LETTERS TO THE EDITOR

Postictal psychosis related regional cerebral hyperperfusion

Postictal psychosis is a known complication of complex partial seizure in particular temporal lobe epilepsy. It usually runs a benign and self-limiting course. A postictal phenomenon with focal cerebral hypofunction (similar to Todd’s palsy), rather than ongoing seizure activity, has been postulated. Surface EEG is either normal or showing non-specific slow waves. Hence, antipsychotic medications are prescribed instead of antiepileptic drugs. Until recently, the pathogenic mechanisms have remained unknown. In this communication, we report on two patients with postictal psychosis, during which a cerebral SPECT study showed a hyperperfusion signal over the right temporal lobe and contralateral basal ganglion. As hyperperfusion in ictal cerebral SPECT is closely linked to epileptic activities, our findings support a contrary explanation for postictal psychosis.

Prolonged video-EEG telemetry study was performed in patients who underwent presurgical evaluation for epilepsy surgery. Antiepileptic drugs were withdrawn to facilitate seizure recording. A diagnosis of temporal lobe epilepsy was based on analysis of the electroclinical events and, if applicable, postoperative outcome after anterior temporal lobectomy. Psychosis was diagnosed according to the fourth edition of the diagnostics and statistical manual of mental disorders (DSM-IV) criteria of brief psychotic disorders without marked stressor. HMPAO-SPECT was performed during the psychotic period, which ranged from 2–4 days after the last seizure. Interictal cerebral SPECT, brain MRI, and a Wada test were performed as part of presurgical evaluation.

Patient 1 was a 34-year-old Chinese woman with complex partial seizures since the age of 18. Her seizure control was suboptimal on a combination of antiepileptic drugs. Brain MRI showed a small hippocampus on the right. Interictal EEG showed bilateral temporal sharp waves and ictal recordings confirmed a right temporal epileptogenic focus. A Wada test confirmed right hippocampal memory dysfunction. Six hours after her last secondary generalised tonic-clonic seizure after video-EEG telemetry, she began to develop emotional lability, talking nonsense, motor restlessness, and auditory hallucination. A cerebral SPECT study was performed at day 4 after her last seizure. Her psychotic features persisted although she was taking antipsychotic medication (pimozide). Cerebral SPECT showed a clear hyperperfusion signal over the right lateral temporal neocortex and contralateral basal ganglion. An interictal cerebral SPECT study was repeated at 4 weeks after postictal psychosis which showed a complete resolution of hyperperfusion signal in the right temporal lobe and basal ganglia. Anterior temporal lobectomy was performed and she became seizure free after surgery.

Patient 2 was a 44-year-old man with intractable complex partial seizures since the age of 30. His seizures were intractable to multiple antiepileptic drugs. Brain MRI showed left hippocampal sclerosis. Interictal cerebral SPECT showed a relative hyperfusion area over the left hemisphere. Interictal surface EEG was non-lateralising but ictal EEG disclosed a right hemispheric onset. On withdrawal of antiepileptic drugs, seven complex partial seizures with secondary generalised tonic clonic seizures were recorded within a period of 72 hours. His usual antiepileptic drugs were then restarted. Thirty hours after his last secondary generalised tonic-clonic seizure; he began to develop emotional lability, talking nonsense, restlessness, auditory hallucination, persecutory delusion, and delusion of superstition. Cerebral SPECT study, performed 2 days later while his psychotic features persisted, showed two relative hyperperfused areas over the right temporal neocortex and contralateral basal ganglion in addition to the original hyperperfused area over the left hemisphere. An antipsychotic agent (thioridazine) was prescribed. Antiepileptic therapy was restarted.

Interictal SPECT and SPECT performed during postictal psychosis. (Top) A SPECT study of patient 1 showing areas of relative hyperperfusion over the right temporal neocortex (red arrows) and the left basal ganglia (blue and yellow arrows) during postictal psychosis. (Bottom) SPECT study of patient 2 showing areas of hyperperfusion over the right temporal neocortex and the left basal ganglia. Arrows indicate areas of hyperperfusion.
started after the cerebral SPECT. His psychotic symptoms resolved 2 weeks later with full recovery.

Cerebral SPECT performed during the interictal period (IP) and during postictal psychosis (PP) were analysed visually and areas of hypoperfusion were identified. Quantitative data at regions of interest (ROIs) were measured on coronal and axial slices containing basal ganglia (BG), mesial (MT), and lateral (LT) temporal lobe structures. Asymmetry index (ASI) was calculated as (ROI focus−ROI contralateral)/ROI focus×ROI contralateral)×100%. We set an arbitrary change of ASI >100% to be significant.

Both patients showed postictal psychosis and had a regional increase in rCBF over the right temporal neocortex and the left basal ganglia compared with their interictal study (figure). Quantitative analysis for patient 1 showed changes of ASI during IP and PP over right MT was +75% (-6.44676 to -1.65289); over the right LT was +116.8% (1.07927 to 12.55764); and over the left BG was +206.8% (2.07373 to 2.21574). Quantitative analysis for patient 2 showed changes of ASI during IP and PP over right MT was +3.8% (13.14217 to 12.64158); over right LT was +178.6% (10.4696 to 18.7057); and over left BG was +155.9% (5.85556 to 3.27522).

Postictal psychosis is a distinct clinical state associated with temporal lobe epilepsy.4 The diagnosis of postictal psychosis requires a close temporal relation between bouts of complex partial seizures and the onset of psychosis. The psychosis usually develops after a clinical state.4 Partial seizures were usually precipitated by abrupt withdrawal of antiepileptic drugs.1 The cluster occurs in patients with poor drug compliance or during video EEG telemetry studies when antiepileptic drugs are withheld purposefully.4 The clinical course of postictal psychosis is usually benign and predictable.1 In our patients, the duration of psychotic disturbances lasted from 2 to 7 days, which is in keeping with the good prognosis. Antipsychotic drugs, such as haloperidol and fluphenazine are usually prescribed.1

The underlying mechanism of postictal psychosis is unknown. Postictal cerebral hypofunction has been postulated as an analogue to Todd’s paralysis after seizure.2 However, the presence of increased rCBF during postictal psychosis, may suggest an ictal hypofunction theory of Todd’s paralysis after seizure.3

The diagnosis of postictal psychosis requires full recovery.

J Neurol Neurosurg Psychiatry 2000;68:120–126

Correspondence to: Dr G C Y Fong, Department of Medicine, Queen Mary Hospital, Pokfulam Road, Hong Kong email: cyfong.medical@graduate.hku.hk

Division of Neurology, University Department of Medicine, The University of Hong Kong

W Y HO

Department of Nuclear Medicine, Queen Mary Hospital, Hong Kong

Oncofetal matrix glycoproteins in cerebral arteriovenous malformations and neighbouring vessels

Cerebral arteriovenous malformations (AVMs) are thought to be congenital lesions exhibiting features of either mature vascular walls or embryonal anastomotic plexuses. It is generally assumed that changes in size are dependent on enlargement of the venous compartment, organisation in the setting of microhaemorrhages, and glissonean. Recent findings are consistent with the hypothesis of ongoing angiogenesis.14

Previous research from our laboratory disclosed that peculiar isoforms of fibronectin (FN) and tenasin (TN) typically occur in fetal and neoplastic tissues.15 These isoforms are a blend of structurally different glycoproteins that result from alternative splicing of the primary transcript and are mainly expressed in the extracellular matrix. Their expression is undetectable in normal adult tissues, with the exception of the vessels in the regenerating endometrium. To gain further insight into the pathobiology of the AVMs we present report sought to ascertain whether these lesions also express oncofetal FN and TN isoforms.

Tissue samples were obtained after neurosurgical excisions of ruptured AVMs. All 10 patients had experienced an intracerebral haemorrhage as the first clinical manifestation of their disease. There was no drug history before bleeding. Control specimens from two right gyri recti and one cerebellar tonsil were obtained, respectively, from operations for ruptured aneurysms of the anterior communicating artery or for Arnold Chiari disease

Immunohistochemical evaluations were performed on 5 μm thick cryostat sections using a protocol reported previously.14 Owing to the limited amount of available material, only in a few cases was some fresh tissue retained to allow western blots. Distribution of FN and TN isoforms was investigated using three monoclonal antibodies (mAbs) or two Ab fragments, obtained with a phalax technology, respectively. These Ab, prepared in our laboratory, were found to work on fresh frozen material. According to the previous characterisations the BC-1 mAb and the TN-11 Ab fragments are specific for isoforms occurring almost exclusively in fetal tissues and in tumours, with the recognised TN isoform being typically associated with anaplastic gliomas (table).

Control sections were processed identically to the other specimens, but the primary antibody was substituted with a specific immunoglobulin of recombinant antibodies. The antibodies were blocked using the specific antigens. The antibodies were blocked using the specific antigens. The antibodies were blocked using the specific antigens.

Both patients showed postictal psychosis over right MT was +75% (-6.44676 to -1.65289); over the right LT was +116.8% (1.07927 to 12.55764); and over the left BG was +206.8% (2.07373 to 2.21574). Quantitative analysis for patient 2 showed changes of ASI during IP and PP over right MT was +3.8% (13.14217 to 12.64158); over right LT was +178.6% (10.4696 to 18.7057); and over left BG was +155.9% (5.85556 to 3.27522).

Postictal psychosis is a distinct clinical state associated with temporal lobe epilepsy.4 The diagnosis of postictal psychosis requires a close temporal relation between bouts of complex partial seizures and the onset of psychosis. The psychosis usually develops after a clinical state.4 Partial seizures were usually precipitated by abrupt withdrawal of antiepileptic drugs.1 The cluster occurs in patients with poor drug compliance or during video EEG telemetry studies when antiepileptic drugs are withheld purposefully.4 The clinical course of postictal psychosis is usually benign and predictable.1 In our patients, the duration of psychotic disturbances lasted from 2 to 7 days, which is in keeping with the good prognosis. Antipsychotic drugs, such as haloperidol and fluphenazine are usually prescribed.1

The underlying mechanism of postictal psychosis is unknown. Postictal cerebral hypofunction has been postulated as an analogue to Todd’s paralysis after seizure.2 However, the presence of increased rCBF during postictal psychosis, may suggest an ictal hypofunction theory of Todd’s paralysis after seizure.3

The diagnosis of postictal psychosis requires full recovery.

J Neurol Neurosurg Psychiatry 2000;68:120–126

Correspondence to: Dr G C Y Fong, Department of Medicine, Queen Mary Hospital, Pokfulam Road, Hong Kong email: cyfong.medical@graduate.hku.hk

Oncofetal matrix glycoproteins in cerebral arteriovenous malformations and neighbouring vessels

Cerebral arteriovenous malformations (AVMs) are thought to be congenital lesions exhibiting features of either mature vascular walls or embryonal anastomotic plexuses. It is generally assumed that changes in size are dependent on enlargement of the venous compartment, organisation in the setting of microhaemorrhages, and glissonean. Recent findings are consistent with the hypothesis of ongoing angiogenesis.14

Previous research from our laboratory disclosed that peculiar isoforms of fibronectin (FN) and tenasin (TN) typically occur in fetal and neoplastic tissues.15 These isoforms are a blend of structurally different glycoproteins that result from alternative splicing of the primary transcript and are mainly expressed in the extracellular matrix. Their expression is undetectable in normal adult tissues, with the exception of the vessels in the regenerating endometrium. To gain further insight into the pathobiology of the AVMs we present report sought to ascertain whether these lesions also express oncofetal FN and TN isoforms.

Tissue samples were obtained after neurosurgical excisions of ruptured AVMs. All 10 patients had experienced an intracerebral haemorrhage as the first clinical manifesta-
Hashimoto's encephalopathy presenting as "myxoedematous madness"

The neuropsychiatric sequela of hypothyroidism range from lethargy and mental slowing to the florid psychotic illness referred to as "myxoedematous madness". The last condition is characterised by frank hypothyroidism accompanied by psychosis, and may respond completely to thyroxine. More recently described is a syndrome of subacute encephalopathy, associated with high titres of thyroid autoantibodies, raised CSF protein, EEG abnormalities, and perfusion deficits in the presence of normal structural neuro-imaging. In most cases, the encephalopathy occurs without any gross change in circulating concentrations of thyroid hormones, suggesting that an inflammatory process is responsible for the cerebral dysfunction. In the absence of pathological data, the evidence for a specific pathogenetic mechanism is largely circumstantial: a small vessel vasculitis and immune complex deposition have both been suggested.

Although none of the published cases of Hashimoto's encephalopathy has described psychosis as a primary feature, it is possible that "myxoedematous madness", a condition first described in detail by Asher in 1949 lies in a range of encephalopathic phenomena mediated by autoimmune mechanisms. This suggestion would certainly be consistent with the range of clinical presentations of other autoimmune cerebral vasculitides. As an autoimmune thyroiditis is the commonest cause of hypothyroidism in this country, it is likely that cases have been present in at least some of Asher's original 14 cases. Although most had florid myxoedematous features at psychiatric presentation, this may simply reflect the difficulty of diagnosing subclinical thyroid disease before rapid laboratory assays became widely available. Many features of the present case, however, favoured an endocrine rather than an inflammatory mechanism, suggesting that the condition of "myxoedematous madness", though rare, remains a valid diagnostic entity.

A 63 year old market stallholder without medical or psychiatric history was brought to a local psychiatric hospital by the police. His business had been in decline for several months, and his family had noticed uncharacteristic emotional lability. In the weeks preceding admission he had experienced delusions and hallucinations, and appeared usually uncharacteristic behaviour. He had reported a vision of the crucifixion, and hearing the voice of his dead mother. He claimed that his business was in trouble, and appeared emotionally labile.

Previous findings showed that ED-b+FN presents with conformational modifications in its central part and results from deregulation of FN pre-mRNA.1 The distribution of this isoform was found to be highly restricted in normal adult tissues. By contrast, ED-b+FN exhibited widespread distribution in the vasculature of fetal tissues, including brain, and of several types of malignancies. It was therefore regarded as a marker of angiogenesis.1 Similarly, the type III repeat C TN isoform, recognised by the Ab fragment TN-11, was found to occur in the vascular walls of anaplastic gliomas. Northern blot analysis showed that the mRNA of this isoform was undetectable in normal tissues and of fetal tissues, including brain, and in glioblastomas1

Recent advances in the pathology of cerebral AVMs suggest that these lesions might not be static. Tyrosine kinase, an endothelial cell specific receptor upregulated in glioblastomas, was found to be highly expressed in both AVMs and in the vessels of cerebral tissue bordering the malformations, by contrast with the down regulation occurring in the vasculature of the normal brain.2 The pattern of distribution of structural proteins was consistent with the hypothesis of diffuse activation of angiogenesis, without specific relation to individual vessel types.3

Furthermore, use of the cell proliferation marker MBF-I showed endothelial proliferation in arteories, venules, and capillaries of the cerebral tissue neighbouring AVMs.4

The presence of angiogenic features in AVMs might result from maintenance of proliferating and remodelling potentials, or from a specific response to haemodynamic stress in vascular structures subjected to increased blood flow and pressure. Occurrence of these features also in vessels lying in areas peripheral to the nidus might be related to recruitment of the neighbouring vasculature, possibly dependent on focal ischaemia in the setting of arteriovenous shunting.5 However, the presence in apparently normal vasculature of vessels typically occurring in fetal tissues and malignancies indicates that cerebral AVMs may not be static lesions. Further studies are needed to ascertain whether this phenomenon results merely from haemodynamic stress or actually reflects an intrinsic growth potential. Should this second be the case, current therapeutic strategies would possibly require revision.

This study was partially supported by the National Research Council (CNR), AIRC and the Ministry of University and Scientific Research (MURST). We thank Sergio Desseri, EE, for his technical help and Mr. Thomas Wiley for manuscript revision.

ANTONIO PAU
A DORCARATTO
G L VIALE
Department of Surgery, Division of Neurosurgeons, University of Genoa Medical School, S Martino Hospital, Pia d’Lago, 16132 Genova, Italy

P CASTELLANI
A SIRI
L ZARDI
Laboratory of Cell Biology National Cancer Institute, Genoa, Italy

Correspondence to: Dr A Pau

became aggressive and threatened them with a saw. The general practitioner was called and suspected thyroid depletion, but a new psych evaluation was requested because of the patient’s continuing violent behaviour.

On admission he was unkept but cooperative and appeared to have no psychiatric illness. He denied depression, but displayed no insight into the irregularity of his behaviour. No psychotic features were seen, although during the admission he consistently rationalised all reported psychiatric phenomena. He was aggressive towards staff and made repeated attempts to abscond. General physical examination was unremarkable. Neurological examination was normal except for spoken language, which was fluent and grammatical, but contained word finding pauses, circumlocutions, and occasional semantic errors (for example, “I just want to get my feet back on the table”). Formal neuropsychological testing, and a screen of laboratory tests for reversible causes of encephalopathy, were performed on admission, and results are presented below (column A). Attention was drawn to his mild naming deficit, and poor performance on the Rey figure, which was due to planning rather than visuospatial errors, suggesting a predominantly “dysexecutive” pattern. CT and EEG were both normal. Although CARYD was discounted, mild cortical hyperperfusion. Thalidomine (2 mg twice daily) was started on admission, and thyroxine (75 μg once daily) added 1 week later. His mental state and behaviour stabilised, leading to discharge presented insidiously during the past month where he lived. His neurological illness had presented 12 years after a head injury with memory loss. Full laboratory and neuropsychological results are shown in Table 1. Overt memory loss was not evident, and psychometric testing showed deficits in delayed recall of verbal material, verbal fluency, and visuospatial function. Formal psychometric testing, blood tests, and SPECT were repeated, 1 year after the original examinations. Laboratory and neuropsychological results are presented in the table. It is of note that, whereas his naming ability had improved, performance on frontal executive tasks remained impaired. The appearance of the follow up SPECT differed minimally, if at all, from the first examination.

In summary, therefore, this patient presented in clear consciousness with a first episode of acute psychosis, and evidence of subtle executive and linguistic neuropsychological disturbance, on the background of gradual behavioural and affective change. He was profoundly hypothyroid due to an autoimmune thyroiditis, but there was no clinical evidence of thyroid failure other than the abnormal mental state. The psychiatric component of his illness recovered fully, and the antithyroid microsomal antibody titre fell markedly after thyroxine replacement, although his mild neuropsychological deficits remained unchanged. Corticosteroids were not used at any stage.

The response to thyroxine does not, in itself, imply that the cerebral illness had an endocrine origin; a recent report described a patient with a subacute encephalopathic illness and compensated hypothyroidism in the presence of increased antithyroidal antibodies, all of which responded to thyroxine replacement alone.1 In that case, however, both EEG and SPECT were abnormal, the SPECT showing multiple foci of severely reduced perfusion, which normalised with treatment. By contrast, in the present case the EEG was normal and the SPECT abnormality was marginal and changed little, if at all, with treatment. The evidence for a significant vasculitic component to the illness is, therefore, unconvincing.

The mild and relatively circumscribed neuropsychological deficits coupled with florid psychotic phenomena, also contrast with the profound global disturbance of cognition usually associated with Hashimoto’s encephalopathy. This distinction suggests that microvascular disruption and thyroid hormone depletion may emphasise different aspects of the clinical range in Hashimoto’s encephalopathy. Although the present case may support Asher’s conclusion that the psychiatric features of Hashimoto’s encephalopathy typically respond to thyroid replacement, it additionally suggests that subtle neuropsychological deficits may be apparent even in the absence of obvious cerebral perfusion deficits, and that these may not be fully reversible.

Table 1 Laboratory and neuropsychological results at presentation (A) and at 12 month follow up (B)

<table>
<thead>
<tr>
<th>Laboratory (units)</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full blood count</td>
<td>Normal</td>
<td>Normal</td>
</tr>
<tr>
<td>Erythrocyte sedimentation rate</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>Urea and electrolytes</td>
<td>Normal</td>
<td>Normal</td>
</tr>
<tr>
<td>Liver function tests</td>
<td>Normal</td>
<td>Normal</td>
</tr>
<tr>
<td>Antinuclear antibodies</td>
<td>Negative</td>
<td>Negative</td>
</tr>
<tr>
<td>B12 and folate</td>
<td>Normal</td>
<td>Not tested</td>
</tr>
<tr>
<td>VDRL</td>
<td>Not tested</td>
<td>Not tested</td>
</tr>
<tr>
<td>Thyroid stimulating hormone (mU/L)</td>
<td>5.6</td>
<td>0.8</td>
</tr>
<tr>
<td>Free T4 (pmol/l)</td>
<td>Not tested</td>
<td>Not tested</td>
</tr>
<tr>
<td>Antithyroid microsomal antibody titer</td>
<td>1:25600</td>
<td>1:1600</td>
</tr>
<tr>
<td>Cerebrospinal fluid white cell count</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Protein</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>Sugar</td>
<td>Normal</td>
<td>Normal</td>
</tr>
<tr>
<td>Electrolytes</td>
<td>Normal</td>
<td>Normal</td>
</tr>
<tr>
<td>Creatinine</td>
<td>Normal</td>
<td>Normal</td>
</tr>
<tr>
<td>Sodium</td>
<td>140</td>
<td>140</td>
</tr>
<tr>
<td>Potassium</td>
<td>3.9</td>
<td>3.9</td>
</tr>
<tr>
<td>Urea and electrolytes</td>
<td>Normal</td>
<td>Normal</td>
</tr>
<tr>
<td>B12 and folate</td>
<td>Normal</td>
<td>Not tested</td>
</tr>
<tr>
<td>VDRL</td>
<td>Not tested</td>
<td>Not tested</td>
</tr>
<tr>
<td>Thyroid stimulating hormone (mU/L)</td>
<td>5.6</td>
<td>0.8</td>
</tr>
<tr>
<td>Free T4 (pmol/l)</td>
<td>Not tested</td>
<td>Not tested</td>
</tr>
<tr>
<td>Antithyroid microsomal antibody titer</td>
<td>1:25600</td>
<td>1:1600</td>
</tr>
<tr>
<td>Cerebrospinal fluid white cell count</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Protein</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>Sugar</td>
<td>Normal</td>
<td>Normal</td>
</tr>
<tr>
<td>Electrolytes</td>
<td>Normal</td>
<td>Normal</td>
</tr>
<tr>
<td>Creatinine</td>
<td>Normal</td>
<td>Normal</td>
</tr>
<tr>
<td>Sodium</td>
<td>140</td>
<td>140</td>
</tr>
<tr>
<td>Potassium</td>
<td>3.9</td>
<td>3.9</td>
</tr>
</tbody>
</table>

1 J Neurol Neurosurg Psychiatry 2000;68:100–126
2 A CRAWFORD J R HODGES MRC Cognition and Brain Sciences Unit, 15 Chaucer Road, Cambridge CB2 2EF, UK
3 Correspondence to: Dr P Garrard, University of Cambridge Neurology Unit, Box 165, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK
4 Email garrard@cnbc.cmu.edu

A 70 year old, right handed Jewish man born in Argentina, living in Israel for the past 20 years, was admitted to the Neurology Department. Until a month prior to admission, he was apparently healthy and helped in the accounting office of the village where he lived. His neurological illness had presented insidiously during the past month with inattention, fatigue, and confusional state. He also manifested behavioural changes, became aggressive, and had visual hallucinations, perceive insects and mice moving through his visual field. Often, he expressed his fear from seeing that the “ceiling was...
falling over him". His wife mentioned bizarre, useless movements of his left hand which were present from the beginning of the disease.

On admission, he was awake, bradyphrenic, and partially collaborative. His conversation, haematoysis,; and sedimentation rate were normal, as were folic acid, vitamin B12, and copper, urinalysis, urinary porphyrin, folic acid, and vitamins A, B1, B6, B12, and E. Antibodies (ARA), assayed by enzyme linked immunofluorescence (IF) were also negative. Antivirus antibodies, specific and non-specific organ autoantibodies, IgA and IgG antiglia- bodies against gangliosides GM1 and GQ1b, as well as copper, urinalysis, urinary porphyrin, folic acid, and vitamins A, B1, B6, B12, and E. Antibodies (ARA), assayed by enzyme linked immunofluorescence (IF) were also negative. Antivirus antibodies, specific and non-specific organ autoantibodies, IgA and IgG antiglia- bodies against gangliosides GM1 and GQ1b, as well as Cerebrospinal fluid examination disclosed symmetric and plantar responses were flexor. The right arm had a dystonic posture. His gait was ataxic on a wide base. At times, the left arm would spontaneously rise in front of the patient during speaking or while using his right hand. He was unaware of these movements until they were brought to his attention. When questioned about their purpose, the patient denied that they were voluntary. No grasping of either hand or foot was found. The patient had no cortical sensory loss.

The laboratory data including blood chemistry, haematoysis, and sedimentation rate were normal, as were folic acid, vitamin B12 concentrations, and thyroid function. Venereal disease research laboratory and HIV tests were negative. The cerebrospinal fluid had normal content. Brain CT showed mild cerebral atrophy. An EEG showed severe diffuse slowing at admission. Within a week, repeated EEGs showed triphasic waves with a periodic pattern of 1-1.5 Hz.

During the next 2 weeks, the patient developed myoclonic jerks. Severe dysphasia and cognitive decline were accompanied by confusion and aggression. He became grossly ataxic, and unable to walk and perform any of his daily activities even with help. Transferred to a chronic care hospital, he died few weeks later. Postmortem examination was not allowed.

This short fatal neurological disease manifested by fulminant dementia, myoclonic jerks, and extrapyramidal and cerebellar dysfunction was strongly suggestive of CJD. The periodic EEG pattern reinforced this diagnosis. Our patient’s alien hand was part of the otherwise characteristic clinical picture of CJD, but appeared early in the disease course when no myoclonic jerks were present. We are aware of only one report of alien hand in CJD. MacGowan et al. described two patients with CJD and a myoclonic alien hand syndrome. In one patient the left arm “was noted to have spontaneous movements which appeared purposeful...wandered out of her view”. In the second, the alien limb performed complex actions such as unbuttoning her blouse and removing a hair pin. Although our patient had no myoclonus or pyramidal signs when the alien hand appeared, in their patients it was associated with spontaneous or stimulus sensitive myoclonus, spastic hemiparesis, and cortical sensory loss.

The literature seems to describe distinct forms of alien hand. All share the occurrence of involuntary movements contrary to the patient’s stated intent, but the types of movement differ. In the callosal form, there are purposeful movements of the non-dominant hand. In the BPSNB, there is grasping and utilisation behaviour of the dominant hand. In the corticobasal degeneration, there are aimless movements of either hand. When a consequence of cerebrovascular pathology, alien hands can perform complex acts such as trying to tear clothes or undoing buttons. The description by MacGowan et al. has characteristics of the callosal form (especially in patient 2). However, our case suggests that the alien hand sign in CJD may appear in a different type, performing less complex movements which resemble those reported by Riley et al in corticobasal degeneration. These authors described the alien limb as “involuntarily rising and touching the mouth and eyes” (patient 1). The patient thought that she “was powerless to stop this movement” and when directed to “stop responding, this did not help”. Another patient’s left arm was at times “elevated in front of him”, while he was “unaware of this situation until his attention was called to it” (patient 10).

Another related phenomenon coined as “arm levitation” was reported in progressive supranuclear palsy. In these patients the arm involuntarily raised and performed semi-purposeful movements. One common denominator between CJD, corticobasal degeneration, and progressive multifocal leukoencephalopathy, in which an alien hand sign has also been described, is multifocality. In corticobasal degeneration, it was proposed that more than one site is affected or that a “release” phenomenon occurs accounting for the aetiology of alien hand. In CJD, bilateral cortical damage to motor areas might be the origin of their subsequent isolation and disconnection.

We suggest that CJD should be added to the differential diagnosis of diseases presenting with an alien hand with or without myoclonus.

We are indebted to Professor Eran Zardel, Department of Physiology, University of California, Los Angeles, USA.

Correspondence to: Dr R Inzelberg, Department of Neurology, Hillel Yaffe Medical Center, Hadera, Israel

References:

Recurrent peripheral neuropathy in a girl with celiac disease

The involvement of the peripheral nervous system (PNS) in children with celiac disease is particularly rare. Furthermore, in both children and adults with celiac disease, neurological complications are chronic and progressive.

We report on a 12 year old girl affected by celiac disease, who on two separate occasions presented with an acute peripheral neurological syndrome after accidental reintroduction of gluten in her diet.

This patient was born uneventfully to healthy non-consanguineous parents with no family history of neurological or metabolic diseases. At the age of 6 months she was diagnosed as having celiac disease according to the European Society of Paediatric Gastro-enterology and Nutrition (E Society) criteria. Since then she was on a strict gluten free diet and was asymptomatic until the age of 10 years when severe diarrhoea, vomiting, and abdominal pain manifested 6 days after the intake of corn flakes, which she thought to be gluten free. No previous infections had been noticed. One week after the onset of these symptoms she experienced acute weakness and pins and needles sensation confined to her legs. At that time her parents stopped her intake of corn flakes on the suspicion that these were responsible for the symptoms. Despite this, symptoms worsened during the next 2 days, confining her to bed.

At hospital admission, she was alert and mentally stable. Results of general physical examination were unremarkable. Neurological examination disclosed symmetric, predominantly distal, weakness of the legs; the knee jerks and ankle reflexes were depressed; plantar reflexes were flexor. Distal stocking glove decreased in pin prick and temperature with sparing of propionception and light touch. Coordination tests were normal.

Laboratory investigations showed a white cell count of 9300/mm³. The results of the following investigations were within the normal limits: haemogram, erythrocyte sedimentation rate, serum uric acid, creatinine, glucose, transaminase, bilirubin, immunoglobulins (Igs), lead, iron, copper, urinalysis, urinary porphyrin, folic acid, and vitamins A, B1, B12, and E. Antibodies to Campylobacter jejuni, neurotropic virus antibodies, specific and non-specific organ autoantibodies, IgA and IgG antigliadin antibodies (AGAs), IgA antidermatome antibodies (EMAs), and IgA antireticulin antibodies (ARA), assessed by enzyme linked immunosorbent assay (ELISA) and immunofluorescence (IF) were also negative. Lumbar puncture was not performed. Antibodies against gangliosides GM1 and GQ1b, myelin associated glycoprotein and myelin
basic protein were not tested. Nerve conduc-
tion studies were consistent with a predomi-
nately motor demyelinating peripheral neu-
ropathy (table). Her symptoms improved spontane-
owously and she was discharged home after 2 weeks. For 2 years she was asympto-
matic on a gluten free diet.

At the age of 12 she presented acutely with severe abdominal pain 8 days after a weekly intake of bread meant to be gluten free. Two weeks later, due to persisting gastrointestinal symptoms, her parents excluded the bread from her diet. After 2 further weeks, while the abdominal pain was gradually improving, she had a new episode of acute weakness in the lower limbs and sensory abnormalities including burning paraesthesia. On neurologi-
cal examination the legs showed marked diminution in muscle power; absent deep tendon reflexes, and a reduction in pain and temperature; light touch, perception of posi-
tion, and vibration were preserved. Walking was impaired and the patient was bedridden. Otherwise the examination was normal.

A haemogram showed white cell counts of 9700/mm³. Laboratory investigations were within normal values as in the past. IgA and IgG AGA, IgA EMA, and IgA ARA assayed by ELISA and IF were again negative. Nerve conduction studies confirmed the presence of a predominantly motor demyelinating neu-
ropathy (table). The parents refused consent for a lumbar puncture or nerve biopsy.

Over the next 2 weeks her neurological dis-
abilities spontaneously improved until full recovery was complete. After 4 weeks, AGA, EMA, and ARA were still negative.

On her most recent admission, 1 year after the onset of her first neurological symptoms, she is still on a strict gluten free diet and has no residual symptoms or signs.

The natural history of celiac disease is well known and the typical celiac enteropathy is often associated with several other disorders. However, as celiac disease is a relatively common and lifelong condition, it is likely that some of these associations may occur by chance.

This patient, who was diagnosed as having frank celiac disease at the age of 6 months, experienced two episodes of acute peripheral neuropathy, at the age of 10 and 12 years, respectively. Two major pieces of evidence strongly support the assumption of a gluten derived disease: (1) the episodes occurred on both occasions when gluten was accidentally reintroduced in the diet; and (2) the response to a gluten free diet was reasonably rapid, occurring within weeks.

The present case, however, differs clinically from those with neurological involvement pre-
viously reported. In the paediatric age group, in fact, neurological complications of celiac disease are rarely encountered and are mostly confined to the CNS; to the best of our knowledge, there are only two previously reported cases of PNS involvement in children with celiac disease. In both cases, however, these were chronic axonal polyneuropathies presenting during a gluten free diet.1

In both episodes in the present case neuro-
physiology was strongly supportive of a demyelinating peripheral neuropathy, which is most commonly attributed to a direct immune mediated attack to the myelin. By contrast, wallerian and axonal degeneration may be caused by vasculitis, and nutritional, metabolic, and toxic factors.

An autoimmune pathogenesis in associ-
ation with strong evidence of a genetic susceptibility has been proposed for celiac disease. Although it is well established that AGA, EMA, and ARA are reliable indicators of sensitisation to gluten at least at the time of diagnosis, the clinical practice at follow up, during a gluten challenge, pathological values of these antibodies may not be detected.4 In the present case the time course of the disease might be suggestive of an antibody mediated response. However, we could not detect pathological concentrations of AGA, EMA, or ARA antibodies either during the course of the disease or at follow up.

It is known that in celiac disease many immunological perturbations can occur out-
side the gastrointestinal tract. Crossing of the antigens through a damaged small intestinal mucosa, deposition of immune complexes in target organs, a reduction in immune surveil-

ance, mechanism of molecular mimicry, and activated T cell response may contribute to the pathogenesis of the diseases associated with celiac disease. Direct toxic effects of gliadin and vitamin deficiency are other poten-
tial pathogenic mechanisms of damage to the nervous system. Although we ruled out a vitamin deficiency it is still questionable whether a toxic neuropathy can be the case.

In conclusion, this case shows two major issues: an acute polyneuropathy can be a complication of celiac disease in childhood and its benign course could help in the understanding of the underlying pathogenic mechanisms.

We are grateful to Professor Angela Vincent (Oxford) for her helpful suggestions in reviewing the manuscript.

AGATA POLIZZI
MARIA FINOCCHIARO
ENCO PARANO
PIERO PAVONE
Division of Paediatric Neurology, Department of Paediatrics, University of Catania
Catania, Italy

Correspondence to: Dr Agata Polizzi, Division of Paediatric Neurology, Department of Paediatrics, University of Catania, Viale A Doria 6, 95125 Catania, Italy, email apolizzi@ctonline.it

4 Simonati A, Battistella PA, Guarino G, et al. Coeliac disease associated with peripheral neu-

Frontal release signs in older people with peripheral vascular disease

A growing body of research examining neurological aspects of clinically “silent” cerebrovascular disease suggests that neurological signs indicative of generalised organic brain damage may occur in the absence of completed stroke.1 These soft signs include primitive reflexes (frontal release signs), representing an anatomical and functional deaffer-
ervation of cortical from subcortical struc-
tures. Primitive reflexes are known to occur in a wide variety of illnesses, including Alzheimer’s disease2 and vascular dementia.3 It is likely that the presence of undetected cerebrovascular disease accompanying per-
ipheral vascular disease is underestimated, as peripheral vascular disease is known to be a risk factor for transient ischaemic attacks. A study assessing 373 older patients with peripheral vascular disease found that 72 of the 144 patients who had not experienced a transient ischaemic attack, or stroke, were found to have a degree of carotid stenosis of between 60% and 99%.4

In the present study, the prevalence of primitive reflexes was compared in 50 con-
secutive non-amputees on the waiting list for femoropopliteal bypass operation with 25 postopera-
tive patients who had undergone elective hip or knee replacement and a group of healthy community residents from the catchment area of an inner city London teaching hospi-
tal. Twenty five consecutive non-amputees on the waiting list for femoropopliteal bypass operation were compared with 25 postoperative patients who had undergone elective hip or knee replacement and a group of healthy community residents from the catchment area of an inner city London teaching hospital.

All subjects were compared with 25 non-amputees on the waiting list for femoropopliteal bypass operation, and a group of healthy community residents from the catchment area of an inner city London teaching hospital.
examined using a rating scale for the examination of frontal release signs (FRSS), with nine operationally defined items, each on a seven point semi-quantitative scale. The nine reflexes were paratonia and palpmomenta, hand grasp, foot grasp, glabellar, rooting, snout, and visual/tactile sucking reflexes. Neuropsychological measures included the assessment of frontal lobe function (trailmaking tests A and B, behavioural dyscontrol scale, and the controlled word association test) and generalised cognitive impairment (CAMCOG). Depression was assessed using the Hamilton rating scale for depression, 15 item geriatric depression score, and diagnostic criteria for DSM IV major depressive disorder (CAMCOG). Depression was assessed using the controlled word association test and generalised cognitive impairment (CAMCOG). Depression was assessed using the Hamilton rating scale for depression, 15 item geriatric depression score, and diagnostic criteria for DSM IV major depressive disorder (CAMCOG). Depression was assessed using the controlled word association test and generalised cognitive impairment (CAMCOG). Depression was assessed using the Hamilton rating scale for depression, 15 item geriatric depression score, and diagnostic criteria for DSM IV major depressive disorder (CAMCOG).

Table 1 Primitive reflexes in patients with peripheral vascular disease (n=25) and controls (n=25)

<table>
<thead>
<tr>
<th></th>
<th>Hand grasp</th>
<th>Foot grasp</th>
<th>Glabellar</th>
<th>Palpomental</th>
<th>Paratonia</th>
<th>Rooting</th>
<th>Snout</th>
<th>Sucking (tactile)</th>
<th>Sucking (visual)</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>274.0</td>
<td>312.5</td>
<td>199.5</td>
<td>287.5</td>
<td>287.0</td>
<td>235.5</td>
<td>287.5</td>
<td>261.0</td>
<td>287.5</td>
</tr>
<tr>
<td>pValue</td>
<td>0.15</td>
<td>1.0</td>
<td>0.001*</td>
<td>0.15</td>
<td>0.29</td>
<td>0.01*</td>
<td>0.44</td>
<td>0.08</td>
<td>0.30</td>
</tr>
</tbody>
</table>

*Higher mean score in people with peripheral vascular disease.

Small numbers of patients, which may also have obscured other significant findings between the two groups, limit the present study. However, there is some evidence that clinically relevant cerebrovascular disease may accompany peripheral vascular disease and that concomitant disruption of frontal/subcortical brain function may not present with hard neurological signs. As it is possible that silent brain infarction was present in patients with peripheral vascular disease, further studies incorporating brain imaging are required before there can be a clearer understanding of the relation between peripheral and central vascular pathology.

I thank Dr Robert Howard for supervision of this study and Professor Andrew Grace and Mr Paul Baskerville for allowing me to interview patients under their care. The study was carried out as part of a University of London M.D. thesis.

RAHUL RAO
Department of Old Age Psychiatry, Musgrove Hospital
Institute of Psychiatry, London

Correspondence to: Dr Rahul Rao, Department of Old Age Psychiatry, Guy's, King's, and St Thomas Medical School, Job Ward, Thomas Guy House, Guy's Hospital, St Thomas Street, London SE1 9RT, UK email raorao@globalnet.co.uk

Factitious clock drawing and constructional apraxia

A 45-year-old man presented with a 1-year history of headache, possible seizures, and left sided weakness. On the day of presentation the patient’s wife had twice found him on the floor. After the second such episode she brought him to hospital for evaluation. Examination disclosed a complete left hemiplegia and hemianaesthesia, although muscle tone was documented to be normal and the plantar responses downgoing bilaterally. Brain CT was normal and routine blood examination was unremarkable. There were no further seizure-like episodes and the patient was transferred to this hospital 10 days later, hemiplegia unchanged, for possible angiography and further investigations.

He was a ex-smoker with hypercholesterolemia and peripheral vascular disease which had been treated by a left femoral angioplasty 5 years earlier. The angioplasty was complicated by the occurrence of a small haematoma which was related to dye injection, and phenytoin had been prescribed for a short time thereafter. There was a remote history of heavy alcohol use, but he had been abstinent for several years. His father had had a stroke at the age of 65.

Six months earlier the patient had also collapsed at home and been taken to hospital with a left hemiplegia. Brain CT at that time was normal, as were carotid Doppler studies and an echocardiogram. During that admission to hospital, several generalised seizure-like episodes were seen, some with retained consciousness, and he had again been started on phenytoin therapy. A follow up outpatient brain MRI was normal and it was concluded that the hemiplegia was non-organic in origin. He was described to have made a gradual, near complete, recovery from this first hemiplegic episode and was scheduled for an imminent return to work at the time of his relapse.

On transfer to this hospital the patient was alert, oriented, and cooperative. Although up to date on current affairs and able to describe the investigations performed at the transferring hospital, he scored only 23/30 on a mini mental state examination, with absent three word recall, impaired registration, and poor copying of a two dimensional line drawing. Further bedside neuropsychological testing showed other findings indicative of constructional apraxia and left hemineglect. Specifically, when asked to draw a clock with the time at 10 minutes to 2 o’clock, all the numbers, and the clockhands, were placed on the right hand side of the clock outline (figure A). Copying of three dimensional line drawings was also significantly impaired (figure B).

What had been prescribed for a short time thereafter. There was a remote history of heavy alcohol use, but he had been abstinent for several years. His father had had a stroke at the age of 65.

Cranial nerve examination suggested an inconsistent left hemianopia to confrontation testing but was otherwise normal, including bilaterally symmetric optokinetic nystagmus. Motor examination showed paralysis of the left arm and leg, with bilaterally symmetric bulk, tone, and deep tendon reflexes. The plantar response was flexor bilaterally. Sensory examination showed decreased pinprick and absent light touch, joint position sense, and vibration sense on the entire left side. There was also impaired perception of a tuning fork’s vibration on the left side of the forehead, with a distinct demarcation in the midline.

The rest of the physical examination was unremarkable.

Brain CT and MRI, CSF examination, and routine EEG were normal. Routine haemato logical and metabolic analyses plus erythrocyte sedimentation rate, serum lactate, prothrombin time/partial thromboplastin time, fasting serum glucose, Ha1c, serum Ig sur vey, and thyroid stimulating hormone were all within normal limits. A hypercoagulability profile was negative. A lipid profile showed mild hyperlipidaemia with increased low
density lipoprotein (3.92 mmol/l) and triglycerides (4.30 mmol/l) and low high density lipoprotein (0.73 mmol/l). Serum phenytoin concentration was therapeutic at 74 μmol/l. An ECG was normal.

Ophthalmological consultation and formal visual field testing demonstrated a concentrically constricted field of mild degree in the right eye and tunnel vision in the left eye.

The patient consented to overnight video-EEG monitoring and was seen on multiple occasions to move his left arm and/or leg in a normal fashion, at one point using the left arm to readjust his bed covers shortly after arousal from sleep, before glancing briefly at the video camera and completing the task with his right arm. The prolonged EEG was normal.

A formal neuropsychological assessment performed in hospital documented impaired attention, concentration, and working memory, as well as several atypical calculations and spelling errors, the second involving unusual “near miss” letter substitutions or reversals (for example, “amxey”, “excuexecutive”). The formal testing identified no consistent evidence of visuospatial deficits or constructional apraxia. The findings were interpreted as inconsistent with the patient’s history but the possibility of a factitious aetiology was not specifically addressed—that is, tests designed to detect malingering during neuropsychological testing were not administered by the examiner, who had not been informed at the time of consultation of the presumptive neurological diagnosis of malinger- ing or factitious disorder.

No further investigations were performed and the patient was transferred via the original hospital to a rehabilitation facility and subsequently discharged to home. Confronted with the findings of the video monitoring the patient appeared sanguine and accepting of the evidence that he should be able to move his left side. Six months later he was ambulatory but otherwise not significantly improved. He had been assessed by a psychiatrist but had refused psychiatric follow up, electing instead to be followed up by his father’s stroke), much in the same way he is now researching conversion disorder, thereby discovering what expected answers should look like. Despite repeated questioning, however, no evidence could be gathered from the patient to support this speculation.

Anosognosia and mania associated with right thalamic haemorrhage

Both anosognosia and secondary mania are associated with right hemispheric lesions. These two non-dominant syndromes, however, are rarely described as occurring together. We present a patient with a right thalamic haemorrhage giving rise to profound denial of hemiplegia and elated mood. This case suggests mechanisms for the common production of mania and anosognosia.

A 53 year old, right handed, black man, with a history of alcohol misuse and dependence and untreated hypertension, was brought to the emergency room a few hours after developing an intense headache and left sided numbness and weakness.

On admission he was described as “belligerent”, “agitated,” and “confused.” Blood pressure was 240/160. Neurological examination disclosed left lower facial droop, decreased left corneal and gag reflexes, and left hemiparesis with dense sensory deficits. With increasing obtundation, the patient was transferred to the intensive care unit and intubated. Brain MRI showed a large, left sided, hyperacute thalamic bleed with mass effect and oedema. The patient was extubated 2 days later and 4 days after the stroke he was described as being drowsy and inattentive, but was able to answer questions...
appropriately. Neurological examination showed contralateral gaze preference, supranuclear vertical gaze palsy, difficulty converging, left sided flaccid hemiparesis, and dense, left sided hemisanaesthesia. Deep tendon reflexes were absent on the left and Babinski's reflex was present on the left. Examination of visual extinction and neglect were present. At the time of onset of right sided weakness the patient insisted that he was “fine,” and an ambulance was called over his objections. After being extubated, the patient acknowledged that he had had a stroke, but, despite his hemiparesis, insisted that he was ready to go home and go back to work. His belief in his ability to walk led to near falls, and he was more watchful than ever towards the nurses’ direction for closer observation. He told the nurses that someone else’s arm was in his bed. On one occasion, holding up his left arm with his right, he told the nurse to, “take it away; it keeps scratching me.” That the left arm “smelled funny” was another reason he wanted the nurses to take it away.

Four weeks after the stroke he first acknowledged that his left arm belonged to him. On one occasion, holding up his right arm, he said that his left arm was his own, and he had a good appetite. When beginning to talk, he did not want the nurses to take it away. Sleep was not disrupted or reduced otherwise. By the 6th week and onward he was more consistently acknowledged that he was weak on the left side of his body. A request for disabled housing so “that I won’t be a burden to my family” seemed to indicate an appreciation of his impaired insight. He was shuffling within an hour of making such statements the patient might insist that after a week’s exercise he would be ready to return to work. His awareness of his hemiplegia fluctuated for 8 weeks after stroke before becoming fixed, but remained shallow after 12 weeks; he no longer planned to return to work and applied for social security disability insurance “because they say I’m disabled.”

The patient’s mood was remarkably cheerful and optimistic. A week after the stroke he was noted to praise extravagantly the hospital food, and the nurses found him “talkative.” When he arrived on our ward 11 days after stroke he was overexcited, and in a later paper he presented a case in which there was “a certain agitation, which expresses itself by exaggerated logorrhea, a decrease in attention, and a tendency to erotic ideas.”

Structural MRI performed 44 days after the stroke showed a large right thalamic hemorrhage with mass effect and oedema, with oedema extending into the cerebral peduncle. The patient maintained an excellent energy and expansively publicly displayed a desire to return to his home for thanks. He spontaneously recalled believing that euphoria was a right thalamic hemorrhage and inability to walk led to near falls, and he was able to return to work. By the 6th week he was overexcited, and in a later paper he presented a case in which there was “a certain agitation, which expresses itself by exaggerated logorrhea, a decrease in attention, and a tendency to erotic ideas.”

This is a case of anosognosia of hemiplegia and mania co-occurring in a patient with a large right thalamic haemorrhage. Although anosognosia and mania are not generally thought of as occurring together, Babinski’s terminology for his cases of anosognosia and mania was “a certain agitation, which expresses itself by exaggerated logorrhea, a decrease in attention, and a tendency to erotic ideas.”

Weinstein and Kahn’ noted that euphoria was common in patients with anosognosia. Moreover, although Cutting emphasized that apathy is the mood more usually associated with anosognosia, 10% of his patients with anosognosia were described as having “euphoric mood.”

Right sided thalamic lesions are known to produce both anosognosia and mania, but the relation of each to the pathology is unclear. Only some of the patients with right hemispheric lesions are manic or agnostic. These two syndromes may be related to dysfunction of different cerebral networks and only occur together when a disease process affects both networks.

Another possibility is that these syndromes are aetiologically related. Could anosognosia be a manifestation of mania? Although it is easy to conceive how elevated mood might facilitate anosognosia of hemiplegia (or other types of anosognosia), it is difficult to explain the presence of denial of ownership and dislike of the left arm (other anosognosic phenomena) on the basis of euphoria. Moreover, Starkstein et al., finding that similar frequencies and severities of major and minor depression were present in patients with and without anosognosia, suggest that a particular mood state may not necessarily influence insight.

Several explanations have been proposed to explain the phenomenon of anosognosia. All the models invoke dysfunction of the cerebral cortex, especially the parietal areas. It is interesting that in this case, functional MRI failed to demonstrate decreased CBF in the parietal lobe.

In summary, we present a case of anosognosia accompanying mania and a right thalamic haemorrhage. The coexistence of mania and anosognosia may be more common than previously appreciated. The association with anosognosia implies that the mechanisms implicated in the pathogenesis of secondary mania may be similar to those of anosognosia. The absence of evidence of abnormal parietal, temporal, or frontal lobe function by functional MRI in this case is intriguing.

ELIZABETH LIEBSON
Department of Psychiatry, Tufts, New England Medical Center, 750 Washington Street, Box 1007, Boston, MA 02111, USA. Telephone 001 617 636 1633; email eliebson@opal.neu.edu

Epileptic cardiac asystole

A patient is reported on with habitual episodes of collapse and loss of consciousness associated with EEG evidence of focal epileptiform discharges. Simultaneous ECG recordings disclosed 25 seconds of cardiac ventricular asystole occurring 24 seconds after the onset of epileptiform seizure activity. After changes to antiepileptic medication and the insertion of a permanent cardiac pacemaker he had no further episodes. In cases of epileptic cardiac dysrhythmia, isolated EEG or ECG recordings may prove insufficient and prolonged simultaneous EEG/ECG monitoring may be required.

Cardiac arrhythmias subsequent to epileptic seizures have been recognised for more than 90 years. They provoke diagnostic confusion and may be a mechanism of sudden unexplained death in epilepsy. Whereas sinus tachycardia was noted to accompany more than 90% of epileptic seizures, isolated bradycardia was seen much
less commonly (only 1 of 74 seizures recorded). A review in 1996 of the “ictal bradycardia syndrome” showed only 15 documented cases in the literature of either bradycardia or asystole associated with seizures. Most patients had temporal lobe seizures. The longest duration of asystole previously reported is in a 17 year old man with temporal lobe epilepsy who sustained a 22 second pause in cardiac output. More typically the asystolic periods in documented cases are in the region of 5–10 seconds. Shorter duration asystole may not compromise cerebral function sufficiently to cause loss of consciousness. Implantation of a cardiac pacemaker is advocated but does not ensure that lapses of consciousness are eliminated if these are directly related to the seizure rather than to the secondary asystole. We report on a patient with epileptic cardiac asystole of 25 seconds duration demonstrated by prolonged simultaneous EEG/ECG monitoring which responded well to pacemaker insertion.

A previously well 34 year old right handed builder was referred with a 1 year history of fortnightly episodes of loss of consciousness. There was no associated warning, aura, chest pain, or palpitations and the patient was only aware of the episode once consciousness was
restored and he found himself lying on the floor. On recovery there was no confusion, drowsiness, dysphasia, or diuresis. Often, however, he sustained soft tissue injuries to his face and scalp.

Witnesses reported that the patient would, with closed eyes, suddenly collapse to the ground where he would remain unrousable, inaccessible, and motionless for 90 to 120 seconds. On two occasions he appeared confused and disoriented immediately before a collapse. During the period of unconsciousness he would demonstrate no involuntary movements, orofacial automatisms, or cyanosis but he would become pale and “ashen” while staring straight ahead with a glazed look. Observation of the episode his face would return to normal and within 2 minutes he would have fully recovered. Unusually during one reported episode of unconsciousness he was seen to briefly extend the fingers of both hands.

He was admitted to his local hospital and CT, MRI, interictal EEG, and 24 hour ECG were normal. No episodes were witnessed while he was an inpatient but they were thought to be epileptic in origin and therefore before he was started on phenytoin, with no benefit. Carbamazepine was added, again with minimal effect.

The patient was then referred to the Epilepsy Assessment Centre of The National Society for Epilepsy and National Hospital for Neurology and Neurosurgery for further investigation and management.

Cardiovascular and neurological examination was normal as were MRI and routine interictal EEG. Sixteen channel ambulatory EEG using an Oxford Instruments digital EEG receiver was performed continuously for 340 hours before an episode was captured. Interictally rare spikes were seen over the right hemisphere at about 07:06. The event EEG showed a short run of bilateral semirhythmic arrhythmia at 07:04:58, the ECG changed from sinus rhythm at 90 bpm to a brief period of sinus bradycardia, followed by a period of asystole with only very occasional ventricular complexes lasting 10 seconds (figure A). After a few seconds of bradycardia then tachycardia, sinus rhythm was restored. Throughout the episode the QT interval on the ECG remained within normal limits. The EEG became visible again 16 seconds into the asystolic period, at which time it was dominated by diffuse low amplitude slow activity at <1–2 Hz which persisted for 10 seconds (figure C). This was followed by marked attenuation of the EEG activity over the next 10 seconds before large amplitude generalised rhythmic <1Hz activity became apparent. Diffuse theta activity was seen for a further 15 seconds before the EEG returned to its resting state.

A VVI permanent pacemaker was inserted. The phenytoin was withdrawn and replaced by lamotrigine. Carbamazepine was left unchanged. The patient was discharged, his medication left unaltered, and at follow up 9 months later reported no further episodes.

Cardiac dysrhythmias are an uncommon but serious consequence of partial seizures. Our case is unusual because of the duration of unconsciousness and the fact that a series of 26 patients, with 74 temporal lobe seizures in which simulta-
delayed (8.7 ms (normal<8.0)). Sensory nerve conduction studies showed a reduced amplitude of sensory nerve action potentials and conduction slowing in all the nerves tested. Electromyography carried out in the supraspinatus, deltoid, biceps, flexor carpi ulnaris, brachioradialis, quadriceps femoris, biceps femoris, tibialis anterior, and gastrocnemius muscles showed polyphasic motor unit potentials of long duration, but denervation potentials were rare. A left sural nerve biopsy showed scattered tomaculous thickening of the myelin sheath and some abnormal thin axonal myelin sheaths. The density of myelinated fibres was reduced (5726/mm²), and some abnormalities suggested demyelinating neuropathy. The density of myelinated fibres in control cases was 10,000/mm². The density of myelinated fibres in control cases was 10,000/mm². A gene analysis disclosed a 53% gene dose of PMP-22 related to normal controls, using Southern blots of DNA digested with EcoRI.

Given the possibility of superimposing demyelinating neuropathy, especially chronic inflammatory demyelinating polyneuropathy, oral prednisolone (60 mg/day) was given for 1 month. However, the patient’s clinical condition did not respond to this treatment. Pulmonary dysfunction and proximal muscle weakness were almost steady during the next 3 years.

We examined the patient’s elder sister (64 years old), elder brother (62 years old), and younger sister (58 years old), although they had no neurological complaints. All of them had experienced generalised hyporeflexia or areflexia but no weakness or sensory loss, and nerve conduction studies showed moderate conduction slowing with accentuation at the common entrapment sites, suggesting demyelinating neuropathy.

Our patient recalled experiencing recurrent episodes of transit entrapment mononeuropathies, and the familial occurrence of asymptomatic entrapment neuropathy was detected by nerve conduction studies. The presence of tomacula, and genetic analysis confirmed a diagnosis of HNPP. However, the patient’s dominant clinical features—respiratory failure and proximal muscle weakness—were atypical for HNPP. Although respiratory muscle weakness has been reported in hereditary motor and sensory neuropathy (HMSN), there has been no report of respiratory insufficiency associated with HNPP to our knowledge.

The weakness of the truncal muscles, including the respiratory accessory muscle, is a possible cause of respiratory failure in our patient. On the other hand, he had experienced hypventilation in the supine posture and paradoxical movement of the abdomen, which suggested diaphragmatic weakness. Also, chest radiography showed poor movement of the diaphragm. Although the prolongation of distal latency in the phrenic nerve was mild considering the severity of respiratory failure, assessment of axonal loss is not possible with phrenic nerve stimulation. In fact, phrenic nerve latency is not necessarily associated with pulmonal dysfunction in HMSN.

Diffuse proximal weakness in our patient is an uncommon finding as for HNPP. Mancardi et al reported on three patients with progressive sensory-motor polyneuropathy associated with 17p11.2 deletion, and the initial symptom of one patient was proximal weakness in one arm. We propose that our patient represents a clinical phenotypic variability among HNPP. It may be necessary to pay attention to respiratory function in HNPP.

We thank Dr T Yamamoto from the University of Occupational and Environmental Health for the gene analysis and Mr T Nagase from Chiba University for his technical help with the sural nerve biopsy.

General muscle atrophies, which are most prominent in the trunk are shown. A tracheotomy was performed for nocturnal hypoventilation because the patient required mechanical respiratory support during the night.
venous thrombosis is often asymptomatic, or presents with non-specific pain, it is probably unrecognised in many cases. Concurrent ipsilateral spinal accessory neuropathy and internal jugular venous thrombosis after CEA is expected to be rare, and this is underscored by the lack of published cases. Despite this apparent rarity, a common pathogenetic mechanism for postoperative spinal accessory neuropathy and internal jugular venous thrombosis may well be present, at least in some cases, which may lead to the consideration of the possibility of both when either is discovered.

We report on a patient who developed right spinal accessory neuropathy and internal jugular venous thrombosis after right CEA. A 59 year old man underwent right CEA for possibly symptomatic stenosis. Angiography had shown 90% stenosis of the right internal carotid. The operation was done under general anaesthesia. The carotid bifurcation was unusually distal, necessitating a long dissection and high retraction. No immediate postoperative complications were evident. The next day, the patient complained of mild pain at the operative site, but did not notice any weakness. The pain spread into his right shoulder within several days; at that time, he also noted difficulty raising his right arm. His symptoms worsened further a few weeks later. The symptoms persisted and he presented for neurological evaluation 4 months after CEA. At that time, he had some induration along the incision site and a palpable cord within the right supraclavicular fossa. There was moderate atrophy of the right sternocleidomastoid and trapezius, with right shoulder drooping and minor right scapular winging. Right arm abduction produced more prominent scapular winging and was limited to 90 degrees due to pain and weakness. Electrodiagnostic studies were consistent with partial right spinal accessory neuropathy with minor denervation of the right trapezius. Cervical ultrasonography and MRI demonstrated right internal jugular venous thrombosis. The patient was treated with a shoulder support, analgesics, and low dose aspirin. There was no significant clinical change 1 year after CEA. Repeat electrodiagnostic studies were more consistent with chronic right spinal accessory neuropathy, and repeat ultrasonography showed persistent right internal jugular venous thrombosis.

Spinal accessory neuropathy was first reported as a complication of CEA in 1982. Since then, there have been several case reports and small series. A 1996 review of reports of cranial neuropathy after CEA disclosed only one patient with spinal accessory neuropathy in over 3000 cases. Although the authors did not include several other reports which, taken together, may seem to suggest a somewhat higher incidence, the overall small number of reported cases in proportion to the hundreds of thousands of CEAs that have been done worldwide suggests that clinically significant spinal accessory neuropathy is a rare complication. Minor transient spinal accessory neuropathy after CEA may be more frequent. The cause of spinal accessory neuropathy after CEA is usually not well established, but intraoperative nerve stretching or compression from retraction is most often invoked. Delayed onset (after 3 weeks) has been noted in some; for these patients, postoperative inflammation and scarring seem more likely causes. Spinal accessory nerve transection or infarction/infarct (arterial or venous) are other possibilities. As in our patient, high carotid dissection and retraction have been reported to precede spinal accessory neuropathy.

The spinal accessory nerve courses along the internal jugular vein and near the internal carotid artery, typically well above the carotid bifurcation. This should suggest that a high carotid incision and retraction resulting from a high carotid bifurcation would place the nerve at risk. Whether this realisation may lead to any technical modification to decrease the risk of spinal accessory neuropathy in those with a high bifurcation is unknown.

From our search, internal jugular venous thrombosis after CEA has been reported in only one case. As Southcott et al noted, retraction of the internal jugular during CEA may cause complete occlusion, leading to thrombosis from venous stasis or endothelial injury. Other causes of internal jugular venous thrombosis include jugular canalulation, blunt cervical trauma, and a hypercoagulable state. Internal jugular venous thrombosis may often be asymptomatic. Potential symptoms of internal jugular venous thrombosis include headache, dysphagia, and anterolateral neck pain, tenderness, and swelling. In addition to perivenous induration, fever and leukocytosis may occur. Common pathogenetic mechanisms for spinal accessory neuropathy and internal jugular venous thrombosis may include intraoperative traction, haematoma, and postoperative inflammation and scarring.

Although the onset of either spinal accessory neuropathy or internal jugular venous thrombosis in our patient cannot be determined precisely, it is likely that both developed at about the same time. The delayed worsening of spinal accessory neuropathy in this case suggests postoperative scarring or inflammation. The lack of improvement after a year, as in some other cases of spinal accessory neuropathy after CEA, implies considerable axonal injury, but does not clarify the manner of injury.

GEORGE WOODWARD
RAM VENKATESH
Department of Neurology, University of Kansas, and Neurology Section, VA Eastern Kansas Health Care System, VA, USA

Correspondence to: Dr George Woodward, Neurology Section (111), VA Medical Centre, Leavenworth, Kansas 66048, USA. Telephone 001 913 682 2000 extension 2441; fax 001 913 758 4225.

it remained in the normal range. Whether the use of high doses of caffeine can enhance the cardiovascular effect of ephedrine remains a possibility as stroke after taking a combination of caffeine and amphetamine has been reported.

Drug addiction in sportsmen and sportswomen is becoming a major concern in our societies, involving both professionals and amateurs. As energy supplements, thought to enhance performance, are easily available in some countries without the need of medical prescription, everybody should be aware that these so called “benign” drugs may have major adverse effects.

This first case report of an extensive cerebral infarct in a young sportsman consuming high doses of MaHuang extract and creatine monohydrate should alert the sport community to this possible adverse effects of energy supplements, particularly when used in multiple combination.

K VAHEDI
V DOMIGO
P AMARENCO
M-G BOUSSER
Service de Neurologie, Hôpital Lariboisière, Paris, France

Correspondence to: Dr K Vahedi, Service de Neurologie, Hôpital Lariboisière, 2 Rue A Paré, 75010 Paris, France
e-mail vahedi@ccr.jussieu.fr

Petroclival meningioma as a cause of ipsilateral cervicofacial dyskinesias

Hyperkinetic movement disorders of facial and neck muscles such as blepharospasm, hemifacial spasm, facial myokimia, and cervical dystonia have rarely been associated with unilateral brainstem or posterior fossa pathologies. We report a case of unilateral cervicofacial dyskinesias due to an ipsilateral petroclival meningioma.

A 32 year old left handed woman complained about left sided facial dysesthesia of the upper quadrant of her face for 1 year. In addition she had intermittent ipsilateral headache. A left sided facial palsy and hypogeusia developed. When progressive hearing loss and persistent ipsilateral tinnitus occurred she sought medical advice. She was referred to our department for further treatment after a large tumour in the left cerebellopontine angle had been demonstrated by MRI. On admission, the left corneal reflex was absent. There was marked hypoaesthesia of the first two divisions of the left trigeminal nerve and a mild left facial palsy. There was also hypogeusia of the left half of the tongue. Speech was slightly dysarthric. During examination dystonic and choreic movements of the left facial muscles were seen. The dystonic grimacing increased when the patient was being observed. There were also intermittent jerky dystonic head movements with turning of the head to the left, associated with slight elevation of the left shoulder. The facial movement disorder was clearly different from hemifacial spasm. There were no tonic or clonic synchronous contractions of facial muscles and no signs of involuntary coactivation. The patient barely noted the dyskinesias. Audiometry showed a hearing threshold at 30 Db on the left side and lack of stapedius reflex on the left side. Oculovestibular response to caloric stimulation was

(A) Axial T2 weighted SE MR images of a 32 year old woman with left sided cervicofacial dyskinesias show a large left petroclival meningioma compressing the brainstem. (B) Coronal inversion recovery MR scans demonstrate marked displacement and distortion of the brainstem due to the petroclival meningioma. (C) Gadolinium enhanced axial T1 weighted SE MR scans 3 months postoperatively show complete removal of the tumour and normalization of the displacement of the brain stem.
decreased on the left side. Furthermore, there was mild left dystylochokinesia.

Neurography of the facial nerve was normal on both sides. Needle myography of the left frontalis and orbicularis oculi did not show signs of denervation.

An MRI study showed a large gadolinium enhancing tumour within the left cerebello-pontine angle extending to the cavaux Meckeli with marked displacement of the brainstem to the contralateral side (figure A and B). Cerebral angiography showed a discrete blush of the tumour as typically seen in meningiomas. The tumour was totally removed by a combined transpetrosal supratentorial and infratentorial presigmoidal approach. The postoperative course was uneventful and there were no new deficits. The facial palsy improved slightly as well as the trigeminal hypeaesthesia. Auditory remained unchanged. Postoperative imaging showed no residual tumour and the displacement of the brain stem within the posterior fossa had resolved (figure C). Marked improvement of the left sided craniofacial dyskinesias occurred during the next weeks.

The postoperative improvement of the dystonic and choreic grimacing and the cervical dystonia indicates a causal association between the pontocerebellar meningioma and the segmental hyperkinetic movement disorders. Such a relation is sustained also by the absence of a family history of movement disorders and the absence of previous exposure to neuroleptic medication. Hyperkinetic movement disorders due to tumours of the brainstem or of the posterior fossa have been reported only rarely. Asymmetric blepharospasm was recently found in a patient with an ipsilateral mesencephalic cyst.1 Hemifacial spasm was seen in pontocerebellar neoplasms, meningiomas, and epidermoid tumours of the cerebellopontine angle.2 Acoustic neuromas and anaplastic pontocerebellar glioma can be associated with facial myokymia and spas tic parietal facial contractures.3 Also, cervical dystonia due to tumours of the cerebellopontine angle have been reported recently.4

The pathophysiological mechanisms responsible for dystonic movement disorders caused by structural or functional lesions of the brainstem are not fully understood. The possibility of denervation supersensitivity of cranial nerve nuclei has been proposed previously. Alternatively, enhanced excitability of brainstem interneurons has been suggested. This pathophysiologic mechanism is supported by the findings of blink reflex studies in patients with blepharospasm, spasmodyc dysphonia, and cervical dystonia. Tolosa et al found significantly less inhibition of the test stimulus polysynaptic late response and marked enhancement of the recovery curve of the late response under such conditions compared with the response in healthy subjects.5

Our case provides further evidence that functional impairment by compression and distortion of the brain stem may induce hyperkinetic cervicofacial movement disorders. It is not supported also to know that such movement disorders are accessible to surgical treatment of the underlying pathology. Therefore, patients with cranial or cervical dystonia or choreic dyskinesia should undergo MR imaging to rule out a surgically treatable cause.

THOMAS POHLE JOACHIM K KRAUSS
Department of Neurosurgery, Inselspital, University of Bern, Berna, Switzerland

JEAN-MARC BURGUNDY
Department of Neurology

Correspondence to: Dr J K Krauss, Department of Neurosurgery, University Hospital, Klinikum, Mannheim, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
email joachim.krauss@nch.ma.uni-heidelberg.de

Acute multifocal cerebral white matter lesions during transfer factor therapy

Transfer factor is an active substance of unknown specific present in dialysable leucocyte extract which is assumed to transfer cell mediated immunity in an antigen specific fashion.1 The mechanisms of action of transfer factor are still far from clear; in vitro dialysable leucocyte extract increases macrophage activation and interleukin (IL) 1 production and enhances leucocyte chemoattrax and natural killer function. Transfer factor has been reported to stimulate the cell mediated antigen specific response in patients with various infections2; therefore, treatment with transfer factor has been suggested in patients with selective deficits in cell mediated immunity such as refractory neoplasms and chronic infections. Moreover, it has been used in the treatment of uveitis.3 Administration of dialysable leucocyte extract has been found to be freely of hypersensitivity, long lasting side effects, or complications, except for transitory hyperpyrexia.4

We report on a patient in whom multiple cerebral white matter lesions developed after taking dialysable leucocyte extract orally for uveitis. A 28 year old man was admitted to hospital because of headache, mental confusion, and right hemiparesis. He had recurrent bilateral uveitis from the age of 12 to 14 with right eye involvement. In January 1995 retinal vasculitis was diagnosed at fundoscopy and in July 1995 he started oral transfer factor as dialysable leucocyte extract twice a week. He complained of generalised weakness after the second dose and the referring symptoms developed after the third dose.

Neurological examination on admission showed mental confusion and severe right spastic hemiparesis with right Babinski's sign. No fever or meningismus were present.

Laboratory examinations on admission showed a slight increase in total serum protein (8.4 g/l, normal 6.0–8.0 g/l), although the serum protein pattern was normal, antistreptolysin tittes (355 UI/ml, normal <200 UI/ml), and antipapillar IgG (30 UI/ml, normal <12 UI/ml). Negative results were obtained for HIV and hepatitis B and C infection as well as for common cerebrospinal fluid analysis, syphilis, and anaplastic Langerhans cell histiocytosis. A final brain CT scan was normal.

The close temporal relation between assumption of dialysable leucocyte extract therapy and appearance of cerebral white matter lesions in our patient supports the possibility that the association of the two events might not be casual. Despite the absence of biopsy, we reasonably excluded...
The diagnosis of vasculitis or neuro-Bechterew's disease although in the absence of biopsy. In fact, the clinical, laboratory, and MRI findings were not typical and a low titre of anticardiolipin antibodies is found in 2% of healthy subjects. The occurrence at different time of focal cerebral white matter lesions highly supports the diagnosis of multiple sclerosis, but some clinical and laboratory findings in the our patient are not typical for this condition. Mental confusion is not common at the onset of multiple sclerosis whereas it is often found in acute disseminated encephalitis. In addition, CSF without oligoclonal banding argues against a diagnosis of multiple sclerosis, whereas it is commonly found in acute disseminated encephalitis. On the other hand the possibility that acute disseminated encephalitis may recur has been accepted and on the basis of the patient's clinical picture and CSF, we favoured such a diagnosis.

The pathogenic mechanisms underlying the triggering, development, and duration of multiple sclerosis and acute disseminated encephalitis are still far from clear despite the progress made in unravelling them. Some findings suggest that acute disseminated encephalitis and multiple sclerosis lie at the two poles of an autoimmune range, in which autoantigen reactivity is only temporary and direct against a single antigen in acute disseminated encephalitis and multiple antigens in multiple sclerosis.

Although the hypothesis that dialysable leucocyte extract had triggered an autoimmune disorder in our patient cannot be proved, our finding is in line with the report of multiple cerebral lesions after therapy with IL-2 in patients with malignancies or HIV infections.

On the other hand, the fact that acute disseminated encephalitis is often correlated with the administration of foreign proteins, such as during vaccinations or viral infections led us to postulate in this patient a cell mediated immunological mechanism. Therefore, an immunological cross reaction between viral antigens (or other foreign material contained in vaccines) and various parts of the nervous system resulting in acute disseminated encephalitis might have occurred. As already noted, dialysable leucocyte extract contains a multitude of immunostimulating or potentially activating substances so it is impossible to pinpoint which one could have been responsible for the demyelinating effect seen in our patient. This notwithstanding, our finding indicates that neurological surveillance is worthy in patients assuming dialysable leucocyte extract therapy.

FRANCESCO G FOSCHI
LORENZO MARSIGLI
MAURO BERNARDI
Semeiotica Medica, Dipartimento di Medicina Interna, Epatologia e Cardioangiology, Università degli Studi di Bologna, Policlinico Sant'Orsola, via G Massarenti 9, 40138 Bologna, Italy. Telephone 0039 51 308943; fax 0039 51 308966; email: fgfoschi@tin.it

Fahr's disease and Asperger's syndrome in a patient with primary hypoparathyroidism

Abnormal calcium phosphate metabolism has not previously been associated with Asperger's syndrome, a form of pervasive developmental disorder. Nor have symmetric calcifications of the basal ganglia, dentate nuclei and cortex, or Fahr's disease—whether idiopathic or associated with hypoparathyroidism—previously been associated with this handicap. We present the case of a 24 year old man with Asperger's syndrome, primary hypoparathyroidism, and multifocal brain calcifications.

According to medical history, the patient's mother had received weekly injections of Depopovera during pregnancy. A single child born after a normal term delivery, he underwent surgery for an inguinal hernia at 3 weeks. Developmental milestones were only moderately delayed. At 9 months, he rolled instead of crawling. He walked at 15 months, spoke at 2 years with poor articulation, and still speaks in short, unelaborated sentences. His social and language development lagged in grade school and he occasionally got into fights. In late adolescence, antisocial behaviour took the form of shoplifting and repeated long distance calls to pornographic hot lines. As an adult, his social adaptation remains poor: he currently lives with his mother and works irregularly as a dishwasher in a restaurant. He is indifferent, isolated, and resists novelty. He enjoys repetitive and solitary activities such as slot machine games and playing the piano.

Neurological examination showed bilateral hyperreflexia, mild imprediction of fine finger movements, dysgraphaesthesia on sensory testing, and a manneristic gripping handshake. There were no extrapyramidal findings suggesting that acute disseminated encephalomyelitis was likely a manifestation of primary hypoparathyroidism. The child born after a normal term delivery, he had symptoms consistent with hypoparathyroidism—previously associated with Asperger's syndrome, primary hypoparathyroidism, and multifocal brain calcifications.

Brain CT, axial section: dense calcific deposits in the basal ganglia, thalamus, and orbitofrontal cortex consistent with Fahr's disease.

Correspondence to: Dr Francesco Giuseppe Foschi, Semeiotica Medica, Dipartimento di Medicina Interna, Epatologia e Cardioangiology, Università degli Studi di Bologna, Policlinico Sant'Orsola, via G Massarenti 9, 40138 Bologna, Italy. Telephone 0039 51 308943; fax 0039 51 308966; email: fgfoschi@tin.it

Fahr's disease and Asperger's syndrome in a patient with primary hypoparathyroidism

Abnormal calcium phosphate metabolism has not previously been associated with Asperger's syndrome, a form of pervasive developmental disorder. Nor have symmetric calcifications of the basal ganglia, dentate nuclei and cortex, or Fahr's disease—whether idiopathic or associated with hypoparathyroidism—previously been associated with this handicap. We present the case of a 24 year old man with Asperger's syndrome, primary hypoparathyroidism, and multifocal brain calcifications.

According to medical history, the patient's mother had received weekly injections of Depopovera during pregnancy. A single child born after a normal term delivery, he underwent surgery for an inguinal hernia at 3 weeks. Developmental milestones were only moderately delayed. At 9 months, he rolled instead of crawling. He walked at 15 months, spoke at 2 years with poor articulation, and still speaks in short, unelaborated sentences. His social and language development lagged in grade school and he occasionally got into fights. In late adolescence, antisocial behaviour took the form of shoplifting and repeated long distance calls to pornographic hot lines. As an adult, his social adaptation remains poor: he currently lives with his mother and works irregularly as a dishwasher in a restaurant. He is indifferent, isolated, and resists novelty. He enjoys repetitive and solitary activities such as slot machine games and playing the piano.

Neurological examination showed bilateral hyperreflexia, mild imprediction of fine finger movements, dysgraphaesthesia on sensory testing, and a manneristic gripping handshake. There were no extrapyramidal
symptoms. His IQ score was in the low range (WAIS-C=85 at the age of 13; Barbeau-Pinard=82 at the age of 17). He also presented an impairment on the Tower of London test, which measures executive function, and in a task assessing the understanding of other's intentions. These two findings are reliably present in pervasive developmental disorders, in this IQ range. In addition, his performance on the Tower of London test disclosed impaired performance in procedural learning. Psychiatric assessment showed scores above the cut off for autism according to the autism diagnostic interview (ADI), a standardised interview that requires specific training and those administering it to have a 0.90 reliability with other researchers. The subject was positive for the diagnosis of autism, being above cut off values in the three relevant areas of communication, social interactions, restricted interests, and repetitive behaviours. Nevertheless, he did not present delay in language acquisition or morphological atypicalities in language development, which corresponds to DSM-IV criteria for Asperger's syndrome.

Brain CT showed dense calcium deposits in the basal ganglia, thalamus, cerebellar dentate nucleus, and orbitofrontal cortex, consistent with Fahr's disease (figure). Subsequent CT showed increased activity in basal ganglia relative to the cerebral cortex. A fine banded karyotype was normal. Serum calcium was 1.55 mM (normal 2.15–2.55 mM), phosphate 1.69 mM (normal 0.70–1.34 mM), and serum calcium was 0.80 mM at pH 7.4 (normal 1.19–1.34 mM); urinary calcium was 0.8 mM (normal 2.5–6.3 mM). Serum parathyroid hormone was below 0.6 (normal 1.0–6.55 MUS), and a nuclear scan of the parathyroid glands showed an absence of activity. With a combination of vitamin D3-calcium supplementation and cognitive-behavioural therapy, serum calcium, and phosphate concentrations normalised and his behaviour improved marginally.

Asperger's syndrome is a subtype of pervasive developmental disorder of unknown aetiology. Evidence for involvement of specific brain regions in pervasive developmental disorders is scarce and inconclusive. Although the tempo-orbital region is the most often involved in pervasive developmental disorders abnormal functioning of the frontal lobes is suspected from replicated findings of executive function deficits and from occasional findings of frontal hypometabolism or abnormal macroscopic brain morphology. Abnormal cell counts and morphology in the cerebellar hemispheres have also been reported, but the relation of these findings to autism is controversial.

Fahr’s disease consists of symmetric calcifications, located mainly in the basal forebrain and cerebellum, which are of various aetiologies. Cognitive and behavioural abnormalities may be present when calcifications occur early in development. A fortuitous association between pervasive developmental disorders and perinatal asphyxia, given the paucity of published cases, is plausible in the presented patient. Nevertheless, our case suggests that abnormal phospho-calcium metabolism could produce an autistic syndrome when brain calcifications cause specific neuropsychological deficits, due to their localisation. For example, errors of social judgement may be related to calcifications of the orbitofrontal cortex, whereas dysfunction of frontal-basal ganglia circuits may contribute to repetitive and ritualistic activities. Additionally, developmental lesions of the basal ganglia and cerebellum may contribute to the abnormalities of sensory attention, procedural learning, and motor intention in this patient.

The finding that the clinical picture of autism can be found in a wide range of medical conditions giving rise to organic brain dysfunction is not new, but the relation between these conditions and autism is often considered meaningless. By contrast, this case, similarly to some others, suggests that dysfunction in key brain circuits may result in behavioural and cognitive abnormalities currently indistinguishable from idiopathic pervasive developmental disorder. This case also suggests that careful biological assessment of this group of patients may disclose focal brain lesions associated with identifiable cognitive deficits. Could these clinical coincidences be instructive for a neurodevelopmental model of autism?

Hypertrophic atlantoaxial ligaments: an unusual cause of compression of the upper spinal cord

The craniovertebral junction can be affected by several pseudotumorous masses extradurally located, such as rheumatoid panus, hypertrophic non-union of odontoid fracture, post-traumatic cicatrix, synovial cysts, tumorous calcium pyrophosphate dihydrate crystal deposition, taphooseus gout, calcification of the posterior longitudinal ligament, synovial disease-like pigmented villonodular synovitis, and synovial chondromatosis. Hypertrophy of the atlantoaxial ligaments as a consequence of degenerative disease was recently recognised as an individual entity. Only five previous cases have been published. We add another case to the short series available in the literature, emphasising that as the cause of the spinal cord compression is amenable to surgical removal, symptomatic patients should be diagnosed and treated without delay.

A 66 year old woman presented with a rapid development of progressive spastic tetraparesis and an unremarkable medical history. There was no osteolysis or instability on plain cervical radiography and CT. A bone scan with 99mTc was unremarkable. Magnetic resonance imaging showed a retro-odontoid extradural mass that was homogeneous and isointense on T1 weighted signal, demarcated no enhancement after intravenous gadolinium contrast, and was compressing the upper cervical spinal cord (figure). The laboratory tests were normal, confirming the absence of rheumatoid arthritis, metabolic disease, or gout. Surgical removal via a transoral approach with a minimal bony resection was direct and provided sufficient space to obtain spinal cord decompression. It was followed by a posterior C1-C2 fusion. Macroscopically, the lesion had no capsule and resembled a hypertrophic ligamentum flavum. Microscopically, it was non-inflammatory, hypocellular, and ligamentary pieces found within the mass appeared fibrous and almost disintegrated. The patient regained normal neurological function. Over a 3 year follow up period there was no recurrence.

We focus attention on hypertrophic atlantoaxial ligamentary disease as a degenerative disease that must be considered within the possible causes of high spinal cord compression.

ALEJANDRA TERESA RABADAN
Department of Neurosurgery, Instituto de Investigaciones Médicas "Alfredo Lanari", Facultad de Medicina, Universidad de Buenos Aires, and Equipo de Neurourgía de Buenos Aires, Argentina

GUSTAVO SEVLEVER
Department of Pathology, Clínica Bazaarica, Buenos Aires, and Equipo de Neurocirugía de Buenos Aires, Argentina

Correspondence to: Dr Alejandro T Rabadan, Billinghurst 1976 PB, 1425 Buenos Aires, Argentina. Telephone 0054 1 902 4417;fax 0054 1 903 892;email rabadan @ movi.com.ar

Preoperative sagittal T1 weighted MRI of the cervical spine with gadolinium enhancement. A retro-odontoid and extradural mass displacing the spinal cord is seen at the craniovertebral junction.

Selective hemihypaesthesia due to tentorial coup injury against dorsolateral midbrain: potential cause of sensory impairment after closed head injury

A 63 year old woman who fell off her bicycle had a left temporal region head injury with evidence of initial loss of consciousness of 5 minutes and scalp excoration of that area. On arrival at our hospital 30 minutes later she was alert and oriented. Cranial nerve functions, including extraocular motion and hearing function, were preserved. Pain and temperature sensations of the right side, including her face, showed a 70% decrease compared with the left side; however, position and vibration sensations were normal. Other neurological examinations, including motor function, coordination, and deep tendon reflexes, were normal. The patient's only complaints were left temporal headache and right hemihypaesthesia. Brain CT on admission showed a discrete and linear high density at the left ambient cistern without other intracranial lesions. On the next day CT showed an obscure low density at the dorsolateral midbrain in addition to the previous lesion (figure). Brain MRI, taken 3 days later, demonstrated an intraparenchymal lesion, at the surface of the left dorsolateral midbrain in high intensity on a T2 weighted image. The high intensity lesion corresponding to haematoma on CT was seen in the ambient cistern (figure). Taking both CT scans and MRI into consideration, this case was diagnosed as traumatic midbrain contusion.

The lesion shown in our MR images seemed to correspond to the neurological manifestations of our patient. The mechanism of midbrain injury in our patient was speculated to be due to tentorial coup injury based on MR images. The location of contusion was at the lower dorsolateral midbrain, coinciding with the tentorial edge level. Initiation of injury was the surface of the midbrain; however, due to the proximity of the tentorial edge to the midbrain on the injured side, tentorial contusion to the midbrain supposedly occurred more readily. Brain MRI findings supported the anatomical features of this traumatic coup injury. This injury is not rare in patients with severe head injury, accompanied by other intracranial lesions, and is often caused by lateral displacement of the brain stem relative to the tentorium. It is influenced by congenital variation in the size and shape of the tentorial incisura. The brain stem of the patient with a narrow incisura is more vulnerable to the direct contusive effects than that of a patient with a wider incisura. Therefore, even in minor head injury, this mechanism may occur in patients preconditioned with narrow tentorial incisura, which may have been the case in our patient.

The concept of tentorial coup injury against the midbrain is not new. It usually accompanies various degrees of conscious disturbance and other long tract signs, sensory deficits as well as cerebellar and cranial nerve palsy due to the midbrain lesion or other associated intracranial lesions. The clinical manifestation of our patient may represent one of the mildest forms of the midbrain contusion. The patient was speculated to be due to tentorial coup injury. This injury is not rare in patients with severe head injury. When we see a patient with post-traumatic sensory deficit, the possibility of this tentorial injury should be kept in mind even in minor head injury.

The MR images in our case showed a discrete lesion at the dorsolateral midbrain. Topographical study at this lower midbrain level showed that the lateral and ventral spinothalamic and ventral trigeminothalamic tracts pass at the surface of this level by carrying a superficial somatosensory input. The lesion shown in our MR images seemed to be localised to these tracts. The medio-lateral lemniscus for the deep sensation and lateral lemniscus and nucleus of inferior colliculus associated with hearing function from ventral to dorsal to these tracts, respectively, which were seemingly spared in our patient. The topographical anatomy seemed to correspond to the neurological manifestations of our patient.
CORRESPONDENCE

Toluene induced postural tremor

We read with interest the article by Miyagi et al and comment on the medical treatment of toluene induced tremor. Microdialysis experiments in rats have shown that inhalation of toluene increases extracellular \(\gamma\)-aminobutyric acid (GABA) concentrations within the cerebellar cortex\(^1\) which probably explains why GABA agonists including benzodiazepines (for example, clonazepam) are not very effective in toluene induced tremor and ataxia. Rat experiments also showed a 50% reduction in brain catecholaminergic neurons.\(^2\) Degeneration of certain cerebellar pathways is probably responsible for the loss of this dopaminergic innervation.\(^3\) Dopamine agonists could therefore be of potential interest in the treatment of toluene induced tremor. This hypothesis was explored in a recently described case,\(^4\) which showed remarkable clinical and iconographic similarities with that described by Miyagi et al: (a) long history of chronic toluene inhalation, (b) marked postural tremor, (c) progressive worsening of the symptoms despite abstinence from inhalant misuse, and (d) mild cerebral atrophy and marked low signal intensity in globus pallidi, thalami, red nuclei, and substantia nigrae on T2 weighted MRI. As such, this case provides the basis for the potential use of dopamine agonists in toluene induced tremor.

Nabbout et al have attempted to identify the risk factors for the progression of subependymal nodules into giant cell astrocytomas (SEGAs) in tuberous sclerosis complex. In attempting to develop screening strategies that avoid iatrogenic morbidity, patient inconvenience, and excess cost, it is essential that the natural history of these lesions in the general population of patients with tuberous sclerosis complex be understood.

We think that there are two problems with this study that should make the physician cautious about accepting the factors identified by Nabbout et al as a basis for a screening programme. The first is that this study was performed in a population that had been referred to a tertiary medical centre, and then had been further selected by virtue of having had at least 3 years tertiary centre follow up and needing two MR scans of the head. The prevalence of astrocytomas and risk factors, and hence the positive predictive value of any screening tool, in the general population of patients with tuberous sclerosis complex is likely to be different from those described in the highly selected group studied in this paper. The second point is that the authors have made a potentially misleading decision to exclude more than half their study sample because they do not have lesions close to the foramen of Monroe. It is not certain that all SEGAs arise from lesions close to the foramen. They may arise in the fourth ventricle. Furthermore, the late presentation of patients with tuberous sclerosis complex is likely to be distinctive.

We read with interest the article by Sasaki et al concerning the atypical form of amyotrophic lateral sclerosis (ALS). The pattern of muscular atrophy in these patients differed from that of typical ALS in that severe muscle involvement was confined to the upper limbs, predominantly the proximal and shoulder girdle, sparing the face and the legs until late in the disease's course or until the terminal stage.

Over the past few years, we have noticed a growing interest in the renaming of this clinical form of ALS, which has its origins and predomination in the proximal muscles of the upper limbs and little or no effect of either a bulbar nature or in the lower limbs. Thus Hu et al coined the term flail arm syndrome, to describe a subgroup of patients affected by ALS that predominantly showed signs of lower motor neuron disease in the upper limbs, without significant functional involvement of other regions on clinical presentation. This subgroup of patients was clinically characterised by the display of progressive atrophy and weakness affecting the proximal muscles in the upper limb muscles in a more or less symmetric manner.

Recently, along these lines, Katz et al described a series of patients affected by an adult onset motor neuron disorder restricted to the upper limbs, with severe proximal and varying degrees of distal involvement, calling it amytrophic brachial diplegia syndrome.

Atypical form of amyotrophic lateral sclerosis: a new term to define a previously well known form of ALS

3 Bjornaes S, Naalsund LU. Biochemical changes in different brain areas after toluene inhalation. Toxicology 1989;49:36.

6 Deutch AY, Elsworth JD, Roth RH, et al. 3-Acetylpyridine results in degeneration of the substantia nigra on T2 weighted MRI. As such, this case provides the basis for the potential use of dopamine agonists in toluene induced tremor.
"man-in-the-barrel" syndrome has even been suggested. Probably all these terms used to define this variation of ALS are synonyms for an older, well known condition, the scapulohumeral form, or the chronic anterior poliomyelitis reported by Vulpian in 1886 and known in Franco-German literature as Vulpian-Bernhardt’s form of ALS. At certain stages of the disease’s clinical course, it is probably difficult to differentiate it from progressive muscular atrophy (PMA). Some authors have said that PMA with late onset scapulohumeral distribution (over 45 years of age) generally leads to ALS as a matter of course.

It behooved us to say that the truth is that this atypical form of amyotrophic lateral sclerosis behaves differently from typical ALS. The comparative study with the rest of the ALS group supplied important clinical findings, such as little or no functional impairment of the bulbar muscles or legs. Hu et al also made four important statistical discoveries. (1) The prevalence of this form of ALS constituted 10% of the ALS group as a whole (p <0.005). (2) The age of onset of this form was similar to the rest of ALS. (3) There was a clear predominance among men (the male/female ratio was 1.5:1 in the total ALS group). (4) There was a longer median survival (a median survival of 57 months compared with 39 months in the ALS group). Some of these patients have a long ALS clinical course, in that they usually preserve ambulatory ability, albeit with gait disorders, for articulation as well as a lingual monoparesis. To assess corticopontocerebellar tract function, Urban et al investigated cerebellar blood flow in patients with isolated dysarthria using HMPAO-SPECT. They concluded that the corticopontocerebellar tract is preserved in isolated dysarthria because of no evidence for cerebellar diaschisis on SPECT. Their SPECT findings on cerebellar blood flow were similar to our results. However, we wonder whether cerebral cortical blood flow was preserved in their patients, because our SPECT study suggested frontal cortical dysfunction in patients with isolated dysarthria in whom transcranial magnetic stimulation induced absent or delayed corticospinal responses at the tongue, the authors ascribed isolated dysarthria to interruption of the corticopontocerebellar tract function, involving the thalamocortical and corticostriatal fibres as well as the corticobulbar fibres. In fact, lacunar infarctions around the internal capsule-corona radiata are likely to underlie these ascending and descending degenerative processes. To assess corticopontocerebellar tract function, Urban et al investigated cerebellar blood flow in patients with isolated dysarthria using HMPAO-SPECT. They concluded that the corticopontocerebellar tract is preserved in isolated dysarthria because of no evidence for cerebellar diaschisis on SPECT. Their SPECT findings on cerebellar blood flow were similar to our results. However, we wonder whether cerebral cortical blood flow was preserved in their patients, because our SPECT study suggested frontal cortical dysfunction as an underlying mechanism of isolated dysarthria. Lingual atrophy and muscle wasting, evident in three of seven patients reported by Urban et al, might indicate involvement of the corticobulbar fibres.
Okuda et al draw attention to their article on pure dysarthria in Stroke1 which we read with much interest. They refer to 12 patients with pure dysarthria, 11 of whom showed multiple bilateral infarctions involving the internal capsule and corona radiata. The main difference to our series of seven patients is the multiple involvement of the brain. We think that the single lesion collected by us is more appropriate to correlate lesion topography with impaired function. The findings of Okuda et al are in line with our conclusion that interruption of the corticofugal pathway is the pathogenesis of the dysarthria of extracerebellar origin. Obviously, impairment of the corticofugal tract of one hemisphere by a single small lesion is an adequate condition for dysarthria. Inadequate condition for dysarthria is often reduced in the more advanced Huntington’s disease, caused by the degeneration of the striatal region. Obviously, our patients with Huntington’s disease may be characterised by individual differences in the involvement of motor cortical areas. Actually, three patients in our study showed an amount of intracortical inhibition within the confidence limits of the control population. We also think that the impairment of intracortical inhibition is likely to develop during the progression as we did not find any change in four patients, two of them already reported, with positive DNA testing but completely asymptomatic.

The discrepancies between the two studies are more likely to be explained, in part, by some methodological differences. For instance, the amplitude of the control response was larger in our series (approximately 1.0 mV compared with 0.3 mV in the study of Hanajima et al). This may induce a different sensitivity of the test, and the amount of intracortical inhibition in our normal controls is greater (see also) than in the study of Hanajima et al.

When interpreting the results of studies with paired transcranial magnetic stimulation pathophysiologically it should be kept in mind that similar changes of intracortical inhibition have been shown in patients with various movement disorders (focal dystonia, myoclonus, parkinsonism, restless legs syndrome, Tourette’s disorder), but also in different diseases such as amyotrophic lateral sclerosis. We think, however, that the impairment of intracortical inhibition cannot be regarded as the marker of a specific pathophysiological mechanism, but is likely to reflect a non-specific imbalance of inhibitory and facilitatory circuits within the motor cortex.

Motor cortical excitability in Huntington’s disease

We read with great interest the paper of Hanajima et al reporting that intracortical inhibition of the motor cortex is normal in patients with chorea of various origins. At variance with their results we previously found2 a reduced intracortical inhibition in a group of patients with genetically confirmed Huntington’s disease. Hanajima et al suggest that the discrepancies between the two studies may be due to differences in patient selection as they included patients with early stage Huntington’s disease to study the pathophysiology of chorea unaffected by other disorders movement. They postulated that our cases, because of the reported correlation with a dyskinetic rating scale, had a more advanced stage of the disease possibly with coexisting dystonia or rigidity. These assertions deserve some comments. The mean disease duration of our nine patients with Huntington’s disease was 6.2 (4.1) years which is actually shorter than the duration of the six patients reported by Hanajima et al (8.3 (5.9) years). Most of our patients could be considered in an early stage of the disease, the Unified Huntington’s disease rating scale, and none presented dystonia, rigidity, or any other additional movement disorder. In this regard, however, it should be pointed out that bradykinesia is often associated with chorea in patients with Huntington’s disease and may even precede the appearance of choreic dyskinesias.2 Chorea itself is often reduced in the more advanced Huntington’s disease stages.4 It is unlikely, therefore, that any methodological approach can test purely chorea even in the early Huntington’s disease stages. In addition, different mechanisms are involved in Huntington’s disease and other choreas as suggested by the lack of impairment of somatosensory evoked responses and long latency stretch reflexes in the second.4 We were not really surprised at the results of Hanajima et al as we do share their opinion that patients with Huntington’s disease may be characterised by large individual differences in the involvement of motor cortical areas. Actually, three patients in our study showed an amount of intracortical inhibition within the confidence limits of the control population. We also think that the impairment of intracortical inhibition is likely to develop during the progression as we did not find any change in four patients, two of them already reported, with positive DNA testing but completely asymptomatic.

The discrepancies between the two studies are more likely to be explained, in part, by some methodological differences. For instance, the amplitude of the control response was larger in our series (approximately 1.0 mV compared with 0.3 mV in the study of Hanajima et al). This may induce a different sensitivity of the test, and the amount of intracortical inhibition in our normal controls is greater (see also) than in the study of Hanajima et al.

When interpreting the results of studies with paired transcranial magnetic stimulation pathophysiologically it should be kept in mind that similar changes of intracortical inhibition have been shown in patients with various movement disorders (focal dystonia, myoclonus, parkinsonism, restless legs syndrome, Tourette’s disorder), but also in different diseases such as amyotrophic lateral sclerosis. We think, however, that the impairment of intracortical inhibition cannot be regarded as the marker of a specific pathophysiological mechanism, but is likely to reflect a non-specific imbalance of inhibitory and facilitatory circuits within the motor cortex.

10.1136/jnnp.68.1.120

References

The authors reply: We were very grateful for the response of Abbruzzese et al to our paper. We completely agree with their opinions.

The discrepancy between the two studies1,2 may not be mainly due to the different stage of the disease between the two groups of patients. Although the duration of the disease is one factor to judge the disease stage, the severity of the disease (stage of the disease) is also positively correlated with CAG repeat number.

We may have to take CAG repeat number into consideration in comparisons. Unfortunately, however, we have no way to do such comparisons between these two studies. We could say, at least, that the intracortical inhibition was normal even at the same stage of the disease as that of the patients of Abbruzzese et al, if studied with our method.

We also consider that the methodological differences are very important in paired magnetic stimulation. The results strongly depend on the intensities of both a conditioning and a test stimulus. Especially, the intensity of the conditioning stimulus is critical. We have no difficulty in showing normal inhibition, but have much difficulty in showing reduced or absent inhibition because of such marked dependence of the results on the intensities of stimuli. Therefore, we used the intensities of the conditioning stimulus before we confirmed inhibition in studies of patients.3 We used an intensity of 5% less than the active threshold as a conditioning stimulus, a facilitatory effect must often superimpose on the intracortical inhibition. This makes the interpretation difficult. Was the intensity of 80% of the resting threshold below the active threshold in their patients? In our experience, 80% of the resting threshold was sometimes above the active threshold. These factors must be considered in interpreting the results of paired magnetic stimulation.

Such a methodological problem is inherent in human studies because we have no direct way of detecting the threshold of the motor cortex. Our two results must be true. We may have two completely different interpretations of these results. (1) The intracortical inhibition is normal in Huntington’s disease. Abbruzzese et al showed the reduced inhibition because they used a high intensity conditioning stimulus with which the degree of the
intracortical inhibition is often decreased even in normal subjects. The 80% of the threshold for relaxed muscles must correspond to different values relative to the threshold for active muscles in patients from that in normal subjects. (2) The intracortical inhibition is disturbed in Huntington’s disease. This slight abnormality could be detected with their method but not with ours because their method has better sensitivity in detecting an abnormality than ours. Whichsoever is true, the intracortical inhibition must be normal or slightly disturbed in Huntington’s disease.

Critical closing pressure: a valid concept?

Czosnyka et al recently published a study investigating the clinical significance of critical closing pressure (CCP) estimates in patients with head injury. I see problems both with the theoretical foundation of their CCP concept and with the interpretation of their results.

Firstly, the physiological meaning of both formulae of CCP presented (CCP1 and CCP2, respectively) is questionable. The implication of both presented equations is that the instantaneous value of cerebral blood flow velocity (FV(t)) at a given moment t is equal to arterial blood pressure at the given time (ABP(t)) minus CCP divided by cerebrovascular resistance (CVR):

\[FV(t) = \frac{(ABP(t) - CCP)}{CVR} \]

At the time of systolic and diastolic pressure values (ABP, ABPd), respectively, it follows that systolic and diastolic FVs (FVd, FVv) should be equal to (ABPs−CCP)/CVR and (ABPs−CCP)/CVR, respectively. However, it is well known that the vascular resistance valid for the static pressure/flow connection (CVRo), concerning mean pressures and flows) is different from and is in general much higher than resistances determining dynamic pressure/flow relations (CVR1) as in the case of pulsatile pressures. Therefore, equation 1 cannot be applied to describe dynamic flow. This can be best illustrated using the frequency domain approach (ABP=mean pressure; FV=mean flow velocity; A1=amplitude of the pulsatile pressure wave; F1=amplitude of the pulsatile flow wave):

\[FV = \frac{(ABP_{mean} - CCP)}{CVR} \]

Inserting equations 2 and 3 into the frequency domain equation for CCP2 of the authors:

\[CCP2 = ABP - A1/F1 \times FV \]

leads to

\[CCP2 = ABP - CVR1/CCV0 \times (ABP - CCP) = ABP - CVR1/CCV0 + CVR1/CCV0 \times CCP \]

CVR0×CCP

(4)

Obviously CCP2 is only in the case of CVR1×CVR0 equal to CCP. Under the more realistic assumption that CVR1 is equal to about half of CVR0 it follows for CCP2:

\[CCP2 = 0.5ABP + 0.5CCP \]

With decreasing CVR1/CVR0 ratios, CCP2 becomes more and more dependent on ABP and independent of CCP. In any case, without exact knowledge of the CVR1/ CVR0 ratio, equation 4 is useless for a valid CCP calculation.

The second criticism concerns the correlation of the calculated CCP values with mean ABP found by the authors (r=0.5; p<0.05). According to the original idea of Buron,1 CCP represents a certain mean ABP value below which small vessels begin to collapse. CCP should, therefore, be a constant value independent of the actual ABP. On the other hand, this significant correlation can be explained by our equation 5, again indicating the missing physiological basis of the CCP concept of the authors.

Thirdly, it seems doubtful that CCP could be estimated using pressure and flow values from ABP ranges clearly above CCP and flow values clearly above zero flow, respectively. As long as small vessels do not collapse (ABP<CCP) it is not possible to decide whether their actual wall tension is determined more by transmural pressure or by active vasocostriction. However, the relative contribution of both effects is critical for the limit of CCP.

Finally, I would be interested in the authors’ explanation of negative diastolic flow values as seen in Doppler spectra of arteries with a high vascular resistance (peripheral arteries, middle cerebral artery during strong hypocapnia). In the case of ABP<CCP and a small vessel collapse according to the model of the authors, CVR should increase towards CCP and FVv towards zero (equation 1). Negative flow values could, consequently, not occur.

I suggest that the relation between pulsatile pressure and flow should be better described using the concept of different static and dynamic resistances (CVR0 and CVR1). The driving pressure of the mean FV is more accurately given by cerebral perfusion pressure (CPP=ABP−ICP) than by ABP−CCP. Therefore, equation 2 changes to

\[FV = \frac{(ABP_{mean} - ICP)}{CVR0} \]

and equation 5 to

\[CCP2 = ABP - CVR1/CCV0 + CVR1/CCV0 \times CCP \]

Equation 7 explains well the positive correlations found between CCP2 and ABP and between CCP2 and ICP, respectively, without assuming a connection between CCP2 and Burton’s concept of “critical closing pressure”.1

ROLF R DIEHL
Department of Neurology, Krupp Hospital, Alfred-Krupp-Straße, 45117 Essen, Germany

Czosnyka et al reply:

We thank Diehl very much for the interesting letter presenting some mathematical considerations about cerebral haemodynamics.

We need to emphasise that our primary intention was to investigate Burton’s hypothesis in patients with head injury that critical closing pressure (CCP) may be represented by a sum of intracranial pressure (ICP) and the tension in the arterial walls.

\[CCP = ICP + \text{active tension of arterial walls} \]

Aaslid proposed the mathematical formula taken for calculations:

\[CCP = ABP_{mean} - FV_{mean}, ICP_{mean} \]

(ABP and FV are mean values of arterial pressure and MCA flow velocity, ABPs and FVs are systolic values, ABPpp and FVpp are peak to peak amplitudes). A graphical interpretation of this formula has been given in fig 1. CCP is an x intercept point of linear regression between subsequent systolic and diastolic values recorded within 6 second intervals of flow velocity (along y axis) and arterial pressure (along x axis).

In fact, the formula proposed by Michel et al is very similar. The only difference is that instead of the original waveforms of FV and ABP, first (fundamental) harmonic components were taken for the same graphical construction—that is:

\[CCP = ABP_{mean} - FV \]

In our paper we confirmed empirically that both CCP1 and CCP2 produced the same values in a group of patients after head injury, therefore the mathematical consideration of Dichl (equations 1–5) must contain an error?

First of all we cannot see how equation (1) from Diehl’s letter can be derived from any of our formulae. Everyone who has tried to plot momentary values from ABP pulse waveform against momentary values of FV waveform knows that it never plots a straight line (as equation (1) implies). We believe, in fact, clouds of systolic and diastolic values of ABP and FV waveforms (fig 1 in1) one can rather see an elliptical shape which is very seldom regular enough to be approximated by a straight line. Therefore, equation (1) in Diehl’s letter is not correct. In fact, CVR is a frequency dependent variable (represents vascular impedance) and if a linear theory can be applied, division in (1) should be substituted by a convolution with an inverse of Fourier transform of “cerebrovascular admittance”.

Definition of CVR0 as FV/(ABP−CCP) is completely artificial and lacks a physiological basis. It is rather taken from the geometrical interpretation of figure 1 in. In our material equivalent of parameter CVR0 (as defined by Diehl) is 1.007 (SD 031) and CVR1 0.972 (SD 0.29), the difference between both is not statistically significant. Therefore, the suggestion that the CVR1/CCR0 ratio is 0.5 is not correct. Real CVR0 should be calculated as (ABP−ICP)/FV. We fully agree that equation (5) proposed by Diehl is “useless for valid CCP calculation”. We have not used it and have never suggested anyone could do so.

The second criticism was that our CCP positively correlated with ABP. It should not be a surprise. When ABP decreases, vasodilatation occurs and arterial wall tension decreases. Therefore assuming ICP was constant, CCP should decrease. A rather weak (though significant) correlation suggests that not all of our patients vary pressure reactive or ICP was not always constant.

The final issue concerning negative flow velocities is a trap Diehl has prepared for himself. We never suggested that any factor interpretable as cerebrovascular resistance (CVR0 or CVR1) should be involved in the concept of critical closing pressure. From the definition, closing pressure is a strongly non-linear phenomenon, therefore applying linear theory here is very
High frequency stimulation of the subthalamic nucleus and levodopa induced dyskinesias in Parkinson's disease

Reduction in the neuronal activity of the subthalamic nucleus leading to diminished excitation of the globus pallidum internum is associated with chorea-ballism in monkeys.1 Levodopa induced dyskinesias are currently thought to share a similar pathophysiology2 but recent findings also suggest that abnormal patterns of neuronal firing in the globus pallidum internum may be as relevant.3

Correspondence to: Dr Marek Czosnyka

112
Nitrates in Acute Ischaemic Stroke

The pivotal role of nitric oxide (NO) in cerebral ischaemia has been elegantly highlighted in the recent editorial by O’Mahony and Kendall. Although studies of neuroprotective agents have been largely disappointing, pharmacological manipulation of NO may present novel means of protecting the brain from ischaemic insult. One area not discussed in the recent editorial is the neuroprotective effect of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors or “statins” in cerebral ischaemia. Preliminary studies have shown that statins modulate brain nitric oxide synthase (NOS) activity in a neuroprotective manner. Data from a murine model of ischaemic stroke demonstrate that prophylactic statin therapy reduces infarct size by about 30%, and improves neurological outcome in normocholesterolaemic animals. In this investigation, statin therapy directly regulated endothelial NO in the brain without altering expression of neuronal NOS. Recent findings also suggest that statin therapy inhibits ischaemic neuronal NOS. Lovastatin has been shown to inhibit cytokine mediated upregulation of inducible NOS and production of NO in rat astrocytes and macrophages, and this inhibition may represent a mechanism suppressing inflammatory responses that accompany ischaemia. Most interestingly, these preliminary findings suggest that statin therapy may modify the “black-and-white” faces of brain NO in a synergistically neuroprotective manner. These and other vascular effects of statins in cerebral ischaemia are potentially of great importance in human neuroprotection and neurodegeneration. The The Prospective Study of Pravastatin in the Elderly at Risk (PROSPER) study will help clarify their role in human cerebrovascular disease.

CARL J VAUGHAN
Division of Cardiology, Department of Medicine, Weill Medical College of Cornell University, The New York Presbyterian Hospital, Starr 4, 525 E 68th Street, New York, New York 10021, USA

NORMAN DELANTY
Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA

Correspondence to: Dr Carl Vaughan email evaughan@nys.med.cornell.edu

O’ Mahony replies:

The comments of Vaughan and Delanty draw attention to the act of narrating might detract from realistic illusion, so reducing the emotional intensity of what was being represented. It is a device much favoured by postmodern writers, who expose the nature of fictional constructs. The intrusive medical author never dropped out of fashion, although in these days of evidence based prejudice, authorial omniscience might be considered suspect. The authors of this volume are intrusive in a guiding conversational manner that makes this book by far the most readable of the neuroimmunological texts.

The book opens with a highly accessible chapter on immune responses in the nervous system. There follows a chapter that integrates the neurobiology of multiple sclerosis with contemporary issues of aetiology, cell injury, and repair. Next, a chapter on inflammatory demyelinating disease presents the syndromes of isolated demyelination, acute disseminated encephalomyelitis and allied conditions, and some of the syndromes of demyelination that are now accepted as part of the range of multiple sclerosis. The chapters on demyelinating disease are drawn to a close by a discussion of existing and experimental therapies for multiple sclerosis.

The book continues with chapters on paraneoplastic disorders of the CNS, stiff man syndrome, neurological complications of wide variety of pharmacological agents that may have favourable effects on endothelial NOS as stroke preventive therapy. Rather, it is focused on the possible ways of inhibiting neuronal NOS and inducible NOS mediated nitric oxide release after the event of acute stroke. At present, there is no evidence indicating that acute administration of statins in animal models of ischaemic stroke is neuroprotective. Their point about statins and endothelial NOS is interesting, but not relevant to neuroprotective therapy in acute stroke.

DENIS O’MAHONY
Clinical Investigation Unit, Queen Elizabeth Hospital, Edgbaston, Birmingham B15 2TH, UK

BOOK REVIEWS

That neuroimmunology has come of age is demonstrated by the profusion of volumes published on the subject in recent years. This volume focuses on the central nervous system, and aims to satisfy the curiosity of both the efficient clinician faced with a diagnostic conundrum and the experimental immunologist inquiring into the clinical relevance of his findings. At first sight it seems improbable that both of these goals might be achieved in one volume; this book however, succeeds admirably in what it sets out to do, as much as a result of its literary style as its content.

The intrusive authorial voice fell into disfavour in literary circles around the turn of the century because it was thought that it was taking attention to the act of narrating might detract from realistic illusion, so reducing the emotional intensity of what was being represented. It is a device much favoured by postmodern writers, who expose the nature of fictional constructs. The intrusive medical author never dropped out of fashion, although in these days of evidence based prejudice, authorial omniscience might be considered suspect. The authors of this volume are intrusive in a guiding conversational manner that makes this book by far the most readable of the neuroimmunological texts.

The book opens with a highly accessible chapter on immune responses in the nervous system. There follows a chapter that integrates the neurobiology of multiple sclerosis with contemporary issues of aetiology, cell injury, and repair. Next, a chapter on inflammatory demyelinating disease presents the syndromes of isolated demyelination, acute disseminated encephalomyelitis and allied conditions, and some of the syndromes of demyelination that are now accepted as part of the range of multiple sclerosis. The chapters on demyelinating disease are drawn to a close by a discussion of existing and experimental therapies for multiple sclerosis.

The book continues with chapters on paraneoplastic disorders of the CNS, stiff man syndrome, neurological complications of...

Organ transplantation, once medical exota, is now almost routine. In the United Kingdom each year are performed cadaveric organ transplants of about 1800 kidneys (in addition to 160 live kidney donors), 700 livers, and 450 heart/lungs (UK Transplant Support Service). In basic surgical techniques were established at the beginning of the century in canine models. Transplantation of these experiments to humans awaited safe and effective immunosuppression. Until the 1960s, the only forms of immunosuppression were radiation (total body or total lymphoid) and non-selective chemical reagents (benzene and tolune). Then the antiproliferative drug 6-mercaptopurine (or 6-MP) was introduced, shortly followed by a derivative, azathioprine, with improved oral bioavailability. Combined with corticosteroids, these allowed the first human solid organ transplants to be performed: in 1963 the first lung transplant in Mississippi and liver transplant in Colorado. Then in 1967 Christian Barnard captured the world’s imagination with the first heart transplant. His technique has been modified slightly since, but the increasing success of organ transplantation rests mainly on improved immunosuppression with drugs that selectively suppress lymphocytes by inhibiting lymphokinetic generation (cytosporin A, tacrolimus), renal transplantation (sirolimus, leflunomide), or differentiation (15-deoxyspergualin). As a result, over the last 10 years in the United Kingdom, the 1-year survival of grafts has improved from 80% to 90% (kidney), 55% to 75% (liver), and 70% to 90% (heart/lung).

Wijdicks estimates that 10% of transplant patients have a significant neurological complication. The most common being neurotoxicity of immunosuppressive drugs, seizures, and failure to awaken. Yet this is the first text devoted to the neurological aspects of organ transplantation. It is therefore a timely subject in the context of the excellent Blue Books Of Practical Neurology series. Twenty authors contribute (one Dutch, one Swiss, the rest American) to four chapters on the transplant procedures themselves followed by 10 chapters on neurological complications of transplantation including failure to awaken, and psychiatric, neuromuscular and demyelinating complications. Especially useful to the neurologist without much experience of transplantation are the comprehensive chapters on immunosuppressive drugs and the opportunistic infections associated with them (most commonly Listeria monocytogenes, Aspergillus fumigatus, and Cryptococcus neoformans). The peripheral nerve and plexus injuries associated with transplantation are painstakingly described; astonishingly a significant ulnar neuropathy occurs in up to 40% of kidney transplants. The Cincinnati Transplant Tumour Registry has recorded information on 10 813 cancers arising de novo in organ allograft recipients worldwide and here are presented the data in the 300 of these with CNS involvement. This is one for the shelves of any neurologist involved in organ transplantation.

CLARE GALTON

ALASDAIR COLES

Volume nine of the Current Issues in Neurodegenerative Disease series examines the interplay between cerebrovascular disease and dementia, particularly Alzheimer’s disease. Two hundred pages of what are essentially 20 brief review articles comprise this text, sadly without any illustrations. The varied topics in the introduction to each chapter there is a certain sense of deja vu, although on the positive side each contribution is extremely well referenced.

The book is divided into five sections covering the historical concepts of vascular and Alzheimer’s dementias, the arguments for a pure vascular dementia, the role of Alzheimer’s disease in the genesis of dementia after stroke, the contrariness of white matter changes on neuroimaging to dementia, and finally a short section examining practical questions such as the management of stroke in patients with dementia.

Although commencing with their own right, stroke and Alzheimer’s disease do seem to cross paths more often than would be expected by chance alone, and more often than can be explained by the presence of unplayed antithropy and recurrent lobar haemorrhages. Perhaps common genetic factors are responsible and here the APOE alleles are discussed. The comprehensive section on deep white matter lesions seeks to explain the connection further—and convinces the reader that there is still a lot which is not well understood. It is in this section particularly that illustrations are greatly missed. Brief mention is made of other conditions which may produce white matter changes and dementia such as CADASIL, cerebral lupus, and the primary antiphospholipid syndrome.

PETER MARTIN

Evolutionary biologists would probably tell us that the entanglement of stories is due to survival having been dependent on the passing of oral culture from one generation to the next. Information put in narrative form not only delights, but is easily recalled. Stories also construct meaning, using observation, inference, motive, and consequence in a fashion that informs future action. Our experience of the world is constructed around such narratives. They define us as individuals, family members, professionals, and cultural groups.

This book is a series of essays on psychotherapy, psychiatry, and also medicine that sees the awareness and use of narrative in clinical practice as a construct that can both

Childhood Epilepsies and Brain Development is the fruit of a symposium held in 1997 to try and bridge the chasm between those working in the clinic or at the bedside and those in the laboratory. Both groups must collaborate and communicate to improve the management of children (and older patients) with epilepsy.

The book is essentially a collection of monographs of heterogeneous content and style and the result, perhaps not surprisingly, is that some of the component parts are better than the sum. The clinically oriented section will clearly be of particular interest to those who treat children and their families. The chapters on infantile spasms and Lennox-Gastaut syndrome are informative and provide some new but speculative insights into the pathogenesis of spasms. However, it was surprising that severe myoclonic epilepsy of infancy did not merit a specific chapter in view of the unique electro-clinical evolution and natural history of this syndrome. The crucial issue of the cognitive and behavioural sequelae of early and frequent seizures on the immature brain, which is probably of most concern to both clinicians and families, is succinctly addressed in two chapters—although a clear and consistent cause and effect relation remains to be established. The chapters covering basic neurophysiology, neurochemistry, and neuropathology, are erudite and fascinating but at times are barely comprehensible. Further work is needed, including answering the fundamental question—why does the first seizure occur—before the clinician and basic scientist are able to talk the same language—for the benefit of the patient with epilepsy.

The concept of Childhood Epilepsies and Brain Development is innovative and commendable and all chapters of the monographs are interesting and informative, the overall impression is that the individual parts (the chapters) are better than the whole (the book). The lack of an index is a strange omission, perhaps indicating a prolonged editorial atypical absence, and although this militates against it becoming a well-thumbed reference text, the book is an erudite addition to the mossy fibre-like sprouting of the epileptological literature.

RICHARD E APPLETON

Difficult clinical problems in psychiatry come in many forms. Diagnosis often causes difficulty, particularly in cases which demand some assessment of the role of physical illness in symptom formation. Perhaps for most psychiatrists practising in community settings risk assessment comes high on their list of concerns.

Unsurprisingly, given the psychopharmacological expertise of the editors, this book is particularly interested in treatment resistance. The first 6 chapters give excellent reviews of the management of clinically relevant topics—for example, refractory schizophrenia or the difficult panic patient.

The emphasis is very much on pharmacological management.

The second half of the book is more of a mixed bag, both in terms of the areas covered and the quality of the chapters. The last 4 chapters covering all aspects of the assessment and management of anorexia nervosa and chronic fatigue are followed by a thorough review of the pharmacological management of substance misuse. Then come two weak chapters on behavioural disturbances in old age and the violent patient in the community. This last chapter will be of particular interest to community psychiatrists. The editor of this book to all those involved in the care of children and families. The chapters on infantile spasms and Lennox-Gastaut syndrome are informative and provide some new but speculative insights into the pathogenesis of spasms. However, it was surprising that severe myoclonic epilepsy of infancy did not merit a specific chapter in view of the unique electro-clinical evolution and natural history of this syndrome. The crucial issue of the cognitive and behavioural sequelae of early and frequent seizures on the immature brain, which is probably of most concern to both clinicians and families, is succinctly addressed in two chapters—although a clear and consistent cause and effect relation remains to be established. The chapters covering basic neurophysiology, neurochemistry, and neuropathology, are erudite and fascinating but at times are barely comprehensible. Further work is needed, including answering the fundamental question—why does the first seizure occur—before the clinician and basic scientist are able to talk the same language—for the benefit of the patient with epilepsy.

The concept of Childhood Epilepsies and Brain Development is innovative and commendable and all chapters of the monographs are interesting and informative, the overall impression is that the individual parts (the chapters) are better than the whole (the book). The lack of an index is a strange omission, perhaps indicating a prolonged editorial atypical absence, and although this militates against it becoming a well-thumbed reference text, the book is an erudite addition to the mossy fibre-like sprouting of the epileptological literature.

RICHARD E APPLETON

Difficult clinical problems in psychiatry come in many forms. Diagnosis often causes difficulty, particularly in cases which demand some assessment of the role of physical illness in symptom formation. Perhaps for most psychiatrists practising in community settings risk assessment comes high on their list of concerns.

Unsurprisingly, given the psychopharmacological expertise of the editors, this book is particularly interested in treatment resistance. The first 6 chapters give excellent reviews of the management of clinically relevant topics—for example, refractory schizophrenia or the difficult panic patient.

The emphasis is very much on pharmacological management.

The second half of the book is more of a mixed bag, both in terms of the areas covered and the quality of the chapters. The last 4 chapters covering all aspects of the assessment and management of anorexia nervosa and chronic fatigue are followed by a thorough review of the pharmacological management of substance misuse. Then come two weak chapters on behavioural disturbances in old age and the violent patient in the community. This last chapter will be of particular interest to community psychiatrists. The editor of this book to all those involved in the care of children and families. The chapters on infantile spasms and Lennox-Gastaut syndrome are informative and provide some new but speculative insights into the pathogenesis of spasms. However, it was surprising that severe myoclonic epilepsy of infancy did not merit a specific chapter in view of the unique electro-clinical evolution and natural history of this syndrome. The crucial issue of the cognitive and behavioural sequelae of early and frequent seizures on the immature brain, which is probably of most concern to both clinicians and families, is succinctly addressed in two chapters—although a clear and consistent cause and effect relation remains to be established. The chapters covering basic neurophysiology, neurochemistry, and neuropathology, are erudite and fascinating but at times are barely comprehensible. Further work is needed, including answering the fundamental question—why does the first seizure occur—before the clinician and basic scientist are able to talk the same language—for the benefit of the patient with epilepsy.

The concept of Childhood Epilepsies and Brain Development is innovative and commendable and all chapters of the monographs are interesting and informative, the overall impression is that the individual parts (the chapters) are better than the whole (the book). The lack of an index is a strange omission, perhaps indicating a prolonged editorial atypical absence, and although this militates against it becoming a well-thumbed reference text, the book is an erudite addition to the mossy fibre-like sprouting of the epileptological literature.

RICHARD E APPLETON