Acute Optic Neuritis in Australia: a 13 year prospective study

The frequency with which multiple sclerosis develops after an attack of acute optic neuritis varies widely in different series and has been reported to range from 11.5% to 85%. The variability in the findings may relate to different methods of patient selection, diagnostic criteria, geographical factors, duration of follow-up, and study design.

A cohort of 82 patients (59 females, 23 males) with uncomplicated ON aged 10 to 50 years (mean 29.2) who were examined neurologically and had visual evoked responses (VERs) performed in our department during the period 1973–83 were re-examined in 1983–85. Twenty six of the patients (32%) had progressed to probable or clinically definite multiple sclerosis during the follow up period of 7–114 (mean 57) months. Female sex, young adult age, and the presence of HLA-B7 or DR2 seemed to increase the risk of developing the disease.

Seventy one of the 82 (87%) (52 females, 23 males) with uncomplicated ON aged 10 to 50 years (mean 29.2) who were examined neurologically and had visual evoked responses (VERs) performed in our department during the period 1973–83 were re-examined in 1983–85. Twenty six of the patients (32%) had progressed to probable or clinically definite multiple sclerosis during the follow up period of 7–114 (mean 57) months. Female sex, young adult age, and the presence of HLA-B7 or DR2 seemed to increase the risk of developing the disease.

Multiple sclerosis in 15 years is comparable with that of 57% in 11.6 years in the United Kingdom, 41% in 20 years in the United States, and 45% in 15 years in Sweden.

JANE A FRITH
JAMES G MICLEOD
Institute of Clinical Neurosciences, University of Sydney and Royal Prince Alfred Hospital, Sydney, Australia
MARIJES HELY
Department of Neurology, Westmead Hospital, Sydney, Australia

Correspondence to: Professor J G McLeod, Department of Medicine, University of Sydney, NSW 2006, Australia email rachelp@med.usyd.edu.au

Clinical features of patients with optic neuritis (ON)

<table>
<thead>
<tr>
<th>ON</th>
<th>ON-multiple sclerosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (y):</td>
<td>≤20</td>
</tr>
<tr>
<td>Sex:</td>
<td>Males</td>
</tr>
<tr>
<td>ON Type:</td>
<td>Single</td>
</tr>
<tr>
<td>Bilateral</td>
<td>4</td>
</tr>
<tr>
<td>HLA Type*:</td>
<td>DR2+</td>
</tr>
</tbody>
</table>

*Four subjects not typed.

A 44 year old man fell downstairs and was admitted with a Glasgow coma score (GCS) of 4. Brain CT disclosed an intracerebral haematoma, which required a right frontal lobectomy and decompressive craniectomy to control raised intracranial pressure. Five months later he remained severely disabled with deteriorating GCS and increasing spasticity. Brain CT showed a progressive ventricular dilatation with widening of the cortical sulci. Cranioplasty had been delayed because of persistent problems with infections.

The first lumbar computerised infuson test was performed 5 months after injury to study the patient's CSF circulation. The opening pressure was low (4 mm Hg) with a very low pulse amplitude. An infusion of normal saline at a rate of 1.5 ml/min increased the intracranial pressure (ICP) to a plateau of 12.2 mm Hg within 22 minutes. The calculated resistance to CSF outflow was normal (5 mm Hg/ml/min) and the pressure-volume index was increased to 28 ml (figure).

It is important to mention here that the normal range for the pressure-volume index, calculated from the constant infusion (an inverse of elastance coefficient) is different from the values obtained by the bolus injection. Values below 13 ml indicate a tight brain, from 13 to 23 ml normal compliance and above 23 ml hypercompliance. A slow constant rate infusion tests global compliance of the cranial axis whereas a fast bolus volume load probably tests compartmental compliance of the container into which the extra volume is added.

This pattern of CSF circulation with low or normal resistance to CSF outflow, increased brain compliance, and very few vasogenic waves is characteristic of cerebral atrophy.

Cranioplasty was carried out as his deterioration was attributed to the “syndrome of trephined” where the brain sinks in, particularly with erect posture and dehydration producing deteriorating consciousness level and focal signs. However, 1 month later, there had been no progress in the patient’s condition and repeat CT again suggested progressive ventriculomegaly. The infusion study was repeated. The opening ICP was now dramatically different (10 mg H2O) to the previous study. However, the pulse amplitude (1.5 mm Hg) was increased, and the calculated resistance to CSF outflow was greatly increased to 20 mg Hg/ml/min, with a pressure-volume index of 15 ml. Such a pattern is specific for hydrocephalus. After this test the patient was shunted with a Codman Medos programmable valve (setting 120 mm H2O) ventriculoperitoneal shunt with remarkable clinical improvement, the GCS rose to 14, he began to talk and his spasticity in his arms decreased dramatically. It is obvious why the pressure-volume compensatory reserve (PVR) decreases after cranioplasty2, but the interpretation of an increase in the resistance to CSF is not immediately apparent.

Two explanations are possible:

The patient had developed an acute hydrocephalus, possibly as a result of traumatic subarachnoid haemorrhage. Craniectomy was a factor allowing compensation of CSF circulation in the early stages. It is difficult to explain what is the nature of such compensation.

Shapiro et al attempted to offer an interesting but conceptually difficult hypothesis that the time constant (resistance to CSF outflow x compliance of cerebrospinal space) of cerebrospinal system hydrodynamics has a tendency to remain constant. Therefore, a...
mechanistic increase in compliance after craniectomy tends to be followed by a decrease in the resistance to CSF outflow. This process may be reversed after cranioplasty—that is, a decrease in PVI may be followed by an increase in the resistance to CSF outflow.

The second possible scenario is more important for clinical management. A large craniectomy may facilitate irreversible ventricular enlargement over weeks or months. Thus, after cranioplasty, the expanded ventricles may, via the cerebral mantle, obstruct the lumen of the cortical subarachnoid space and increase the resistance to CSF outflow.

This case demonstrates that when the CSF circulation is studied in patients with a large craniectomy the CSF outflow resistance cannot be taken reliably as a guide for shunting. Overnight ICP monitoring or CSF infusion study should be performed after cranioplasty, when CSF circulatory reserve decreases dramatically. Moreover, a prolonged period without a bone flap may encourage ventricular dilatation.

MAREK CZOSNYKA
JO COPEMAN
ZOPIA CZOSNYKA
ROY S MCCONNELL
CATHERINE DICKINSON
JOHN D PICKARD

Academic Neurosurgical Unit, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK

CT and infusion studies. (A) Scan performed on admission. (B) After right frontal lobectomy and bone flap removal. (C) Four months after injury, before cranioplasty. (F) Infusion test demonstrated low resistance to CSF outflow and increased brain compliance. ICP=mean intracranial pressure; AMP= pulse amplitude of ICP waveform. Constant infusion rate of 1.5 ml/min is indicated by a thick horizontal line. X axis=time. (D) Five months after injury, after cranioplasty. (G) Infusion test demonstrated grossly increased resistance to CSF outflow and normal brain compliance. (E) One month after shunting: normalisation of ventricles. Bicaudate index decreased from 33% to 21% with a decrease in the 3rd ventricle diameter (from 13 mm to 8 mm).
Correspondence to: Dr Marek Czosnyka, Academic Neurosurgical Unit, Box 167, Addenbrooke's Hospital, Cambridge CB2 2QQ, UK email MC141@MEDSCHL.CAM.AC.UK

Diencephalic amnesia and apraxia after left thalamic infarction

Amnesia and apraxia are unusual manifestations of unilateral thalamic lesions. A patient in whom severe amnesia and apraxia were the presenting features of a left thalamic infarct is presented. The findings support the concept that memory and praxis both utilise circuits which include the dominant thalamus.

A 78 year old right handed Hungarian woman presented with memory loss and disorientation. She had been well and conversed normally with her daughter on the evening before presentation. The next morning, her daughter was alarmed to find her mother's house in a state of disarray. Dishes were unwashed, lights left on, and doors open. The patient seemed baffled by eating utensils, attempting to scoop food with her knife. Later that morning, she failed to recognise longstanding Hungarian friends. She was unable to recall her address, the name of the city in which she lived, or the names of her grandchildren. She subsequently failed to recognise her family doctor of 7 years. History included non-insulin dependent diabetes, hypertension, hyperlipidaemia, and atrial fibrillation. Medications were digoxin, glibenclamide, and metoprolol. Captopril had been prescribed 4 weeks previously but was ceased 2 days before presentation due to preysyncope symptoms. The patient consumed no alcohol. There was no history of cerebrovascular events.

Cognitive functions were examined at the bedside with the assistance of an interpreter, as the patient spoke no English, although she conversed freely in her native Hungarian. She had no recollection of events since emigrating to Australia 50 years previously, gave her correct maiden name, and could not recognise or name her grandchildren, although she recognised her daughter. She acknowledged she was in a hospital, but maintained it was in Budapest and the year was 1947. Although her recollections regarding her early life and wartime Hungary seemed accurate, she confabulated when asked for details of recent events. Short term recall of verbal material and people was poor. The patient was able to name objects such as a pencil and a watch, and obey two and three stage commands. She wrote her name and copied simple designs correctly, and could imitate gestures such as waving goodbye or blowing a kiss. However, she was unable to use eating utensils or a toothbrush, either in pantomime or when provided with the object itself. Movements of the face and limbs were normal, and there were no sensory abnormalities. Knee and ankle jerks were absent bilaterally and both plantar responses were extensor. General examination revealed atrial fibrillation and mild cardiomegaly.

The patient continued to display severe impairment of anterograde memory. She was reluctant to leave her bed, and quickly became lost unless supervised. She did not converse normally with her daughter on the evidence available, it seems likely that her difficulty in utilising common objects was a manifestation of apraxia for daily tasks rather than, for example, agnosia for the objects involved. Apraxia is a rare manifestation of isolated thalamic lesions.1 The ability to access stored motor representations is thought to be crucial for normal execution of learned actions. These motor representations are thought to be analogous to motor memories. Although praxis is generally regarded as a function of distributed cortical regions in the left hemisphere, apraxia in association with thalamic amnesia has not been emphasised in previous reviews of this syndrome.1,2 3,4 Impairment of deep hemispheric white matter in association with basal ganglia pathology is thought to be critical for the development of apraxia after lesions of subcortical structures.3 The conjunction of diencephalic amnesia and apraxia after thalamic infarction in the present case may be interpreted as further evidence that retrieval of episodic, semantic, and motor memories is mediated by overlapping functional networks in the dominant hemisphere.5

Brain MRI (figure) showed a left anterior thalamic lesion consistent with lacunar infarction and periventricular white matter ischaemic changes. Deficits of anterograde and retrograde memory after thalamic lesions are well recognised.1 The syndrome of diencephalic amnesia after bilateral medial thalamic lesions typically involves striking disorientation for time, loss of autobiographical information (often extending back for many years), confabulation, and severe anterograde amnesia for verbal and visual material.5,a Apraxia of recognition of familiar faces.1 These features were well illustrated by our patient, who became “marooned” in an earlier place and time. Amnesia after unilateral thalamic lesions is rare.1 There is increasing evidence that thalamic lesions interrupt the multiple brain networks which form the anatomical substrate of memory,1 encompassing the hippocampus, medial temporal lobe, and cingulate cortices, and overlapping with the language areas of the left hemisphere.1 The thalamus is activated in retrieval of episodic (autobiographical) and semantic (encyclopaedic) information from long term storage, and execution of learned motor tasks, from which may reflect its widespread connections with other subcortical and cortical structures.

The patient's ability to name or identify objects was not tested systematically. However, on the evidence available, it seems likely that her difficulty in utilising common objects was a manifestation of apraxia for daily tasks rather than, for example, agnosia for the objects involved. Apraxia is a rare manifestation of isolated thalamic lesions.1 The ability to access stored motor representations is thought to be crucial for normal execution of learned actions. These motor representations are thought to be analogous to motor memories. Although praxis is generally regarded as a function of distributed cortical regions in the left hemisphere, apraxia in association with thalamic amnesia has not been emphasised in previous reviews of this syndrome.1,3 Impairment of deep hemispheric white matter in association with basal ganglia pathology is thought to be critical for the development of apraxia after lesions of subcortical structures.4 The conjunction of diencephalic amnesia and apraxia after thalamic infarction in the present case may be interpreted as further evidence that retrieval of episodic, semantic, and motor memories is mediated by overlapping functional networks in the dominant hemisphere.3

Transverse myelopathy in the antiphospholipid antibody syndrome: pinworm infestation as a trigger?

The antiphospholipid antibody syndrome is a disorder characterised by the production of autoantibodies directed against negatively charged phospholipids in cell membranes. Antiphospholipid antibodies have been described in various neurological disorders. It has been generally accepted that viral, bacterial, and parasitic infections can serve as a trigger for autoimmune reactions. Despite the growing knowledge that has accumulated, the relation between parasites and autoimmunity has not been clarified.

Enterobius vermicularis (pinworm) is a nematode rarely found outside the gastrointestinal tract, but allergic reaction due to enterobiasis has been reported.1 We describe the case of transverse myelopathy preceded by intestinal pinworm infestation in the primary antiphospholipid antibody syndrome. To our knowledge, such an association has not been reported previously. Pinworm therapy was complicated by the Jarisch-Herxheimer reaction manifested by temporary exacerbation of parasitic and neurological symptoms. In March 1998, a 40 year old woman who complained of perianal itching noticed the presence of worms migrating from the anus. Three days later itching and numbness involved the legs, and the patient had weakness in the legs. These symptoms progressed over the next 3 days to severe paraparesis and urinary urgency. Her medical history was relevant for three unexplained miscarriages which all occurred in midpregnancies. In the local hospital, she underwent brain and lumbar-sacral spine MRI and findings were normal. Cerebrospinal fluid examination disclosed slightly raised proteins of 670 mg/l, 2 lymphocytes/mm³, oligoclonal immunoglobulin (Ig) G bands were absent. She was treated with methylprednisolone (1 g/day) intravenously for 3 days with subsequent gradual tapering off, which was associated with substantial improvement of motor, sensory, and sphincter disturbances. At the end of April 1998, the patient was transferred to our hospital for further investigation.

On examination showed mild spastic paraparesis, bilateral Babinski's sign, and a Th-12 sensory level. Erythrocyte sedimentation rate was 34. Corneal reflex was decreased and the renal function, angiotensin converting enzyme, concentrations of IgG, IgM, IgA, IgE, and immune complexes, screening for antinuclear (HEP-2 cells), anti-di DNA, antineutrophil cytoplasmic, antiphospholipid, and antiparietal cell antibodies, rheumatoid factor, and the search for antineutrophitic virus and antiBorrelia antibodies were normal or negative. A venereal disease research laboratory examination showed negative test for herpes simplex, and the patient had negative test for HIV. Screening for antiGM1 and antisulfatide antibodies, their presence may indicate that pinworm infestation in our patient was the "trigger factor" for the development of transverse myelopathy. Infection by helminths is universally associated with activation of T helper 2 (Th2)-type cells. Recent mechanisms and protective value of antihelminthic Th2 responses, such responses may also be detrimental to the host. The presence of ACA, anti-GM1, and antisulfatide antibodies in our patient suggests a resemblance to E vermicularis, as it has been shown that nematodes contain cardiolipin, ganglioside GM1, and sulfatides within their complex lipid composition.2 When parasites share epitopes with host tissue, such molecular mimicry may exploit host immune tolerance against a self determinant. Autoimmunity may occur if immune tolerance is overridden in genetically susceptible hosts. It has been proposed that the presence of pathogenic cross reactive autoantibodies could be the basis for the relation between nematodes and autoimmunity. It may be also postulated that E vermicularis stimulated Th2 response which enhanced polyclonal autoantibody production resulting in the presence of ACA, anti-GM1, and antisulfatide antibodies. The association of transverse myelopathy, ACA, and enterobiasis might be purely coincidental, which we assume to be highly unlikely. The finding of different autoantibodies, as well as the isotype switch of ACA, strongly suggests that pinworm infestation in our patient was the "trigger event" that increased the production of autoantibodies against cardiolipin and led to the development of transverse myelopathy. The appearance of the spinal cord damage caused by ACA in our patient might have been facilitated by the simultaneous effect of anti-GM1 and antisulfatide antibodies. A significant subset of the human anti-GM1 antibodies that reacted with the Gal[b1–3]GalNAc determinant also bound to oligodendrocyte glycoprotein which is a constituent of the myelin of the CNS. As for antisulfatide antibodies, their presence has been already shown in some diseases affecting the CNS.

It is clear that parasitic infections can serve as a trigger factor of autoimmune reactivity, but the presence of autoantibodies or self reactive T cells is rarely associated with clinical manifestations. They develop only in patients with adequate immunogenetic and hormonal background for autoimmune diseases. In several studies, increased frequencies of HLA-DR4, DR7, and DQ7 were found in patients with antiphospholipid antibody syndrome,3 and in our patient HLA-DR4 and DR53 were present. Additional studies are necessary to further elucidate the complex mechanisms of involvement of intestinal helminths in the processes of autoimmune activity.

Correspondence to: Dr J Drulovic, Institute of Neurology, CCS, School of Medicine, University of Belgrade, Dr Subotica 6, 11000 Belgrade, Yugoslavia

MARIJA MOSTAFAKOVIC
Institute of Microbiology and Immunology
BRANKA BONACI
SLADJANA ANDREJEVIC
Institute of Allergology

Radiologically selective visual pathway involvement in adult onset cerebral adrenoleukodystrophy

A case of adult onset cerebral adrenoleukodystrophy is presented with serial MRI showing selective involvement of the visual system with spread of disease along the fibre tracts of this system.

Adult onset cerebral adrenoleukodystrophy is the rarest presentation of adrenoleukodystrophy. It may present with various symptoms often including visual impairment. Brain MRI may show multiple areas of symmetric high signal intensity within the cerebral white matter, usually affecting the occipital lobes.4 We present a case of adrenoleukodystrophy, in whom serial MRI demonstrated selective progression of demyelination through the visual pathways. A thirty year old man presented in May 1996 with a 7 month history of deteriorating vision, slurred speech, incoordination, poor balance, generalised weakness, sleep disturbance, and headaches. His symptoms were worse on the right. He had no symptoms of postural hypotension. His mother had been shown to be a carrier of X linked adrenoleukodystrophy (XL-ALD). His two elder brothers had died of XL-ALD at the ages of 4 and 7 years. In 1993 our patient had been shown to have abnor mal serum concentrations of very long chain fatty acids (VLCFAs) and to be a carrier of the XL-ALD gene. At that time he was asymptomatic and had no abnormal clinical signs. Crohn’s disease had been diagnosed in 1987 after an ileal resection although this had remained in remission.

On examination, visual acuities were 6/12 (right), 6/9 (left). Fields were full to confront...
tation using a finger but there was a left homonymous field defect to a red pin and he had a left afferent pupillary defect. Fundoscopy showed bilateral optic atrophy. The remainder of the cranial nerve examination was normal. In the arms tone and power were normal, but coordination was mildly impaired on the right. The reflexes were exaggerated and Hoffman’s sign was present bilaterally. A palomental reflex was present on the right. In the legs power was normal, but tone was increased and there were several beats of ankle clonus; reflexes were exaggerated and plantar responses were upgoing. Coordination was impaired in both legs, his gait was ataxic, and Romberg’s test was positive. He had a minor reduction in vibration sensation at the right ankle; otherwise sensation was normal. He appeared moderately tanned, but there was no other hyperpigmentation. Supine blood pressure was 114/78, falling to 108/80 on standing. The remainder of the examination was normal.

Routine biochemistry was normal. A morning cortisol was 469 nmol/l (normal >160 nmol/l), but a short synacthen test showed an abnormally flat response (serum...
cortisol rise from 338 to 449 nmol/l over 1 hour). His plasma VLCFA profile was abnor-
mal consistent with XL-ALD. Humphrey visual field testing demonstrated a left
homonymous field defect. Brain MRI was abnor-
mal (figure A and B). He was placed on a
very low fat diet with supplements of glycerol trioleate oil.

By October 1996 his headaches had settled but his eyesight, memory, coordination, and
walking were worse. Visual acuity was below
6/60 in both eyes. Brain MRI was repeated
(figure C-E). By August 1997 there had been no new clinical developments (MRI figure
F-G). In May 1998 he complained of naviga-
tional difficulties in familiar surroundings,

By August 1997 (figure F) there had been further progression in the white matter
changes in both occipital lobes, with spread
to the splenium of the corpus callosum. Con-
trast enhancement (figure G) was seen in the
optic radiations and right occipital white
matter. The cerebellar white matter was of
origins of the optic radiations, and right
occipital white matter (figure E).

By October 1996 (figure C) T2 weighted axial imaging showed contrast en-
hancement in the optic chiasm and optic
tracts (figure D), lateral geniculate nuclei,
heads were all subject to contact with golf
balls travelling at speed. Each had post-
traumatic seizures, three early and one late,

In May 1996 (figure A) T2 weighted axial imaging showed high signal intensity areas in
the region of the right lateral geniculate
nucleus and left optic tract. The occipital
white matter was normal. T1 weighted
images with gadolinium contrast enhance-
ment (figure B) showed bilateral enhance-
ment of the optic tracts and right lateral
geniculate nuclei posteriorly along the optic
radiations into the white matter of both
occipital lobes, more prominent on the right.

Our case illustrates MRI appearances typi-
cal of adrenoleukodystrophy and demon-
strates in particular the evolution of these
changes with time. The tendency of this con-
dition to affect the visual pathways selectively is well illustrated as is the spread of disease
along the fibre tracts of that system. This
allowed visualisation of parts of the visual
system, the anatomy of which is usually
hidden—for example, the intracerebral por-
tion of the optic tracts. The characteristic
MRI appearances are thought to result from an
advancing front of active demyelination,
followed by an area of inflammatory cellular
response demonstrating contrast enhance-
ment, surrounded by areas of established
damage, gliosis, and neuronal loss.1

3 Wilson WB. The visual system manifestations of
adrenoleukodystrophy. Neuroophthalmology
Adrenoleukodystrophy: correlating MR imag-
ing with CT. Radiology 1987;165:497–504.
5 Loes DJ, Hire S, Moser H, et al.
Adrenoleukodystrophy: a scoring method for
brain MR observations. Am J Neuroradiol
findings in adult-onset adrenoleukodystrophy.
7 Schaumberg HH, Powers JM, Raine CS, et al.
Adrenoleukodystrophy: a clinical and patho-
logical study of 17 cases. Arch Neurol 1975;32:
577–91.

Golf ball epilepsy

Blunt head injuries may cause epilepsy. We
present the cases of four young people whose
heads were all subject to contact with golf
balls travelling at speed. Each had post-
traumatic seizures, three early and one late,

In May 1998 (figure H and I) the changes
in white matter were yet more extensive with
the appearance of ring enhancement.

Our case illustrates MRI appearances typi-
cal of adrenoleukodystrophy and demon-
strates in particular the evolution of these
changes with time. The tendency of this con-
dition to affect the visual pathways selectively is well illustrated as is the spread of disease
along the fibre tracts of that system. This
allowed visualisation of parts of the visual
system, the anatomy of which is usually
hidden—for example, the intracerebral por-
tion of the optic tracts. The characteristic
MRI appearances are thought to result from an
advancing front of active demyelination,
followed by an area of inflammatory cellular
response demonstrating contrast enhance-
ment, surrounded by areas of established
damage, gliosis, and neuronal loss.1

1 Moser HW. Adrenoleukodystrophy: phenotype,
genetics, pathogenesis and therapy. Brain 1997;
120:1485–508.
2 van Gessel RM, Assies J, Wanders RJ, et al. X
linked adrenoleukodystrophy: clinical presen-
tation, diagnosis, and therapy. J Neurol Neuro-
Four examples of acute symptomatic seizures and epilepsy developing after head injuries with golf balls are described, which seem to be an exception to these clinical rules.

An 11 year old boy was struck on the right temple by a golf ball resulting in right frontal scalp contusion. His consciousness was not impaired until about 3 hours later when he became drowsy and had two focal motor seizures affecting the left arm. He was intubated and ventilated. A head CT showed a right frontal extradural haematoma with no skull fracture (figure A). The haematoma was evacuated (figure B). He was woken and extubated the next day and was discharged without neurological impairment two days later on phenytoin. He recovered without any further follow up or yet available.

A 16 year old boy, who was a keen golfer with a single figure handicap, was struck on the head by a golf ball which rebounded several yards after striking him on the forehead. He experienced local pain, bruising, and swelling. Although he was never unconscious, some 4–5 hours later he developed repetitive jerking of the right face and arm. He was taken to his local casualty department where diagnosis of serial focal seizures was made. His consciousness was then somewhat obtunded. A brain CT was performed which showed a small, discrete, spherical intracerebral haematoma in the left frontal lobe immediately beneath the skull at the point where he had been struck (similar in shape, but more hypertensive than the appearance in the figure B). The haematoma gave the distinct impression of a golf ball embedded in the surface of the cerebral hemisphere! He was treated with parenteral anti-epileptic drugs and subsequently with thio-pentone requiring ventilation for 48 hours when he was loaded with phenytoin.

He was maintained on phenytoin for 12 months but subsequently this was withdrawn and he has remained seizure free.

A 5 year old girl was struck on the forehead above the right eye by a golf ball struck 10 metres away. On arrival in the accident and emergency department she was fully alert, orientated, and neurologically intact. A lacrimation was present but there had been no apparent loss of consciousness or vomiting. However, 90 minutes after the injury she had a generalised tonic clonic seizure lasting 25 minutes. She was intubated and a CT scan showed a very small depressed fracture with minimal haemorrhagic contusion in the cortex of the right frontal lobe (figure C). She was woken and extubated later that day. She has had no further seizures and no phenytoin.

A 12 year old boy was practising golf with a friend. He was struck on the front of the head by a golf ball which rebounded a considerable distance after striking him. He did not lose consciousness and had no more than localised pain, tenderness, and bruising at the site of impact. He did not seek any medical advice about the injury. Over the next 4 years he had three well documented tonic-clonic seizures that started out as mild sleep.

A CT scan 3 years after the original injury showed a small, wedge shaped area of low density affecting the cortex close to the point at which he recalls being struck (figure D).

The heads of these four young people were all subject to contact with golf balls which at club level travel at speeds of up to 130 miles/hour. Each had post-traumatic seizures, three early, three late, despite the apparent absence of post-traumatic amnesia.

Patients 1 and 2 would indicate that this kind of injury is capable of transferring energy across the skull, independent of a skull fracture, to cause an acute extradural or cortical haematoma.4 In patient 4 the lesion identified at a later date by CT is consistent with the late-onset concussive haemorrhage in the context of the intracranial haematoma. It therefore seems reasonable to assume that the late epilepsy in patient 4 was also related to the initial golf ball injury.

In the third patient, a minor depressed fracture and contact haematoma associated with an early seizure without evidence of intervening impairment of consciousness.

It does therefore seem that golf ball injuries are capable of giving rise to both acute symptomatic seizures and late epilepsy without causing post-traumatic amnesia, skull fracture or dural tear. CT evidence, however, would predict the possibility of seizures in these examples in whom the development of post-traumatic epilepsy probably results from the physical properties of golf balls and their ability to transmit considerable mechanical energy at a small site of impact. The problem is one of which spectators on golf courses (and their doctors) should be aware.

DAVID CHADWICK
DANIELA B CLEAR
PAUL ELDRIDGE
CONRAD MALUCCI

The Walton Centre for Neurology and Neurosurgery, Lower Lane, Liverpool L9 7IJ, UK

Correspondence to: Professor D Chadwick, University Department of Neurological Science, The Walton Centre for Neurology and Neurosurgery, Lower Lane, Liverpool L9 7IJ, UK

1 Hauser WA, Hesdorffer DC. Epilepsy: frequency, causes and consequences. New York: Demos Publishing, 1996.

Sensory predominant neuropathy with GM, antibodies, conduction blocks, and orbital pseudotumour

Two male patients developed multifocal sensory neuropathy with high titre IgM anti-GM antibodies (up to 1:64,000) and an infiltrative orbitopathy. Nerve conduction studies showed multiple motor conduction blocks and evidence of a similar phenomenon in sensory nerves. Both patients deteriorated after corticosteroid administration but benefited substantially from intravenous immunoglobulin therapy. Our findings suggest the existence of a predominantly sensory subtype of multifocal motor neuropathy (MMN) and challenge the previously reported motor specificity of anti-GM antibodies.

Anti-GM antibodies have been implicated in the aetiology of multifocal motor neuropathy (MMN) and are assumed to be specific for this disease when occurring at high titres.1,2 We report on two patients with high titre IgM anti-GM antibodies and electrophysiological features typical of MMN presenting with severe sensory neuropathy.

Patient 1 was a 38 year old man who developed asymmetric numbness of limbs and difficulty in performing fine motor movements around the age of 45 years. Sensory deficits showed a multifocal pattern (multiple mononeuropathy) and involved proximal limb regions, trunk, and face. The course of illness was steadily deteriorating with some episodes of prominent disease progression usually preceded by minor infections. After 10 years he was unable to write, needed assistance for dressing and walking, and complained of diplopia. Neurological examination showed profound sensory loss in bilateral sensory modalities in the arms and legs and pseudoanesthesia of the fingers and wrist. Deep tendon reflexes were preserved and muscle strength was normal. The patient showed marked protrusion and downwards and outwards deviation of the left eye with a complex impairment of all eye movements.

Patient 2, a 68 year old man, reported an insidious onset and gradual worsening of asymmetric sensory sensory loss. He had no evidence of autonomic nerve or pyramidal tract dysfunction. Tendon reflexes were absent. He had the incomplete left side third nerve paresis and ipsilateral visual loss.

General physical examination was normal in both patients, as were repeated screenings for neoplastic and connective tissue diseases. Enzyme linked immunosorbent assays (ELISAs) showed IgM antibody activity against GM1, asialo-GM1, and GD1a, presumptively recognising the Gal[β1–3)GalNAc group (table). Clonality of ganglioside antibodies was not investigated. Serum immunoelectrophoresis did not show monoclonal gammopathy. All the following laboratory indices were normal or negative: creatinine phosphokinase, erythrocyte sedimentation rate, renal and liver function, antinuclear antibodies, thyroxin, vitamins B12, B6, and folate, acid, urine porphobilinogen, and serum cryoglobulins. Cerebrospinal fluid was acellular with 52 mg/dl and 90 mg/dl protein, respectively (normal <50 mg/dl).

Motor conduction studies showed multifocal slowing of motor nerve conduction velocities and F wave latencies (table). Despite normal muscle strength we found motor conduction blocks at sites not prone to compression. Sensory nerve conduction could not be elicited in the median, ulnar, radial, or sural nerves. Electromyography showed fibrillation activity, generalised fasciculations, and features of chronic neurogenic damage. Magnetic resonance imaging of the brain, spinal cord, and dorsal nerve roots did not show relevant abnormalities. Both patients had nonprogressive orbital infiltration with slight gadolinium enhancement suggestive of ectopic lymphoproliferative tissue. Lesion extension was most pronounced at the apex orbitare and fissura orbitalis superior and caused compression of the left optic and oculomotor nerves in one patient and mechanical interference with eye movements in the other. Analogous orbital infiltration has been described in patients with paraproteinemic neuropathies and antibody mediated autoimmune diseases such as myasthenia gravis and Hashimoto’s thyroiditis.3 Administration of methylprednisolone at dosages of 40 to 60 mg/day was followed by marked deterioration of sensory ataxia in both patients. By contrast, substantial and rapid benefit was achieved by means of intravenous immunoglobulin (IV Ig) therapy.
Nerve conduction studies:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Patient 1</th>
<th>Patient 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right median nerve</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor conduction block</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>SNAP</td>
<td>Absent</td>
<td>Absent</td>
</tr>
<tr>
<td>Right ulnar nerve</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor conduction block</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>SNAP</td>
<td>Absent</td>
<td>Absent</td>
</tr>
<tr>
<td>Right peroneal nerve</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor conduction block</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>SNAP</td>
<td>Absent</td>
<td>Absent</td>
</tr>
</tbody>
</table>

Antibody titres presented are those before treatment (baseline).

<table>
<thead>
<tr>
<th>Antibody titres</th>
<th>Patient 1</th>
<th>Patient 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>IgM GM</td>
<td>1:64000</td>
<td>1:4000</td>
</tr>
<tr>
<td>IgG GM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IgM anti-GM</td>
<td>1:32000</td>
<td>1:8000</td>
</tr>
<tr>
<td>IgG anti-GM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IgM GD1a</td>
<td>1:500</td>
<td>1:32000</td>
</tr>
<tr>
<td>IgG GD1a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IgM GD1b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IgG GD1b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IgM GT1a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IgG GT1a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IgM QG1a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IgG QG1a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IgM sigalide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IgG sigalide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IgG sulfatide</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Antibody titres presented are those before treatment (baseline).

SNAP = sensory nerve action potential; DL = distal latency; NCV = motor nerve conduction velocity in the following segments: median nerve: wrist-elbow (NCV1, normal >50 m/s), elbow-axilla (NCV2, normal >55 m/s); ulnar nerve: wrist-elbow (NCV1, normal >50 m/s), elbow-axilla (NCV2, normal >56 m/s); peroneal nerve: ankle-tibial neck (NCV, normal >42 m/s), tibia neck-popliteal fossa (NCV, normal >40 m/s).

Correspondence

Alterations of muscarinic acetylcholine receptor subtypes in diffuse Lewy body disease: relation to Alzheimer’s disease

The article by Shiozaki et al demonstrating significantly less localization of M2 acetylcholine receptor binding sites in the temporal cortex in dementia with Lewy bodies than in Alzheimer’s disease and different upregulation of the m1 and m2 receptor subtypes suggests differences in the manner of deregulation of the cholinergic system between both dementing disorders that may be of basic and practical therapeutic relevance. The more severe reduction of ChAT activity in the neocortex in dementia with Lewy bodies than in Alzheimer’s disease, the higher upregulation of the postsynaptic m1 receptor in dementia with Lewy bodies, and the higher level of the presynaptic m2 receptor subtype in Alzheimer’s disease suggest a severe depletion of presynaptic projection neurons in dementia with Lewy bodies but their relative preservation or upregulation in Alzheimer’s disease. These data are in line with previous—including personal—findings on cell loss and shrinkage in the cholinergic magnocellular posterior part of the nucleus basalis of Meynert in dementing neurodegenerative disorders. In Parkinson’s disease (brain stem type of dementia with Lewy bodies), cell depletion in the nucleus basalis of Meynert averages 30% to 40% without correlation with age or duration of the illness. It is much higher in demented patients with Parkinson’s disease (similar to Alzheimer’s disease) than in non-demented patients (0% to 40%), who show neuronal loss similar to or only slightly higher than age matched controls. Cell loss in the nucleus basalis of Meynert in non-demented patients with Parkinson’s disease is usually associated with little or no cortical Alzheimer’s disease pathology, whereas in severely demented patients with Parkinson’s disease, heavy cell depletion in the nucleus basalis of Meynert is often, but inconsistently, accompanied by severe cortical neuritic Alzheimer’s disease pathology. By suggesting threshold levels of cholinergic forebrain impairment and deficit for the development of dementia, even more severe depletion of the nucleus basalis of Meynert with 75% to 80% loss of large cholinergic neurons is found in dementia with Lewy bodies (figure). There were no major differences in cell loss in the nucleus basalis of Meynert between dementia with Lewy bodies with “plaque only” Alzheimer’s disease (two cases) and with “true” Alzheimer’s disease (eight cases with Braak stages V or VI). Lewy bodies and neurofibrillary tangles in the nucleus basalis of Meynert neurons were seen in eight brains of patients with Lewy body disease.

These changes are associated with a decrease in cholinergic innervation of the cortex and hippocampus that may or may not correlate with the severity of cell loss in the nucleus basalis of Meynert and mental status. Neocortical cholinergic activity (choline acetyl transferase) is far more severely depleted in dementia with Lewy bodies than in Alzheimer's disease and Parkinson's disease, and correlates well with dementia and nucleus basalis of Meynert pathology (neuron loss, tangles, and Lewy bodies), but not with local cortical pathology. The heterogeneity of degeneration of cholinergic neurons in the basal forebrain and its relative independence from cortical pathology suggests primary involvement of the basal forebrain in Parkinson's disease, by contrast with probable retrograde damage in Alzheimer's disease and dementia with Lewy bodies confirmed by defective retrograde transport of nerve growth factor to the nucleus basalis of Meynert in Alzheimer's disease.

These changes are associated with a decrease in cholinergic innervation of the cortex and hippocampus that may or may not correlate with the severity of cell loss in the nucleus basalis of Meynert and mental status. Neocortical cholinergic activity (choline acetyl transferase) is far more severely depleted in dementia with Lewy bodies than in Alzheimer's disease and Parkinson's disease, and correlates well with dementia and nucleus basalis of Meynert pathology (neuron loss, tangles, and Lewy bodies), but not with local cortical pathology. The heterogeneity of degeneration of cholinergic neurons in the basal forebrain and its relative independence from cortical pathology suggests primary involvement of the basal forebrain in Parkinson's disease, by contrast with probable retrograde damage in Alzheimer's disease and dementia with Lewy bodies confirmed by defective retrograde transport of nerve growth factor to the nucleus basalis of Meynert in Alzheimer's disease.

These morphological differences in the degeneration of the cholinergic forebrain system between various dementing neurodegenerating disorders are, at least in part, supported by the data presented by Shiozaki et al indicating differences between Alzheimer's disease and Parkinson's disease. These and other genetic, morphological, and biochemical differences between the three disorders may strengthen the hypothesis that they represent different nosological entities. This, however, needs further confirmation.

KURT A JELLINGER

Ludwig Boltzmann Institute of Clinical Neurobiology, Vienna, Austria

Mortality from Parkinson's disease

The publication of the 10 year mortality data from the Sydney multicentre study of Parkinson's disease serves as a timely reminder that patients with this condition still die at a rate in excess of their peers despite advances in therapeutics and surgery. This has been lost on many of our colleagues working in this area, both on the clinical and the research fronts. On many occasions at local and national meetings, I have been forced to remind people that levodopa has not normalised mortality rates in this condition.

Figure A indicates, as Hely et al. point out, the fall in standardised mortality rates (SMRs) in the early years of levodopa use but a return to mean SMRs of between 1.5 and 2.0 over the past decade. All of the studies over the past 10 years show a statistically significant difference as the 95% confidence intervals (95% CIs) do not embrace 1. In some, the upper 95% CI overlaps the original Hoehn and Yahr study in the prelevodopa era. These results mirror national mortality statistics for England and Wales (figure B). The fall in death rates in the late 1970s and early 1980s has now returned to a steady rise, thought to be due to the aging of the population. These data must act as a spur to attempts to develop neuroprotective or restorative therapies which substantially reduce mortality from Parkinson's disease. Large pragmatic studies in the future which examine novel treatments or approaches in early Parkinson's disease must consider not only quality of life and health economics issues, but also mortality in the hope of establishing reduced death rates.

C E CLARKE

Department of Neurology, City Hospital NHS Trust, Dudley Road, Birmingham B18 7QH, UK

Anaphylactoid reaction to methylprednisolone. Is it surprising when pharmacological and immune effects of a drug differ?

Clear reports a case of anaphylactoid reaction to methylprednisolone which developed after starting treatment with interferon-β1b. She states that “allergic reaction to steroids is rare and anaphylactoid reaction to methylprednisolone rarer still with only three reports in the literature.” Her report surprised us as on the week of publication of her case we had a patient with multiple sclerosis who developed an urticarial rash within 15 minutes of commencing treatment with intravenous methylprednisolone. Although we thought this to be an unusual response to methylprednisolone, we were not overly perplexed by the drug’s capacity to induce a presumably IgE mediated immune response. Surely for almost all drugs the pharmacological and immune properties are quite distinct.

I undertook a brief literature search. The database was interrogated using Medline Pubmed and the words “anaphylaxis” and “methylprednisolone”. At least 29 cases of anaphylactoid reaction to methylprednisolone are documented in this simple search. Kamn and Hagmeyer systematically review allergic reactions to corticosteroids in the April 1999 publication of Annals of Pharmacotherapy. Their primary data source is a Medline search from January 1966 to December 1997. They report 36 allergic-type reactions to intravenous corticosteroids, including death in 12 patients suspected to be related to corticosteroid anaphylaxis. Methylprednisolone and hydrocortisone were the most commonly implicated corticosteroids. Is it surprising that the frequency of reporting of anaphylactoid responses to corticosteroids is low? I can see no inherent paradox between the ability of methylprednisolone to bind IgE and its pharmacological anti-inflammatory action. Clear’s speculation about mechanisms by which interferon-β may predispose to anaphylaxis may be interesting. However, it is unreasonable to ascribe the anaphylactoid response to methylprednisolone to therapy with interferon-β.

M F YOUNG
J P MCCONVILLE
Department of Neurology, Royal Victoria Hospital, Grosvenor Road, Belfast, Northern Ireland, UK
Correspondence to: Dr J P McConville, 10 Shorts Close, Oxford OX3 7FG

Clear replies:
Mea culpa! The disparity in yield of our literature searches reflects different search strategies. These are often problems in electronic search systems. It is still reasonable to state, though, as Van den Berg and Van Eikema Hommes do in their report,1 that anaphylactoid reaction to methylprednisolone is rare. Few clinicians have come across it.
I agree that it is unreasonable to ascribe the anaphylactoid response to methylprednisolone therapy with interferon-β. Nevertheless, it remains the case that a man who had had numerous courses of methylprednisolone without adverse effect had...
anaphylactoid reactions to the drug soon after the introduction of interferon β, and that such an unusual event should alert us to the possibility that interferon β may have paradoxical effects. If we see only what we expect to see, we run the risk of missing the truth.

DANIELA CLEAR
University Department of Neurological Science, Liverpool, UK

BOOK REVIEWS

This slim volume is the result of a small meeting held towards the end of 1997 by a largely European group of scientists designed to explore recent advances in the treatment of some neurodegenerative conditions. The result is a highly eclectic collection of short chapters ranging from the general to highly specific, which overall makes the book hard to follow and thus recommend. For example the second chapter discusses a whole variety of different types of myelin mutant mice, whereas three chapters later we are treated to a discussion on the inhibitory effects of apoptosis on the proliferative potential of a Chinese hamster ovary cell line.

In addition the book tends to leap from clinical to scientific topics with no obvious linking sections; thus we move from a discussion on the newer dopamine agonists to others on animal models of multiple system atrophy and their treatment by neural transplantation. Indeed, the book, by presenting subjects of often unrelated topics, suffers from being misleading to the uninitiated reader. For example it begins with a chapter on neuronal precursor cells isolated from the rat spinal cord and their differentiation potential. This is more of a general interest given the potential of these cells for repairing the damaged and diseased CNS. However this chapter, while, giving an insight to the field is brief of companion chapters, and so it is not obvious to the newcomer how this chapter relates to embryonic stem (ES) cells, neuronal precursor cells from other mammalian species as well as those isolated from the adult CNS. Furthermore, it is not clear how the conclusions of the studies presented in this chapter relate to other strategies being adopted with neural precursor cells in animal models of Parkinson’s disease, for example. Indeed many chapters can mislead the reader as a result of their failure to be put together properly and fully into context—for example, the use of riluzole and gabapentin in amyotrophic lateral sclerosis as discussed by Ludolph et al in their chapter. However, other chapters are more successful by virtue of being more balanced and as a result are more appealing. For example, the chapters by Karl Kieburtz on emerging drug therapies in Huntington’s disease and Steve Dunnett on striatal grafts are particularly good examples of this.

Overall, although the book presents a series of short unrelated articles that often contain biases and no overall context for interpretation, it is of use to people familiar with the field of restorative neuroscience, but even then it is often only helpful in summarising small islands of work to those not familiar to the field, this book will be misleading and hard to follow, and as result it is unlikely to appeal to many neurologists or neuroscientists.

ROGER BARKER

What I liked most reading through the Shiloh, Nutt, and Weizman’s Atlas of Psychiatric Pharmacotherapy is its completeness. It is indexed and cross-referenced and divided into four main sections: basic principles of psychiatric pharmacotherapy, abused substances, drug interactions, and treatment strategies. As a basic science researcher I like the fact that these authors succeed, in the first section, in the very difficult task of translating complex biochemical mechanisms into concise pictures and legends. I particularly like those on second messengers/signal transduction pathways, as these are rare to find and difficult to understand in other books. Switching to more specific psychopharmacology topics, the tables illustrating the mechanisms of action of the various drugs are also very well made and updated. For example, the tables illustrating the mechanisms of action of antidepressant drugs go beyond the “catecholamine hypothesis” into explaining the effects, at the genomic level, on the synthesis of growth factors. There is also a great deal of information on the side effects of psychotropic medications, including the pharmacological mechanisms involved. In this regard, the tables describing sexual dysfunctions are particularly useful, as they describe the physiology and the pharmacology of sexual functions in both males and females. It is clear the authors succeed, in the second section, in explaining the effects, at the pharmacodynamic level, or potentiate its side-effects, and the biological mechanisms responsible for dependence, adverse effects, and treatments. The book also gives up to date information on drugs for which biological pathways are less well known, such as phencyclidine and LSD.

The third section is on drug interactions. For each class of medication—and, if relevant, for each single drug—the book lists different drug interactions and concentrations between drugs which are decreased or increased by the index one, interact with the index one at the receptor site, or potentiate its side-effects. This section is very useful in a clinical setting, and also gives an interesting theoretical framework with which to understand drug interactions at a pharmacodynamic as well as at a pharmacokinetic level.

The final section contains algorithms for treatment of 35 (!) different psychiatric conditions. These include well described entities such as treatment resistant depression, acute manic episode, and acute exacerbation of schizophrenia. However, what I find most useful are the treatment strategies for conditions that are frequent in clinical practice but have received less attention as far as treatment protocols are concerned—for example, seasonal and atypical depression, delusional disorder, generalised anxiety disorder, post-traumatic stress disorder, anorexia nervosa, and bulimia nervosa. There are also strategies for treatment of rarer disorders and/or disorders with few evidence based recommendations, such as borderline personality disorder, obsessive-compulsive personality disorder, schizoid personality disorder, and attention deficit hyperactivity disorder adult type. Of notice is that the authors do not restrict the guidelines to biological treatments, but recommend, where appropriate, specific psychotherapies. Also, the authors indicate whether the advised treatment have clear cut, partial, or only anecdotal support from scientific literature.

So far, so good. What is the problem? The authors say in the Introduction that “this book is written, first and foremost, for the clinician who is required to... decide efficiently about options for biological treatments”. A second target is “students in other fields—for example, pharmacology, psychology, and neuroscience”. Unfortunately, one possible problem of this book is that the tables, schemes, figures, and algorithms may be too complex for it to be used as a “quick reference by the busy clinician nobody without prior knowledge of the topic. It is possible, therefore, that the book could not reach these two stated target audiences. However, it is well suited to be used in “various academic spheres” (the third stated target). In an academic setting, this book will be used as a teaching tool or as a consultation book to find important details that are not readily available from other sources. The book also has two other minor shortcomings: the absence of an index and some misspellings.

In summary, the Atlas of Psychiatric Pharmacotherapy is clearly the result of a detailed and updated revision of the literature in all fields of psychopharmacology, from basic science to treatment of rare psychiatric conditions. It may be too complex to be used as the main or only source of knowledge by a student or by a clinician involved with everyday clinical practice, but is definitely a must for those academics involved in psychopharmacology teaching or research. Also, departmental or medical school libraries should buy this book, because it will be used by those doctors and students who are looking for an answer to specific or difficult psychopharmacological questions.

CARMINE M PARIANTE

Sheppard DM, Bradshaw JL, Mattingley JB, Lee P. Effects of stimulant medication on the lateralisation of line bisection judgements of children with attention deficit hyperactivity disorder. J Neurol Neurosurg Psychiatry 1999;66:57–63. In this paper, figures 2 and 3 were wrongly ascribed the legends for figs 4 and 5 and figs 4 and 5 were given the legends for figs 2 and 3.