by a derivative, azathioprine, with improved oral bioavailability. Combined with corticosteroids, these allowed the first human solid organ transplants to be performed: in 1963 the first lung transplant in Mississippi and liver transplant in Colorado. Then in 1967 Christian Barnard captured the world’s imagination with the first heart transplant. His technique has been modified slightly since, but the increasing success of organ transplantation rests mainly on improved immunosuppressive drugs that selectively suppress lymphocytes by inhibiting lymphokine generation (cytokoparin A, tacrolimus), renal transplantation (sirolimus, leflunomide), or differentiation (15-deoxyerysergalin) pathways. As a result, over 80% to 90% (kidney), 55% to 75% (liver), and 70% to 90% (heart/lung).

Wijdicks estimates that 10% of transplantation patients have a significant neurological complication. The most common being neurotoxicity of immunosuppressive drugs, seizures, and failure to awaken. Yet this is the first text devoted to the neurological aspects of organ transplantation. It is therefore a timely subject for another title in the excellent Blue Books Of Practical Neurology series. Twenty authors contribute (one Dutch, one Swiss, the rest American) to four chapters on the transplantation procedures themselves followed by 10 chapters on neurological complications of transplantation including failure to awaken, and psychiatric, neuromuscular and demyelinating complications. Especially useful to the neurologist without much experience of transplantation are the comprehensive chapters on immunosuppressive drugs and the opportunistic infections associated with them (most commonly Listeria monocytogenes, Aspergillus fumigatus and Cryptococcus neoformans). The peripheral nerve and plexus injuries associated with transplantation are painstakingly described; astonishingly a significant uinar neuropathy occurs in up to 40% of kidney transplant patients. The Cincinnati Transplant Tumour Registry has recorded information on 10 813 cancers arising de novo in organ allograft recipients worldwide and here are presented the data in the 300 of these with CNS involvement. This is one for the shelves of any neurologist involved in organ transplantation.

CLARE GALTON

ALASDAIR COLES

Volume nine of the Current Issues in Neurodegenerative Disease series examines the interplay between cerebrovascular disease and dementia, particularly Alzheimer’s disease. Two hundred pages of what are essentially 20 brief review articles comprise this text, sadly without any illustrative images. While changes detract a little further from a book which seems unlikely to appeal to most neurologists, although it will no doubt be a source of reference to those working in the field of cognitive disorders, particularly vascular dementias.

PETER MARTIN

Evolutionary biologists would probably tell us that the enchantment of stories is due to survival having been dependent on the passing of oral culture from one generation to the next. Information put in narrative form not only delights, but is easily recalled. Stories also construct meaning through observation, inference, motive, and consequence in a fashion that informs future action. Our experience of the world is constructed around such narratives. They define us as individuals, family members, professionals, and cultural groups.

This book is a series of essays on psychotherapy, psychiatry, and also medicine that sees the awareness and use of narrative in clinical practice as a construct that can both

J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.68.1.112 on 1 January 2000. Downloaded from http://jnnp.bmj.com/ on September 18, 2023 by guest. Protected by copyright.
are two very fine accounts of narrative in psy-
but over worked paradigm. However, there
issues, and there is repetition in various chap-
paper alone, which should be required reading
als by their illness as in schizophrenics. Every
avoids the dehumanising e
narrative meaning in treating psychosis. This
account of the need to search for and maintain
chapter, writes a lucid and well reasoned
but the editors of this book fear that this essen-
tual bridge between the di
rations are considered safe in pregnancy
ples include (a) which oral vitamin K prepa-
glosses over some important points. Exam-
lar, the text, although expansive in parts,
ment will clearly be of particular interest to
who treat children and their families. The chapters on infantile spasms and Lennox-Gastaut syndrome are informative and provide some new but speculative insights into the pathogenesis of spasms. However, it was surprising that severe myo-
monic epilepsy of infancy did not merit a spe-
cific chapter in view of the unique electro-
clinical evolution and natural history of this
syndrome. The crucial issue of the cognitive
and behavioural sequelae of early and fre-
quent seizures on the immature brain, which
is probably of most concern to both clinicians
and families, is succinctly addressed in two
chapters—although a clear and consistent
relation remains to be estab-
chapters—although a clear and consistent

The book is essentially a collection of
relevant topics—for example, refractory schizophre
The emphasis is very much on pharmacologi-
management. The second half of the book is more of a
mixed bag, both in terms of the areas covered
and the quality of the chapters covering
chapters covering all aspects of the assessment
and management of anorexia nervosa and
chronic fatigue are followed by a thorough
review of the pharmacological management of
substance misuse. Then come two weak
chapters on behavioural disturbances in old
age and the violent patient in the community.
This last chapter will be of particular interest
to community psychiatrists. Unfortunately, I would recommend because some aspects
of the practical management of violence are
missing—for example, a documented risk-
benefit analysis, good failsafe communication,
or deciding when to detain. One of the last
chapters is a very good account of the
management of hyperactivity in childhood,
with good practical advice on the use of meth-
ophenylacetate.

Apart from the chapters on chronic fatigue and the treatment of tardive dyskinesia there is little in this book which is of immediate
interest to neurologists. However general
psychiatrists wishing to improve their pre-
scribing skills will find this book useful.

SIMON FLEMINGER

The Bethesda and Maudsley NHS Trust
Prescribing Guidelines 1999. Edited by
DAVID TAYLOR, DENISE MCCONNELL, HARRY
MCCONNELL, KATHRYN AIEL, and ROBERT
KEWING. (Pp190, £14.95). Published by
1-85317-835-7.

The Maudsley prescribing guidelines are
produced each year for a local readership, but
this, the fifth edition, is the first to go public.
The authors and principal contributors, a
mixture of pharmacists and psychiatrists with
an interest and background in clinical
psychopharmacology, are to be compli-
mented on producing a guide of manageable
size and ready accessibility.

The book is divided into sections dealing
with the treatment of broad groups of clinical
disorders—for example, psychosis—special
patient populations—for example, elderly
people, with further sections on the manage-
ment of emergencies and the adverse e
ffects of
psychotropic drugs. Much of the information
is laid out in tabular form. It could become an
indispensable resource for a busy on call
dictonary house offi
cer (the dimensions would fit
comfortably into the pocket of a clinical white
cost, were they still to be worn) but more sen-
ior clinicians will find plenty of use for it in the
clinic. It does not aim at great erudition, but
provides a useful list of references.

There are a few cavils. The section on
treatment of anxiety is skimpy (one and a half
pages) compared with the treatment of
affective illness (22 pages) or substance misuse
(19 pages). The brevity is only partly explained
by the undeveloped state of that particular area
of psychopharmacology. Sections on comorbid
cardiovascular and indications for lumi-
bar puncture and indications for EEG seem to
have been displaced from some other
primer for busy junior doctors. There is no
index.

These quibbles apart, prescribing guide-
lines can be wholeheartedly recommended.

BRIAN TOONE