LETTERS TO THE EDITOR

Acute Optic Neuritis in Australia: a 13 year prospective study

The frequency with which multiple sclerosis develops after an attack of acute optic neuritis varies widely in different series and has been reported to range from 11.5% to 85%. The variability in the findings may relate to different methods of patient selection, diagnostic criteria, geographical factors, duration of follow up, and study design.

A cohort of 82 patients (59 females, 23 males) with uncomplicated ON aged 10 to 50 years (mean 29.2) who were examined neurologically and had visual evoked responses (VERs) performed in our department during the period 1973–83 were re-examined in 1983–85. Twenty six of the patients (32%) had progressed to probable or clinically definite multiple sclerosis during the follow up period of 7–114 (mean 57) months. Female sex, young adult age, and the presence of HLA-B7 or DR2 seemed to increase the risk of developing the disease.

Seventy one of the 82 (87%) (52 females, 19 males) were reviewed in 1991–2; 11 patients could not be traced. Neurological examination was performed on 49; two patients had died with multiple sclerosis and a telephone questionnaire was completed on the remainder. Thirty three (46%, or 40% of the original 82) had developed probable or clinically definite multiple sclerosis after a mean duration of 13.25 years (range 8–29.6 years). Eight cases had developed multiple sclerosis since the previous review. Kaplan-Meier and actuarial methods of assessment,5 and the product-limit method of survival analysis were used to calculate the probability of patients with a first attack of optic neuritis developing probable or clinically definite multiple sclerosis after a follow up period of 7–114 (mean 57) months.

This problem is important clinically as the follow up period of 7–114 (mean 57) months.

The variability in the findings may relate to different methods of patient selection, diagnostic criteria, geographical factors, duration of follow up, and study design.

REPORT OF CASES

Thirty three (46%, or 40% of the original 82) had developed probable or clinically definite multiple sclerosis after a mean duration of 13.25 years (range 8–29.6 years). Eight cases had developed multiple sclerosis since the previous review. Kaplan-Meier and actuarial methods of assessment,5 and the product-limit method of survival analysis were used to calculate the probability of patients with a first attack of optic neuritis developing probable or clinically definite multiple sclerosis after a follow up period of 7–114 (mean 57) months.

The variability in the findings may relate to different methods of patient selection, diagnostic criteria, geographical factors, duration of follow up, and study design.

REPORT OF CASES

Thirty three (46%, or 40% of the original 82) had developed probable or clinically definite multiple sclerosis after a mean duration of 13.25 years (range 8–29.6 years). Eight cases had developed multiple sclerosis since the previous review. Kaplan-Meier and actuarial methods of assessment,5 and the product-limit method of survival analysis were used to calculate the probability of patients with a first attack of optic neuritis developing probable or clinically definite multiple sclerosis after a follow up period of 7–114 (mean 57) months.

This problem is important clinically as the follow up period of 7–114 (mean 57) months. A slow constant rate infusion tests global compliance of the craniospinal axis whereas a fast bolus volume load probably tests compartmental compliance of the container into which the extra volume is added.

This pattern of CSF circulation with low or normal resistance to CSF outflow, increased brain compliance, and very few vasogenic waves is characteristic of cerebral atrophy.

Cranialplasty was carried out as its deteriorating effect was attributed to the “syndrome of trephined” where the brain sinks in, particularly with erect posture and dehydration producing deterioration in conscious level and focal signs. However, 1 month later, there had been no progress in the patient’s condition and repeat CT again suggested progressive ventriculomegaly. The infusion study was repeated. The opening pressure was now dramatically different (10 mm Hg) to the previous study. However, the pulse amplitude (1.5 mm Hg) was increased, and the calculated resistance to CSF outflow was greatly increased to 20 Hg/ml/min, with a normal pressure-volume index of 15 ml. Such a pattern is specific for hydrocephalus. After this test the patient was shunted with a Codman Medos programmable valve (setting 120 mm Hg) ventriculoperitoneal shunt with remarkable clinical improvement, the GCS rose to 14, he began to talk and his spasticity in his arms decreased dramatically. It is obvious why the pressure-volume compensatory reserve (PVR) decreases after cranialplasty, but the interpretation of an increase in the resistance to CSF is not immediately apparent. Two explanations are possible:

The patient had developed an acute hydrocephalus, possibly as a result of traumatic subarachnoid haemorrhage. Cranietomy was a factor allowing compensation of CSF circulation in the early stages. It is difficult to explain what is the nature of such compensation. Shapiro et al attempted to offer an interesting but conceptually difficult hypothesis that the time constant (resistance to CSF outflow x compliance of cerebrospinal space) of cerebrospinal system hydrodynamics has a tendency to remain constant. Therefore, a
mechanistic increase in compliance after craniectomy tends to be followed by a decrease in the resistance to CSF outflow. This process may be reversed after cranioplasty—that is, a decrease in PVI may be followed by an increase in the resistance to CSF outflow.

The second possible scenario is more important for clinical management. A large craniectomy may facilitate irreversible ventricular enlargement over weeks or months. Thus, after cranioplasty, the expanded ventricles may, via the cerebral mantle, obstruct the lumen of the cortical subarachnoid space and increase the resistance to CSF outflow.

This case demonstrates that when the CSF circulation is studied in patients with a large craniectomy the CSF outflow resistance cannot be taken reliably as a guide for shunting. Overnight ICP monitoring or CSF infusion study should be performed after cranioplasty, when CSF circulatory reserve decreases dramatically. Moreover, a prolonged period without a bone flap may encourage ventricular dilatation.

MAREK CZOSNYKA
JO COPEMAN
ZOFIA CZOSNYKA
ROY S M CCNNEILL
CATHERINE DICKINSON
JOHN D PICKARD

Academic Neurosurgical Unit, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK

CT and infusion studies. (A) Scan performed on admission. (B) After right frontal lobectomy and bone flap removal. (C) Four months after injury, before cranioplasty. (F) Infusion test demonstrated low resistance to CSF outflow and increased brain compliance. ICP=mean intracranial pressure; AMP= pulse amplitude of ICP waveform. Constant infusion rate of 1.5 ml/min is indicated by a thick horizontal line. X axis=time. (D) Five months after injury, after cranioplasty. (G) Infusion test demonstrated grossly increased resistance to CSF outflow and normal brain compliance. (E) One month after shunting: normalisation of ventricles. Bicaudate index decreased from 33% to 21% with a decrease in the 3rd ventricle diameter (from 13 mm to 8 mm).
Correspondence to: Dr Marek Czosnyka, Academic Neurosurgical Unit, Box 167, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK email MC141@MEDSCHL.CAM.AC.UK

Diencephalic amnesia and apraxia after left thalamic infarction

Amnesia and apraxia are unusual manifestations of unilateral thalamic lesions. A patient in whom severe amnesia and apraxia were the presenting features of a left thalamic infarct is presented. The findings support the concept that memory and praxis both utilise circuits which include the dominant thalamus.

A 78 year old right-handed Hungarian woman presented with memory loss and disorientation. She had been well and conversed normally with her daughter on the evening before presentation. The next morning, her daughter was alarmed to find her mother’s house in a state of disarray. Dishes were unwashed, lights left on, and doors open. The patient seemed baffled by eating utensils, attempting to scoop food with her knife. Later that morning, she failed to recognise longstanding Hungarian friends. She was unable to recall her address, the name of the city in which she lived, or the names of her grandchildren. She subsequently failed to recognise her family doctor of 7 years. History included non-insulin dependent diabetes, hypertension, hyperlipidaemia, and atrial fibrillation. Medications were digoxin, glibenclamide, and metoprolol. Captopril had been prescribed 4 weeks previously but was ceased 2 days before presentation due to presyncope symptoms. The patient consumed no alcohol. There was no history of cerebrovascular events.

Cognitive functions were examined at the bedside with the assistance of an interpreter, as the patient spoke no English, although she conversed freely in her native Hungarian. She had no recollection of events since emigrating to Australia 50 years previously, gave her correct maiden name, and could not recognise or name her grandchildren, although she recognised her daughter. She acknowledged she was in a hospital, but maintained it was in Budapest and the year was 1947. Although her recollections regarding her early life and wartime Hungary seemed accurate, she confabulated when asked for details of recent events. Short term recall of verbal material and people was poor. The patient was able to name objects such as a pencil and a watch, and obey two and three stage commands. She wrote her name and copied simple designs correctly, and could imitate gestures such as waving goodbye or blowing a kiss. However, she was unable to use eating utensils or a toothbrush, either in pantomime or when provided with the object itself. Movements of the face and limbs were normal, and there were no sensory abnormalities. Knee and ankle jerks were absent bilaterally and both plantar responses were extensor.

General examination revealed atrial fibrillation and mild cardiomegaly.

The patient continued to display severe impairment of antegrade memory. She was reluctant to leave her bed, and quickly became lost unless supervised. She did not recognise familiar staff members and was unable to use ward landmarks to reorientate herself. She required assistance to feed herself, brush her teeth, and shower. When reviewed 3 months later, her memory disturbance and apraxia for simple actions of daily life (such as brushing her teeth) persisted, necessitating care in a supervised environment.

Brain MRI (figure) showed a left anterior thalamic lesion consistent with lacunar infarction and periventricular white matter ischaemic changes. The syndrome of diencephalic amnesia after bilateral medial thalamic lesions typically involves striking disorientation for time, loss of autobiographical information (often extending back for many years), confabulation, and severe antegrade amnesia for verbal and visual material, and poor recognition of familiar faces. These features were well illustrated by our patient, who became “marooned” in an earlier place and time. Amnesia after unilateral thalamic lesions is rare. There is increasing evidence that thalamic lesions interrupt the multiple brain networks which form the anatomical substrate of memory, encompassing the hippocampus, medial temporal structures and cingulate cortices, and overlapping with the language areas of the left hemisphere. The thalamus is activated in retrieval of episodic (autobiographical) and semantic (encyclopaedic) information storage and execution of learned motor tasks, which may reflect its widespread connections with other subcortical and cortical structures.

The patient’s ability to name or identify objects was not tested systematically, but based on the evidence available, it seems likely that her difficulty in utilizing common objects was a manifestation of apraxia for daily tasks rather than, for example, agnosia for the objects involved. Apraxia is a rare manifestation of isolated thalamic lesions. The ability to access stored motor representations is thought to be crucial for normal execution of learned actions. These motor representations are analogous to motor memories. Although praxis is generally regarded as a function of distributed cortical regions in the left hemisphere, apraxia in association with thalamic amnesia has not been emphasised in previous reviews of this syndrome. Involvement of deep hemispheric white matter in association with basal ganglia pathology is thought to be critical for the development of apraxia after lesions of subcortical structures. The conjunction of diencephalic amnesia and apraxia after thalamic infarction in the present case may be interpreted as further evidence that retrieval of episodic, semantic, and motor memories is mediated by overlapping functional networks in the dominant hemisphere.

T2 weighted axial MRI brain slice showing ischaemic infarction of the left anterior thalami and periventricular white matter ischaemic changes.

Transverse myelopathy in the antiphospholipid antibody syndrome: pinworm infestation as a trigger?

The antiphospholipid antibody syndrome is a disorder characterised by the production of autoantibodies directed against negatively charged phospholipids in the cell membrane. Antiphospholipid antibodies have been described in various neurological disorders. It has been generally accepted that viral, bacterial, and parasitic infections can serve as a trigger for autoimmune reactions. Despite the growing knowledge that has accumulated, the relation between parasites and autoimmunity has not been clarified.

Enterobius vermicularis (pinworm) is a nematode rarely found outside the gastrointestinal tract, but allergic reaction due to enterobiasis has been reported. We describe the case of transverse myelopathy preceded by intestinal pinworm infestation in the primary antiphospholipid antibody syndrome. To our knowledge, such an association has not been reported previously. Pinworm therapy was complicated by the Jarisch-Herxheimer reaction manifested by temporary exacerbation of para-AIDS vasculopathic symptoms.

In March 1998, a 40 year old woman who complained of perianal itching noticed the presence of worms migrating from the anus. Three days later itching and numbness involving the legs, and the patient had weakness in the legs. These symptoms progressed over the next 3 days to severe paraparesis and urinary urgency. Her medical history was relevant for three unexplained miscarriages which all occurred in midpregnancies. In the local hospital, she underwent brain and lumbar-sacral spine MRI and findings were normal. Cerebrospinal fluid examination disclosed slightly raised proteins of 670 mg/l, 2 lymphocytes/mm³, oligoclonal immunoglobulin (Ig) G bands were absent. She was treated with methylprednisolone (1 g/day) intravenously for 3 days with subsequent gradual tapering off, which was associated with substantial improvement of motor, sensory, and sphincter disturbances. At the end of April 1998, the patient was transferred to our hospital for further investigation.

On neurological examination showed mild spastic paraparesis, bilateral Babinski's sign, and a Th-12 sensory level. Erythrocyte sedimentation rate was 34. Complete blood count, tests for hepatic and renal function, angiotensin converting enzyme, concentrations of IgG, IgM, IgA, IgE, and immune complexes, screening for antinuclear (HEP-2 cells), anti-thyroid antibodies, antineutrophil cytoplasmic, antimitochondrial, and antiparietal cell antibodies, rheumatoid factor, and the search for antineutrophitic virus and antinuclear antibodies were normal or negative. A venereal disease research laboratory serology test was negative. A medium positive concentration of IgM anticytodiulin antibody was detected, and lupus anticoagulant was negative. Raised titres of serum IgG and IgM anti-GM1 (1:1600 and 1:3200, respectively) and antisulfatide antibodies (1:6400, for both classes) were also demonstrated. Class II human leucocyte antigen (HLA) typing showed the presence of HLA-DRA, DR4, DQ2, and DQ7. Cerebral and thoracic spine MRI were normal. Electromyoneurography was normal.

Because the patient complained of reappearance of worms and perianal itching, a close detailed tape test was performed and diagnosis of enterobiasis was established. Mebendazole was given in a single dose of 100 mg and the next day the Jarisch-Herxheimer reaction occurred, with deterioration of leg spasticity, inability to walk, and development of urinary retention. At that time, low positive IgG ACA was detected. The dose of prednisone was raised to 50 mg/day and slowly tapered off within the next 2 months. Sphincter disturbances resolved in 1 day and motor dysfunction gradually improved with only mild spasticity left.

Diagnosis of antiphospholipid antibody syndrome in our patient was based on the presence of recurrent fetal loss, transverse myelopathy, and raised ACA. The ACA titre was probably lowered by previously administered corticosteroid therapy. There are several reports of transverse myelopathy as a manifestation of antiphospholipid antibody syndrome in the past decade. A potential pathogenic role of antiphospholipid antibodies in transverse myelopathy might be based either on vasculopathy or on interaction with spinal cord phospholipids.

Infection by helminths is universally associated with activation of T helper 2 (Th2)-type cells. Regulatory mechanisms and protective value of antihelminthic Th2 responses, such responses may also be detrimental to the host. The presence of ACA, anti-GM1, and antisulfatide antibodies in our patient suggests a possible response to Entamoeba vermicularis, as it has been shown that nematodes contain cardiolipin, ganglioside GM1, and sulfatides within their complex lipid composition. When parasites share epitopes with host tissue and autoantigens the mimicry may exploit host immune tolerance against a self determinant. Autoimmunity may occur if immune tolerance is overiden in genetically susceptible hosts. It has been proposed that the presence of pathogenic cross reactive autoantibodies could be the basis for the relation between nematodes and autoimmunity. It may be also postulated that Ent amoeba vermicularis stimulated Th2 response which enhanced polyclonal autoantibody production resulting in the presence of ACA, anti-GM1, and antisulfatide antibodies. The association of transverse myelopathy, ACA, and enterobiosis might be purely coincidental, which we assume to be highly unlikely. The finding of different autoantibodies, as well as the isotype switch of ACA, strongly suggests that pinworm infestation in our patient was the “triggering event” heralding ting selective involvement in adult onset cerebral adrenoleukodystrophy.

The appearance of the spinal cord damage caused by ACA in our patient might have been facilitated by the simultaneous effect of anti-GM1 and antisulfatide antibodies. A significant subset of the human anti-GM1 antibodies that reacted with the Gal(b1–3)GalNAc determinant also bound to oligodendrocyto-myelin glycoprotein which is a constituent of the myelin of the CNS. As for antisulfatide antibodies, their presence has been already shown in some diseases affecting the CNS. It is clear that parasitic infections can serve as a trigger factor of autoimmune reactiveness, but the presence of autoantibodies or self reactive T cells is rarely associated with clinical manifestations. They develop only in patients with adequate immunogenetic and hormonal background for autoimmune diseases. In several studies, increased frequencies of HLA DR4, DR7, DR53, and DQ7 were found in patients with antiphospholipid antibody syndrome, and in our patient HLA-DR4 and DR53 were present. Additional studies are necessary to further elucidate the complex mechanisms of involvement of intestinal helminths in the processes of autoimmune activity.

JELENA DRULOVIC
IRINA DJUJMOVIC
NEBORO SLOBOĐAN
IVANA TRIPKOVIC
SLOBODAN APOSTOLSKI
ZVONIMIR LIVIĆ
Institute of Neurology, CCS, School of Medicine, University of Belgrade, Dr Subota 6, 11000 Belgrade, Yugoslavia
MARIJA MOSTARICA STOJKOVIC
Institute of Microbiology and Immunology
BRANKA BONACI
SLADJANA ANDREJEVIC
Institute of Allergology
Correspondence to: Dr J Drulovic, Institute of Neurology, CCS, School of Medicine, University of Belgrade, Dr Subota 6, 11000 Belgrade, Yugoslavia

Radiologically selective visual pathway involvement in adult onset cerebral adrenoleukodystrophy

A case of adult onset cerebral adrenoleukodystrophy is presented with serial MRI showing selective involvement of the visual system with spread of disease along the fibre tracts of this system. Adult onset cerebral adrenoleukodystrophy is the rarest presentation of adrenoleukodystrophy. It may present with various symptoms often including visual impairment. Brain MRI may show multiple areas of symmetric high signal intensity within cerebral white matter, usually affecting the occipital lobes. We present a case of adrenoleukodystrophy, in whom serial MRI demonstrated selective progression of demyelination through the visual pathways.

A thirty year old man presented in May 1996 with a 7 month history of deteriorating vision, slurred speech, incoordination, poor balance, generalised weakness, sleep disturbance, and headaches. His symptoms were worse on the right. He had no symptoms of postural hypotension.

His mother had been shown to be a carrier of X linked adrenoleukodystrophy (XL-ALD). His two older brothers had died of XL-ALD at the ages of 0 and 7 years. In 1993 our patient had been shown to have abnormal serum concentrations of very long chain fatty acids (VLCFAs) and to be a carrier of the XL-ALD gene. At that time he was asymptomatic and had no abnormal peripheral signs. Crohn’s disease had been diagnosed in 1987 after an ileal resection although this had remained in remission.

On examination, visual acuities were 6/12 (right), 6/9 (left). Fields were full to confon-
omination using a finger but there was a left homonymous field defect to a red pin and he had a left afferent pupillary defect. Fundoscopy showed bilateral optic atrophy. The remainder of the cranial nerve examination was normal. In the arms tone and power were normal, but coordination was mildly impaired on the right. The reflexes were exaggerated and Hoffman’s sign was present bilaterally. A palpmomental reflex was present on the right. In the legs power was normal, but tone was increased and there were several beats of ankle clonus; reflexes were exaggerated and plantar responses were upgoing. Coordination was impaired in both legs, his gait was ataxic, and Romberg’s test was positive. He had a minor reduction in vibration sensation at the right ankle; otherwise sensation was normal. He appeared moderately tanned, but there was no other hyperpigmentation. Supine blood pressure was 114/78, falling to 108/80 on standing. The remainder of the examination was normal.

Routine biochemistry was normal. A morning cortisol was 469 nmol/l (normal >160 nmol/l), but a short synacthen test showed an abnormally flat response (serum...
correspondence to: Dr M C Lawden, Leicester Royal Infirmary, Leicester, LE1 5WW, UK

damage, gliosis, and neuronal loss.

ment, surrounded by areas of established response demonstrating contrast enhancement above the fourth ventricle. The characteristic features of the intracerebral optic tracts. The characteristic appearance of ring enhancement.

In May 1996 (figure A) T2 weighted axial imaging showed high signal intensity areas in the region of the right lateral geniculate nucleus and left optic tract. The occipital white matter was normal. T1 weighted images with gadolinium contrast enhancement (figure B) showed bilateral enhancement of the optic radiations. By October 1996 (figure C) T2 weighted axial imaging showed spread of the areas of high signal intensity continuously from the lateral geniculate nuclei posteriorly along the optic radiations into the white matter of both occipital lobes, more prominent on the right. T1 weighted images showed contrast enhancement in the optic chiasm and optic tracts (figure D), lateral geniculate nuclei, origins of the optic radiations, and right occipital white matter (figure E).

By August 1997 (figure F) there had been further progression in the white matter changes in both occipital lobes, with spread to the splenium of the corpus callosum. Contrast enhancement (figure G) was seen in the optic radiations and right occipital white matter. The cerebellar white matter was of low signal intensity with a small area of contrast enhancement above the fourth ventricle to the right of the midline.

In May 1998 (figure H and I) the changes in white matter were yet more extensive with the appearance of ring enhancement.

Our case illustrates MRI appearances typical of adrenoleukodystrophy and demonstrates in particular the evolution of these changes with time. The tendency of this condition to affect the visual pathways selectively is well illustrated as is the spread of disease along the fibre tracts of that system. This allowed visualisation of parts of the visual system, the anatomy of which is usually hidden—for example, the intracerebral portion of the optic tracts. The characteristic MRI appearances are thought to result from an advancing front of active demyelination, followed by an area of inflammatory cellular response demonstrating contrast enhancement, surrounded by areas of established damage, gliosis, and neuronal loss.

Golf ball epilepsy

Blunt head injuries may cause epilepsy. We present the cases of four young people whose heads were all subject to contact with golf balls travelling at speed. Each had post-traumatic seizures, three early and one late, despite the apparent absence of post-traumatic amnesia. Although many patients who develop epilepsy recall some type of head injury preceding their first seizure, post-traumatic epilepsy probably accounts for less than 5% of all the epilepsies. There is good evidence that the risk of post-traumatic epilepsy increases with the severity of the injury. Thus, Jennett identified the presence of intracranial haemorrhage, dural laceration, and early post-traumatic seizures as the chief risk factors for late post-traumatic epilepsy. Annegers et al also emphasised that in the absence of a post-traumatic amnesia of 30 minutes or greater, there was no significant increased risk for the development of post-traumatic epilepsy.

From a practical point of view and for medicolegal purposes, it is necessary to decide if a seizure is post-traumatic. As a general rule it may be stated that if the person concerned does not give a history of a post-traumatic amnesia lasting for a significant period of time (an hour or more), and there is no history of a compound or depressed fracture with dural tear, it is reasonable to exclude the possibility that the epilepsy is post-traumatic. However, it is worth noting that this view is based on Jennett’s work and precedes CT. There is no good evidence from a large series to indicate whether findings on acute imaging add anything to the prediction of post-traumatic epilepsy.

D S Farrell
M C Lawden
Department of Neurology, Leicester Royal Infirmary, Leicester, UK

N Messios
Department of Radiology

Correspondence to: Dr M C Lawden, Leicester Royal Infirmary, Leicester, LE1 3WW, UK
Four examples of acute symptomatic seizures and epilepsy developing after head injuries with golf balls are described, which seem to be an exception to these clinical rules.

An 11 year old boy was struck on the right temple by a golf ball resulting in right frontal extradural haematoma with no skull fracture. His consciousness was not impaired until about 3 hours later when he became drowsy and had two focal motor seizures affecting the left arm. He was intubated and ventilated. A head CT showed a right frontal extradural haematoma with no skull fracture (figure A). The haematoma was evacuated (figure B). He was woken and extubated the next day and was discharged without neurological impairment two days later on phenytoin. He has remained seizure free.

A 16 year old boy, who was a keen golfer with a single figure handicap, was struck on the head by a golf ball which rebounded several yards after striking him on the forehead. He experienced local pain, bruising, and swelling. Although he was never unconscious, some 4–5 hours later he developed repetitive jerking of the right face and arm. He was taken to his local casualty department where a diagnosis of serial focal motor seizures was made. His consciousness was then somewhat obtunded. A brain CT was performed which showed a small, discrete, sphenoidal intracerebral haematoma in the left frontal lobe immediately beneath the site at which he had been struck (similar in shape, but more hypertensive than the appearance in the figure B). The haematoma gave the distinct impression of a golf ball embedded in the surface of the cerebral hemisphere!

He was treated with parenteral anti-epileptic drugs and subsequently with thio- pentone requiring ventilation for 48 hours while he was loaded with phenytoin.

He was maintained on phenytoin for 12 months but subsequently this was withdrawn and he has remained seizure free.

A 5 year old girl was struck on the forehead above the right eye by a golf ball struck 10 metres away. On arrival in the accident and emergency department she was fully alert, orientated, and neurologically intact. A lacerration was present but there had been no apparent loss of consciousness or vomiting. However, 90 minutes after the injury she had a generalised tonic clonic seizure lasting 25 minutes. She was intubated and a CT scan showed a very small depressed fracture with minimal haemorrhagic contusion in the cortex of the right frontal lobe (figure C). She was woken and extubated later that day. She has had no further seizures.

A 12 year old boy was practising golf with a friend. He was struck on the front of the head by a golf ball which rebounded a considerable distance after striking him. He did not lose consciousness and had no more than localised pain, tenderness, and bruising at the site of impact. He did not seek any medical advice about the injury. Over the next 4 years he had three well documented tonic-clonic seizures that started out of sleep.

A CT scan 3 years after the original injury showed a small, wedge shaped area of low density affecting the cortex close to the point at which he recalls being struck (figure D).

The heads of these four young people were all subject to contact with golf balls which at club level travel at speeds of up to 130 miles/hour. Each had post-traumatic seizures, three early, one late, despite the apparent absence of post-traumatic amnesia.

Patients 1 and 2 would indicate that this kind of injury is capable of transferring energy across the skull, independent of a skull fracture, to cause an acute extradural or cortical haematoma.3 In patient 4 the lesion identified at a later date by CT is consistent with the late consequences of a localised intracranial haematoma. It therefore seems reasonable to assume that the late epilepsy in patient 4 was also related to the initial golf ball injury.

In the third patient, a minor depressed fracture and contusion was again associated with an early seizure without evidence of intervening impairment of consciousness. It does therefore seem that golf ball injuries are capable of giving rise to both acute symptomatic seizures and late epilepsy without causing post-traumatic amnesia, skull fracture or dural tear. CT evidence, however, would predict the possibility of seizures in these examples in whom the development of post-traumatic epilepsy probably results from the physical properties of golf balls and their ability to transmit considerable mechanical energy at a small site of impact. The problem is one of which spectators on golf courses (and their doctors) should be aware.

DAVID CHADWICK
DANIELA B CLEAR
PAUL ELDIDGE
CONOR MALUCCI

The Walton Centre for Neurology and Neurosurgery, Lower Lane, Liverpool L9 7TJ, UK

Correspondence to: Professor D Chadwick, University Department of Neurological Science, The Walton Centre for Neurology and Neurosurgery, Lower Lane, Liverpool L9 7TJ, UK

1 Hauser WA, Hesdorffer DC. Epilepsy: frequency, causes and consequences. New York: Demos Publications, 1996.

Sensory predominant neuropathy with GM, antibodies, conduction blocks, and orbital pseudotumour

Two male patients developed multifocal sensory neuropathy with high titre IgM anti-GM1 antibodies (up to 1:64 000) and infiltrative orbitopathy. Nerve conduction studies showed multiple motor conduction blocks and evidence of a similar phenomenon in sensory nerves. Both patients deteriorated after corticosteroid administration but benefited substantially from intravenous immunoglobulin therapy. Our findings suggest the existence of a predominantly sensory subtype of multifocal motor neuropathy (MMN) and challenge the accepted motor specificity of anti-GM, antibodies.

Anti-GM antibodies have been implicated in the aetiology of multifocal motor neuropathy (MMN) and are assumed to be specific for this disease when occurring at high titres.1 2 We report on two patients with high titre IgM anti-GM, antibodies and electro-physiological features typical of MMN presenting with severe sensory neuropathy.

Patient 1 was a 40 year old woman who developed asymmetric numbness of limbs and difficulty in performing fine motor movements around the age of 55. Sensory deficits showed a multifocal pattern (multiple mononeuropathy) and involved proximal limb regions, trunk, and face. The course of illness was steadily deteriorating with some episodes of prominent disease progression usually preceded by minor infections. After 10 years he was unable to write, needed assistance for dressing and walking, and complained of diplopia. Neurological examination showed profound sensory and motor sensory modalities in the arms and legs and pseudotumefaction of the fingers and wrist. Deep tendon reflexes were preserved and muscle strength was normal. The patient showed marked pronution and downwards and outwards deviation of the left eye with a complex impairment of all eye movements.

Patient 2, a 68 year old man, reported an insidious onset and gradual worsening of asymmetric sensory and motor dysfunction. He had no apparent impairment of consciousness or dural tear. CT evidence, however, would predict the possibility of seizures in these examples in whom the development of post-traumatic epilepsy probably results from the physical properties of golf balls and their ability to transmit considerable mechanical energy at a small site of impact. The problem is one of which spectators on golf courses (and their doctors) should be aware.

1 Hauser WA, Hesdorffer DC. Epilepsy: frequency, causes and consequences. New York: Demos Publications, 1996.
Nerve conduction studies:

<table>
<thead>
<tr>
<th>Right median nerve</th>
<th>Left median nerve</th>
</tr>
</thead>
<tbody>
<tr>
<td>F wave latency (ms)</td>
<td>Motor conduction block</td>
</tr>
<tr>
<td>SNAP</td>
<td></td>
</tr>
<tr>
<td>3.94/35</td>
<td>+</td>
</tr>
<tr>
<td>3.74/34</td>
<td>+</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Right ulnar nerve</th>
<th>Left ulnar nerve</th>
</tr>
</thead>
<tbody>
<tr>
<td>F wave latency (ms)</td>
<td>Motor conduction block</td>
</tr>
<tr>
<td>SNAP</td>
<td></td>
</tr>
<tr>
<td>3.7/34</td>
<td>+</td>
</tr>
<tr>
<td>3.6/34</td>
<td>+</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Right peroneal nerve</th>
<th>Left peroneal nerve</th>
</tr>
</thead>
<tbody>
<tr>
<td>F wave latency (ms)</td>
<td>Motor conduction block</td>
</tr>
<tr>
<td>SNAP</td>
<td></td>
</tr>
<tr>
<td>5.1/34</td>
<td>+</td>
</tr>
<tr>
<td>5.0/34</td>
<td>+</td>
</tr>
</tbody>
</table>

Antibody titres presented are those before treatment (baseline).

SNAP=sensory nerve action potential; DL=distal latency; NCV=motor nerve conduction velocity in the following segments: median nerve: wrist-elbow (NCV1, normal >50m/s), elbow-axilla (NCV2, normal >55m/s); ulnar nerve: wrist-elbow (NCV1, normal >50m/s), elbow-axilla (NCV2, normal >56m/s); peroneal nerve: ankle-fibula neck (NCV1, normal >42m/s), fibula neck-popliteal fossa (NCV2, normal >41m/s).
These changes are associated with a decrease in cholinergic innervation of the cortex and hippocampus that may or may not correlate with the severity of cell loss in the nucleus basalis of Meynert and mental status. Neocortical cholinergic activity (choline acetyltransferase) is far more severely depleted in dementia with Lewy bodies than in Alzheimer’s disease and Parkinson’s disease, and correlates well with dementia and correlates well with dementia and dementia with Lewy body variant of Alzheimer’s disease (DLB), and age matched controls. Numbers in parentheses are mean age (SD).

Mortality from Parkinson’s disease

The publication of the 10 year mortality data from the Sydney multicentre study of Parkinson’s disease serves as a timely reminder that patients with this condition still die at a rate in excess of their peers despite advances in therapeutics and surgery.¹ This has been lost on many of our colleagues working in this area, both on the clinical and the research fronts. On many occasions at local and national meetings, I have been forced to remind people that levodopa serves as a timely reminder that Parkinson’s disease must consider not only clinical, procedural, and therapeutic issues, but also mortality in the hope of establishing reduced death rates.

Anaphylactoid reaction to methylprednisolone. Is it surprising when pharmacological and immune effects of a drug differ?

Clear reports a case of anaphylactoid reaction to methylprednisolone which developed after starting treatment with interferon β-1b. She states that “allergic reaction to steroids is rare and anaphylactoid reaction to methylprednisolone rarer still with only three reports in the literature.” Her report surprised us as on the week of publication of her case we had a patient with multiple sclerosis who developed an urticarial rash within 15 minutes of commencing treatment with intravenous methylprednisolone. Although we thought this to be an unusual response to methylprednisolone, we were not overly perplexed by the drug’s capacity to induce a presumably IgE mediated immune response. Surely for almost all drugs the pharmacological and immune properties are quite distinct.

I undertook a brief literature search. The database was interrogated using Medline Pubmed and the words “anaphylaxis” and “methylprednisolone”. At least 29 cases of anaphylactoid reaction to methylprednisolone are documented in this simple search. Kamm and Hagmeyer systematically review allergic reactions to corticosteroids in the April 1999 publication of *Annals of Pharmacotherapy*.

Their primary data source is a Medline search from January 1966 to December 1997. They report 36 allergic-type reactions to intravenous corticosteroids, including death in 12 patients suspected to be related to corticosteroid anaphylaxis. Methylprednisolone and hydrocortisone were the most commonly implicated corticosteroids. Is it surprising that the frequency of reporting of anaphylactoid responses to corticosteroids is low? I can see no inherent paradox between the ability of methylprednisolone to bind IgE and its pharmacological anti-inflammatory action. Clear’s speculation about mechanisms by which interferon β may predispose to anaphylaxis may be interesting. However, it is unreasonable to ascribe the anaphylactoid response to methylprednisolone to interferon β.

M F YOUNG

Department of Neurology, Royal Victoria Hospital, Grosvenor Road, Belfast, Northern Ireland, UK

Correspondence to: Dr J P McConville, 10 Shorts Close, Oxford OX1 7PG

Clear replies: Mea culpa! The disparity in yield of our literature searches reflects different search strategies. These are often problems in electronic search systems. It is still reasonable to state, though, as Van den Berg and Van Eikema Hommes do in their report, that anaphylactoid reaction to methylprednisolone is rare. Few clinicians have come across it.

I believe that it is unreasonable to ascribe the anaphylactoid response to methylprednisolone without adverse effect had.
anaphylactoid reactions to the drug soon after the introduction of interferon β, and that such an unusual event should alert us to the possibility that interferon β may have paradoxical effects. If we see only what we expect to see we run the risk of missing the truth. DANIELA CLEAR University Department of Neurological Surgery, Liverpool, UK

BOOK REVIEWS

This slim volume is the result of a small meeting held towards the end of 1997 by a largely European group of scientists designed to explore recent advances in the treatment of some neurodegenerative conditions. The result is a highly eclectic collection of short chapters ranging from the general to highly specific, which overall makes the book hard to follow and thus recommend. For example the second chapter discusses a whole variety of different types of myelin mutant mice, whereas three chapters later we are treated to a discussion on the inhibitory effects of apomorphine on the proliferative potential of a Chinese hamster ovary cell line. In addition the book tends to leap from clinical to scientific topics with no obvious linking sections; thus we move from a discussion on the newer dopamine agonists to others on animal models of multiple system atrophy and their treatment by neural transplantation. Indeed, the book, by presenting short, largely unrelated topics, suffers from being misleading to the uninhibited reader. For example it begins with a chapter on neural precursor cells isolated from the rat spinal cord and their differentiation potential. This is one of the current areas of greatest interest given the potential of these cells for repairing the damaged and diseased CNS. However this chapter, while, giving an insight to the field is bereft of companion chapters, and so it is not obvious to the newcomer how this chapter relates to embryonic stem (ES) cells, neural precursor cells from other mammalian species as well as those isolated from the adult CNS. Furthermore, it is not clear how the conclusion of this chapter relates to the section on the use of human embryonic stem cells in the field of neural regeneration and their potential application in the treatment of human neural disorders.

Overall, although the book presents a series of short unrelated articles that often contain biases and no overall context for interpretation, it is of use to people familiar with the field of restorative neuroscience, but even then it is only often in summarising small islands of work, rather than to those not familiar to the field, this book will be misleading and hard to follow, and as result it is unlikely to appeal to many neurologists or neuroscientists. ROGER BARKER

What I liked most reading through the Shiloh, Nutt, and Weizman’s Atlas of Psychiatric Pharmacotherapy is its completeness. It is indeed a must for any basic and clinical psychopharmacologist, divided into four main sections: basic principles of psychiatric pharmacotherapy, abused substances, drug interactions, and treatment strategies. As a basic science researcher, I like the fact that these authors succeed, in the first section, in the very difficult task of translating complex biochemical mechanisms into concise pictures and legends. I particularly like those on second messenger/signal transduction pathways, as these are rare to find and difficult to understand in other books. Switching to more specific psychopharmacology topics, the tables explaining the mechanisms of action of the various drugs are also well made and updated. For example, the tables illustrating the mechanisms of action of antidepressant drugs go beyond the “catecholamine hypothesis” into explaining the effects, at the genomic level, on the synthesis of growth factors. There is also a great deal of information on the side effects of psychotropic medications, including the pharmacological mechanisms involved. In this regard, basic principles describing sexual dysfunctions are particularly useful, as they describe the physiology and the pharmacology of sexual functions in both males and females. Moreover, the authors indicate whether the advised biological treatments, but recommend, where possible, where appropriate, specific psychopharmacotherapies. Also, the authors indicate whether the advised treatment have clear cut, partial, or only anecdotal support from scientific literature.

So far, so good. What is the problem? The authors say in the Introduction that this book is written, first and foremost, for the clinician who is required to… decide efficiently about options for biological treatments”. A second target is “students in other fields—for example, pharmacology, psychology, and neuroscience”. Unfortunately, one possible problem of this book is that the tables, figures, schemes, and algorithms may be too complex for it to be used as a “quick reference by the busy clinician seeking somebody without prior knowledge of the topic. It is possible, therefore, that the book could not reach these two stated target audiences. However, it is well suited to be used in “various academic spheres” (the third stated target). In an academic setting, this book will be used as a teaching tool or as a consultation book to find important data that are not readily available from other sources. Also, the book also has two other minor shortcomings: the absence of an index and some misspellings.

In summary, the Atlas of Psychiatric Pharmacotherapy is clearly the result of a detailed and updated revision of the literature in all fields of psychopharmacology, from basic science to treatment of rare psychiatric conditions. It may be too complex to be used as the main or only source of knowledge by a student or by a clinician involved with everyday clinical practice, but is definitely a must for those academics involved in psychopharmacology teaching or research. Also, departmental or medical school libraries should buy this book, because it will be used by those doctors and students who are looking for an answer to specific or difficult psychopharmacology questions.

CARMINE M. PARIANTE

CORRECTION

Sheppard DM, Bradshaw JL, Mattingley JB, Lee P. Effects of stimulant medication on the lateralisation of line bisection judgements of children with attention deficit hyperactivity disorder. J Neurol Neurosurg Psychiatry 1999;66:57–63. In this paper paragraphs 2 and 3 were wrongly ascribed the legends for figs 4 and 5 and figs 4 and 5 were given the legends for figs 2 and 3.