LETTERS TO THE EDITOR

Acute Optic Neuritis in Australia: a 13 year prospective study

The frequency with which multiple sclerosis develops after an attack of acute optic neuritis varies widely in different series and has been reported to range from 11.5% to 85%. The variability in the findings may relate to different methods of patient selection, diagnostic criteria, geographical factors, duration of follow up, and study design.

A cohort of 82 patients (59 females, 23 males) with uncomplicated ON aged 10 to 50 years (mean 29.2) who were examined neurologically and had visual evoked responses (VERs) performed in our department during the period 1973–83 were re-examined in 1983–85. Twenty six of the patients (32%) had progressed to probable or clinically definite multiple sclerosis during the follow up period of 7–114 (mean 57) months. Female sex, young adult age, and the presence of HLA-B7 or DR2 seemed to increase the risk of developing the disease. Seventy one of the 82 (87%) (52 females, 23 males) were examined in 1991–2; 11 patients could not be traced. Neurological examination was performed on 49; two patients had died with multiple sclerosis and a telephone questionnaire was completed on the remainder. Thirty three (46%, or 40% of the original 82) had developed probable or clinically definite multiple sclerosis after a mean duration of 13.25 years (range 8–29.6 years). Eight cases had developed multiple sclerosis since the previous review. Kaplan-Meier and actuarial methods of assessment, predicted that 52% would develop the disease after 15 years (figure). There was a significantly greater risk of developing multiple sclerosis for patients in the 21–30 year age group than those outside this range but there was no significant difference in the rate of progression to the disease for males and females. There was no significant difference in the probability of developing multiple sclerosis in patients with single or recurrent attacks of optic neuritis or bilateral optic neuritis, nor in those who were DR-2 positive (table 1).

The finding in the Australian cohort that 52% of patients with optic neuritis were at risk of developing probable or clinically definite multiple sclerosis after 15 years is comparable with that of 57% in 11.6 years in the United Kingdom, post-1940 in the United States, and 45% in 15 years in Sweden.1

JANE A FRITH
JAMES G MCLLEOD
Institute of Clinical Neurosciences, University of Sydney and Royal Prince Alfred Hospital, Sydney, Australia

MARIJES HEYL
Department of Neurology, Westmead Hospital, Sydney, Australia

Correspondence to: Professor J G Mcll, Department of Medicine, University of Sydney, NSW 2006, Australia email rachelp@med.usyd.edu.au

Clinical features of patients with optic neuritis (ON)

<table>
<thead>
<tr>
<th>Age (yO):</th>
<th>20 or less</th>
<th>21–30</th>
<th>31–40</th>
<th>41–50</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON-only multiple sclerosis</td>
<td>10</td>
<td>4</td>
<td>8</td>
<td>17</td>
</tr>
<tr>
<td>ON</td>
<td>4</td>
<td>8</td>
<td>11</td>
<td>9</td>
</tr>
</tbody>
</table>

Sex:

<table>
<thead>
<tr>
<th>Males</th>
<th>Females</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ON Type</th>
<th>23</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single</td>
<td>11</td>
<td>13</td>
</tr>
<tr>
<td>Recurrent</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HLA Type</th>
<th>DR2+</th>
<th>DR2-</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

*Four patients not typed.

Multiple sclerosis in 15 years is comparable with that of 57% in 11.6 years in the United Kingdom, post-1940 in the United States, and 45% in 15 years in Sweden.1

Post-traumatic hydrocephalus: influence of craniectomy on the CSF circulation

Post-traumatic ventricular dilatation may have a wide range of aetiological factors: starting from neural loss due to head trauma and possible secondary ischaemic insults, to obstruction of CSF circulation resulting in hydrocephalus. It is important to differentiate between post-traumatic hydrocephalus and brain atrophy before considering placement of a shunt. Making this decision can be facilitated by measurement of the resistance to CSF outflow.1 However, the pattern of the CSF circulation may change dramatically after a cranioplasty resulting from a previous decompressive craniectomy for refractory intracranial hypertension after head injury. The effect of the skull and dura on CSF hydrodynamics has been explored experimentally.2 The resistance to CSF outflow after craniectomy decreases two-fold and brain compliance (expressed using the pressure-volume index, PVI) increases.3 This problem is important clinically as the following case illustrates:

A 44 year old man fell downstairs and was admitted with a Glasgow coma score (GCS) of 4. Brain CT disclosed an intracerebral haematoma, which required a right frontal lobectomy and decompressive craniectomy to control raised intracranial pressure. Five months later he remained completely disabled with deteriorating GCS and increasing spasticity. Brain CT showed a progressive ventricular dilatation with widening of the cortical sulci. Cranioplasty had been delayed because of persistent problems with infections. The first lumbar computerised infusion test was performed 5 months after injury to study the patient’s CSF circulation. The opening pressure was low (13 mm Hg) with a very low pulse amplitude. An infusion of normal saline at a rate of 1.5 ml/min increased the intracranial pressure (ICP) to a plateau of 12.2 mm Hg within 22 minutes. The calculated resistance to CSF outflow was normal (5 mm Hg/ml/min) and the pressure-volume index was increased to 28 ml (figure).

It is important to mention here that the normal range for the pressure-volume index, calculated from the constant rate infusion (an inverse of elastance coefficient) is different from the values obtained by the bolus injection.2 Values below 13 ml indicate a tight brain, from 13 ml to 23 ml normal compliance and above 23 ml increased or pathologic compliance. A slow constant rate infusion tests global compliance of the craniospinal axis whereas a fast bolus volume load probably tests compartmental compliance of the container into which the extra volume is added.

In this pattern of CSF circulation with low or normal resistance to CSF outflow, increased brain compliance, and very few vasogenic waves is characteristic of cerebral atrophy.3 Cranioplasty was carried out as his deterioration was attributed to the “syndrome of trephined” where the brain sinks in, particularly with erect posture and dehydration producing deterioration in conscious level and focal signs. However, 1 month later, there had been no progress in the patient’s condition and repeat CT again suggested progressive ventriculomegaly. The infusion study was repeated. The opening ICP was not dramatically different (10 mm Hg) to the previous study. However, the pulse amplitude (1.5 mm Hg) was increased, and the calculated resistance to CSF outflow was greatly increased to 20 mm Hg/ml/min, with a calculated pressure-volume index of 15 ml. Such a pattern is specific for hydrocephalus. After this test the patient was shunted with a Codman Medos programmable valve (setting 120 mm H2O) ventriculoperitoneal shunt with remarkable clinical improvement, the GCS rose to 14, he began to talk and his spasticity in his arms and legs decreased dramatically. It is obvious why the pressure-volume compensatory reserve (PVI) decreases after cranioplasty,4 but the interpretation of an increase in the resistance to CSF is not immediately apparent. Two explanations are possible:

The patient had developed an acute hydrocephalus, possibly as a result of traumatic subarachnoid haemorrhage. Craniectomy was a factor allowing compensation of CSF circulation in the early stages. It is difficult to explain what is the nature of such compensation. Shapiro et al5 attempted to offer an interesting but conceptually difficult hypothesis that the time constant (resistance to CSF outflow×compliance of cerebrospinal space) of cerebrospinal system hydrodynamics has a tendency to remain constant. Therefore, a

No figure or table is provided in the text.
mechanistic increase in compliance after craniectomy tends to be followed by a decrease in the resistance to CSF outflow. This process may be reversed after cranioplasty—that is, a decrease in PVI may be followed by an increase in the resistance to CSF outflow.

The second possible scenario is more important for clinical management. A large craniectomy may facilitate irreversible ventricular enlargement over weeks or months. Thus, after cranioplasty, the expanded ventricles may, via the cerebral mantle, obstruct the lumen of the cortical subarachnoid space and increase the resistance to CSF outflow. This case demonstrates that when the CSF circulation is studied in patients with a large craniectomy the CSF outflow resistance cannot be taken reliably as a guide for shunting. Overnight ICP monitoring or CSF infusion study should be performed after cranioplasty, when CSF circulatory reserve decreases dramatically. Moreover, a prolonged period without a bone flap may encourage ventricular dilatation.

MAREK CZOSNYKA
JO COPEMAN
ZOFIA CZOSNYKA
ROY S MCCONNELL
CATHERINE DICKINSON
JOHN D PICKARD

Academic Neurosurgical Unit, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK

CT and infusion studies. (A) Scan performed on admission. (B) After right frontal lobectomy and bone flap removal. (C) Four months after injury, before cranioplasty. (F) Infusion test demonstrated low resistance to CSF outflow and increased brain compliance. ICP=mean intracranial pressure; AMP= pulse amplitude of ICP waveform. Constant infusion rate of 1.5 ml/min is indicated by a thick horizontal line. X axis=time. (D) Five months after injury, after cranioplasty. (G) Infusion test demonstrated grossly increased resistance to CSF outflow and normal brain compliance. (E) One month after shunting: normalisation of ventricles. Bicaudate index decreased from 33% to 21% with a decrease in the 3rd ventricle diameter (from 13 mm to 8 mm).
Diencephalic amnesia and apraxia after left thalamic infarction

Amnesia and apraxia are unusual manifestations of unilateral thalamic lesions. A patient in whom severe amnesia and apraxia were the presenting features of a left thalamic infarct is presented. The findings support the concept that memory and praxis both utilise circuits which include the dominant thalamus.

A 78 year old right handed Hungarian woman presented with memory loss and disorientation. She had been well and conversed normally with her daughter on the evening before presentation. The next morning, her daughter was alarmed to find her mother’s house in a state of disarray. Dishes were unwashed, lights left on, and doors open. The patient seemed baffled by eating utensils, attempting to scoop food with her knife. Later that morning, she failed to recognise longstanding Hungarian friends. She was unable to recall her address, the name of the city in which she lived, or the names of her grandchildren. She subsequently failed to recognise her family doctor of 7 years. History included non-insulin dependent diabetes, hypertension, hyperlipidaemia, and atrial fibrillation. Medications were digoxin, glibenclamide, and metoprolol. Captopril had been prescribed 4 weeks previously but was ceased 2 days before presentation due to preysyncopal symptoms. The patient consumed no alcohol. There was no history of cerebrovascular events.

Cognitive functions were examined at the bedside with the assistance of an interpreter, as the patient spoke no English, although she conversed freely in her native Hungarian. She had no recollection of events since emigrating to Australia 50 years previously, gave her correct maiden name, and could not recognise or name her grandchildren, although she recognised her daughter. She acknowledged she was in a hospital, but maintained it was in Budapest and the year was 1947. Although her recollections regarding her early life and wartime Hungary seemed accurate, she conflated when asked for details of recent events. Short term recall of verbal material and people was poor. The patient was able to name objects such as a pencil and a watch, and obey two and three stage commands. She wrote her name and copied simple designs correctly, and could imitate gestures such as waving goodbye or blowing a kiss. However, she was unable to use eating utensils or a toothbrush, either in pantomime or when provided with the object itself. Movements of the face and limbs were normal, and there were no sensory abnormalities. Knee and ankle jerks were absent bilaterally and both plantar responses were extensor. General examination revealed atrial fibrillation and mild cardiomegaly.

The patient continued to display severe impairment of anterograde memory. She was reluctant to leave her bed, and quickly became lost unless supervised. She did not recognise familiar staff members and was unable to use ward landmarks to reorientate herself. She required assistance to feed herself, brush her teeth, and shower. When reviewed 3 months later, her memory disturbance and apraxia for simple action related to daily life (such as brushing her teeth) persisted, necessitating care in a supervised environment.

Brain MRI (figure) showed a left anterior thalamic lesion consistent with lacunar infarction and periventricular white matter ischaemic changes. Deficits of anterograde and retrograde memory after thalamic lesions are well recognised. The syndrome of diencephalic amnesia after bilateral medial thalamic lesions typically involves striking disorientation for time, loss of autobiographical information (often extending back for many years), confabulation, and severe anterograde amnesia for verbal and visual material and, often, recognition of familiar faces. These features were well illustrated by our patient, who became “marooned” in an earlier place and time. Amnesia after unilateral thalamic lesions is rare. There is increasing evidence that thalamic lesions interrupt the multiple brain networks which form the anatomical substrate of memory, encompassing the hippocampus, medial temporal structures, and cingulate cortices, and overlapping with the language areas of the left hemisphere. The thalamus is activated in retrieval of episodic (autobiographical) and semantic (encyclopedic) information stored, and execution of learned motor tasks, which may reflect its widespread connections with other subcortical and cortical structures.

The patient’s ability to name or identify objects was not tested systematically. On the evidence available, it seems likely that her difficulty in utilising common objects was a manifestation of apraxia for daily tasks rather than, for example, agnosia for the objects involved. Apraxia is a rare manifestation of isolated thalamic lesions. The ability to access stored motor representations is thought to be crucial for normal execution of learned actions. These motor representations are analogous to motor memories. Although praxis is generally regarded as a function of distributed cortical regions in the left hemisphere, apraxia in association with thalamic amnesia has not been emphasised in previous reviews of the syndrome. Involvement of deep hemispheric white matter in association with basal ganglia pathology is thought to be critical for the development of apraxia after lesions of subcortical structures. The conjunction of diencephalic amnesia and apraxia after thalamic infarction in the present case may be interpreted as further evidence that episodic, semantic, and motor memories is mediated by overlapping functional networks in the dominant hemisphere.

PD THOMPSON
Department of Neurology, Royal Adelaide Hospital, Adelaide, South Australia

Transverse myelopathy in the antiphospholipid antibody syndrome: pinworm infestation as a trigger?

The antiphospholipid antibody syndrome is a disorder characterised by the production of autoantibodies directed against negatively charged phospholipid membranes. Antiphospholipid antibodies have been described in various neurological disorders. It has been generally accepted that viral, bacterial, and parasitic infections can serve as a trigger for autoimmunity. Despite the growing knowledge that has accumulated, the relation between parasites and autoimmunity has not been clarified.

Enterobius vermicularis (pinworm) is a nematode rarely found outside the gastrointestinal tract, but allergic reaction due to enterobiosis has been reported.1 We describe the case of transverse myelopathy preceded by intestinal pinworm infestation in the primary antiphospholipid antibody syndrome. To our knowledge, such an association has not been reported previously. Pinworm therapy was complicated by the Jarisch-Herxheimer reaction manifested by temporary exacerbation of possible paraneoplastic neurological symptoms.

In March 1998, a 40 year old woman who complained of perianal itching noticed the presence of worms migrating from the anus. Three days later itching and numbness involved the legs, and the patient had weakness in the legs. These symptoms progressed over the next 3 days to severe paraparesis and urinary urgency. Her medical history was relevant for three unexplained miscarriages which occurred in midpregnancies. In the local hospital, she underwent brain and lumbar-sacral spine MRI and findings were normal. Cerebrospinal fluid examination disclosed slightly raised proteins of 670 mg/l, 2 lymphocytes/mm³, oligoclonal immunoglobulin (Ig) G bands were absent. She was treated with methylprednisolone (1 g/day) intravenously for 3 days with subsequent gradual tapering off, which was associated with substantial improvement of motor, sensory, and sphincter disturbances. At the end of April 1998, the patient was transferred to our hospital for further investigation.

Examination showed mild spastic paraparesis, bilateral Babinski’s sign, and a Th12 sensory level. Erythrocyte sedimentation rate was 34. Creatinine clearance, renal function, angiotensin converting enzyme, concentrations of IgG, IgM, IgA, IgE, and immune complexes, screening for antinuclear (HEp-2 cells), anti ds DNA, antineutrophil cytoplasmic, antimitochondrial, and antiparietal cell antibodies, rheumatoid factor, and the search for antineutrophic virus and antiBorrelia antibodies were normal or negative. A venereal disease research laboratory (VDRL) test was negative. A medium flocculation test was negative. Raised titers of serum IgG and IgM anti-GM1 (1:6400, DR7, DR53) were present. Addional studies are necessary to further elucidate the complex mechanisms of involvement of intestinal helminths in the processes of autoimmune activity.

Radiologically selective visual pathway involvement in adult onset cerebral adrenoleukodystrophy

A case of adult onset cerebral adrenoleukodystrophy is presented with serial MRI showing selective involvement of the visual system with spread of disease along the fibre tracts of this system.

Adult onset cerebral adrenoleukodystrophy is the rarest presentation of adrenoleukodystrophy. It may present with various symptoms often including visual impairment. Brain MRI may show multiple areas of symmetric high signal intensity within cerebral white matter, usually affecting the occipital lobes.9,10 We present a case of adrenoleukodystrophy, in whom serial MRI demonstrated selective progression of demyelination through the visual pathways.

A thirty year old man presented in May 1996 with a 7 month history of deteriorating vision, slurred speech, incoordination, poor balance, generalised weakness, sleep disturbance, and headaches. His symptoms were worse on the right. He had no symptoms of postural hypotension.

His mother had been shown to be a carrier of X linked adrenoleukodystrophy (XL-ALD). His two elder brothers had died of XL-ALD at the ages of 0 and 7 years. In 1993 our patient had been shown to have abnormal serum concentrations of very long chain fatty acids (VLCFAs) and to be a carrier of the XL-ALD gene. At that time he was asymptomatic and had no neurological signs. Crohn’s disease had been diagnosed in 1987 after an ileal resection although this had remained in remission.

On examination, visual acuities were 6/12 (right), 6/9 (left). Fields were full to confron-
tation using a finger but there was a left homonymous field defect to a red pin and he had a left afferent pupillary defect. Fundoscopy showed bilateral optic atrophy. The remainder of the cranial nerve examination was normal. In the arms tone and power were normal, but coordination was mildly impaired on the right. The reflexes were exaggerated and Hoffman’s sign was present bilaterally. A palmomental reflex was present on the right. In the legs power was normal, but tone was increased and there were several beats of ankle clonus; reflexes were exaggerated and plantar responses were upgoing. Coordination was impaired in both legs, his gait was ataxic, and Romberg’s test was positive. He had a minor reduction in vibration sensation at the right ankle; otherwise sensation was normal. He appeared moderately tanned, but there was no other hyperpigmentation. Supine blood pressure was 114/78, falling to 108/80 on standing. The remainder of the examination was normal.

Routine biochemistry was normal. A morning cortisol was 469 nmol/l (normal >160 nmol/l), but a short synacthen test showed an abnormally flat response (serum

correspondence to: dr m c lawden, leicester royal infirmary, leicester, le1 5ww, uk
damage, gliosis, and neuronal loss.
response demonstrating contrast enhancement above the fourth ventricle to the right of the midline.

MRI appearances are thought to result from an advancing front of active demyelination, the characteristic hidden—for example, the intracerebral portion of the optic tracts. This allowed visualisation of parts of the visual system, the anatomy of which is usually hidden—for example, the intracerebral portion of the optic tracts. The characteristic MRI appearances are thought to result from an advancing front of active demyelination, followed by an area of inflammatory cellular response demonstrating contrast enhancement, surrounded by areas of established damage, gliosis, and neuronal loss.

Golf ball epilepsy
Blunt head injuries may cause epilepsy. We present the cases of four young people whose heads were all subject to contact with golf balls travelling at speed. Each had post-traumatic seizures, three early and one late, despite the apparent absence of post-traumatic amnesia. Although many patients who develop epilepsy recall some type of head injury preceding their first seizure, post-traumatic epilepsy probably accounts for less than 5% of all the epilepsies. There is good evidence that the risk of post-traumatic epilepsy increases with the severity of the injury. Thus, Jennett identified the presence of intracranial haemorrhage, dural laceration, and early post-traumatic seizures as the chief risk factors for late post-traumatic epilepsy. Annegers et al also emphasised that in the absence of a post-traumatic amnesia of 30 minutes or greater, there was no significant increased risk for the development of post-traumatic epilepsy.

From a practical point of view and for medicolegal purposes, it is necessary to decide if a seizure is post-traumatic. As a general rule it may be stated that if the person concerned does not give a history of a post-traumatic amnesia lasting for a significant period of time (an hour or more), and there is no history of a compound or depressed fracture with dural tear, it is reasonable to exclude the possibility that the epilepsy is post-traumatic. However, it is worth noting that this view is based on Jennett’s work and precedes CT. There is no good evidence from a large series to indicate whether findings on acute imaging add anything to the prediction of post-traumatic epilepsy.

(A) CT showing acute extradural haematoma in patient 1. (B) CT 5 days after A showing persisting cortical abnormality after evacuation of extradural haematoma. (C) CT demonstrating minor depressed skull fracture at site of impact. (D) CT showing late cortical changes at presumed site of impact 4 years after injury.

D S FARRELL
M C LAWDEN
Department of Neurology, Leicester Royal Infirmary, Leicester, UK
N MESSIOS
Department of Radiology
Correspondence to: dr m c lawden, leicester royal infirmary, leicester, le1 3ww, uk
Four examples of acute symptomatic seizures and epilepsy developing after head injuries with golf balls are described, which seem to be an exception to these clinical rules. An 11 year old boy was struck on the right temple by a golf ball resulting in right frontal lobe immediately beneath the skull at a small site of impact. The problem of serial focal motor seizures was made. His consciousness was impaired until about 3 hours later when he became drowsy and had two focal motor seizures affecting the left arm. He was intubated and ventilated. A head CT showed a right frontal extradural haematoma with no skull fracture (figure A). The haematoma was evacuated (figure B). He was woken and extubated the next day and was discharged without evacuation (figure B). He was woken and extubated the next day and was discharged without evacuation (figure B).

A 16 year old boy, who was a keen golfer with a single figure handicap, was struck on the head by a golf ball which rebounded several yards after striking him on the forehead. He experienced local pain, bruising, and swelling. Although he was never unconscious, some 4–5 hours later he developed repetitive jerking of the right face and arm. He was taken to his local casualty department where it was diagnosed that he had sustained a fracture to the scalp from a blow to the head. The CT scan showed a small, wedge shaped area of low density after striking him. He did not lose consciousness and had no more than localised pain, tenderness, and bruising at the site of impact. He did not seek any medical advice about the injury. Over the next 4 years he had three well documented tonic-clonic seizures that started out as sleep.

A CT scan 3 years after the original injury showed a small, wedge shaped area of low density affecting the cortex close to the point at which he recalls being struck (figure D). The heads of these four young people were all subject to contact with golf balls which at club level travel at speeds of up to 130 miles/hour. Each had post-traumatic seizures, three early and late, despite the apparent absence of post-traumatic amnesia.

Patients 1 and 2 would indicate that this kind of injury is capable of transferring energy across the skull, independent of a skull fracture, to cause an acute extradural or cortical haematoma. In patient 4 the lesion identified at a later date by CT is consistent with the late onset of consciousness and the post-traumatic amnesia. It therefore seems reasonable to assume that the late epilepsy in patient 4 was also related to the initial golf ball injury. In the third patient, a minor depressed skull fracture and contusion were again associated with an early seizure without evidence of intervening impairment of consciousness. It does therefore seem that golf ball injuries are capable of giving rise to both acute symptomatic seizures and late epilepsy without causing post-traumatic amnesia, skull fracture or dural tear. CT evidence, however, would predict the possibility of seizures in these examples in whom the development of post-traumatic epilepsy probably results from the physical properties of golf balls and their ability to transmit considerable mechanical energy at a small site of impact. The problem is one of which spectators on golf courses (and their doctors) should be aware.

\[\text{HAUSER WA, HESDORFFER DC, EPILEPSY: FREQUENCY, CAUSES AND CONSEQUENCES. NEW YORK: DEMOS PUBLICATIONS, 1995.} \]

\[\text{J Neurol Neurosurg Psychiatry 2000;68:246–256.} \]

Sensory predominant neuropathy with GM, antibodies, conduction blocks, and orbital pseudotumour

Two male patients developed multifocal sensorimotor neuropathy with high titre IgM anti-GM, antibodies (up to 1: 64 000) and infiltrative orbitopathy. Nerve conduction studies showed multiple motor conduction blocks and evidence of a similar phenomenon in sensory nerves. Both patients deteriorated after corticosteroid administration but benefited substantially from intravenous immunoglobulin therapy. Our findings suggest the existence of a predominantly sensory subtype of multifocal motor neuropathy (MMN) and challenge the accepted motor specificity of anti-GM, antibodies.

Anti-GM, antibodies have been implicated in the aetiology of multifocal motor neuropathy (MMN) and are assumed to be specific for this disease when occurring at high titres. We report on two patients with high titre IgM anti-GM, antibodies and electrophysiological features typical of MMN presenting with severe sensory neuropathy.

Patient 1 was a 50 year old man who developed asymmetric numbness of limbs and difficulty in performing fine motor movements around the age of 50. Sensory deficits showed a multifocal pattern (multiple mononeuropathy) and involved proximal limb regions, trunk, and face. The course of illness was steadily deteriorating with some episodes of prominent disease progression usually preceded by minor infections. After 10 years he was unable to write, needed assistance for dressing and walking, and complained of diplopia. Neurological examination showed profound interference with eye movements, sensory modalities in the arms and legs and pseudoneuropathy of the fingers and wrist. Deep tendon reflexes were preserved and muscle strength was normal. The patient showed marked protrusion and downwards and outwards deviation of the left eye with a complex impairment of all eye movements.

Patient 2, a 68 year old man, reported an insidious onset and gradual worsening of asymmetric sensory symptoms. He was unable to write, needed assistance for dressing and walking, and complained of diplopia. Neurological examination showed profound interference with eye movements, sensory modalities in the arms and legs and pseudoneuropathy of the fingers and wrist. Deep tendon reflexes were preserved and muscle strength was normal. The patient showed marked protrusion and downwards and outwards deviation of the left eye with a complex impairment of all eye movements.

Correspondence to: Professor D Chadwick, University Department of Neurological Science, The Walton Centre for Neurology and Neurosurgery, Lower Lane, Liverpool L9 7IJ, UK

1 Hauser WA, Hesdorffer DC. *Epilepsy: frequency, causes and consequences*. New York: Demos Publications, 1995.

PAUL ELDRIDGE

DANIELA B CLEAR

PAUL ELDRIAGE

CONRAN NALUCCI

The Walton Centre for Neurology and Neurosurgery, Lower Lane, Liverpool L9 7IJ, UK

Correspondence to: Professor D Chadwick, University Department of Neurological Science, The Walton Centre for Neurology and Neurosurgery, Lower Lane, Liverpool L9 7IJ, UK
Ganglioside antibody patterns and electrophysiological characteristics

<table>
<thead>
<tr>
<th>Variable</th>
<th>Patient 1</th>
<th>Patient 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibody titres:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IgM GM1</td>
<td>1:64000</td>
<td>1:4000</td>
</tr>
<tr>
<td>IgG GM1</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>IgM anti-GM1</td>
<td>1:32000</td>
<td>1:8000</td>
</tr>
<tr>
<td>IgG anti-GM1</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>IgM GD1a</td>
<td>1:500</td>
<td>1:32000</td>
</tr>
<tr>
<td>IgG GD1a</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>IgM GD1b</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>IgG GD1b</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>IgM GQ1</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>IgG GQ1</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>IgM sulfatide</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>IgG sulfatide</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Nerve conduction studies:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right median nerve:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DL (m)/NCV/NCV (ms)</td>
<td>4.5/48/56</td>
<td>4.6/32/65</td>
</tr>
<tr>
<td>F wave latency (ms)</td>
<td>33.0</td>
<td>43.6</td>
</tr>
<tr>
<td>Motor conduction block</td>
<td>Absent</td>
<td>Absent</td>
</tr>
<tr>
<td>SNAP</td>
<td>Absent</td>
<td>Absent</td>
</tr>
<tr>
<td>Right ulnar nerve:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DL (ms)/NCV/NCV (ms)</td>
<td>2.6/56/50</td>
<td>3.0/35/45</td>
</tr>
<tr>
<td>F wave latency (ms)</td>
<td>32.5</td>
<td>43.9</td>
</tr>
<tr>
<td>Motor conduction block</td>
<td>+</td>
<td>—</td>
</tr>
<tr>
<td>SNAP</td>
<td>Absent</td>
<td>Absent</td>
</tr>
<tr>
<td>Right peroneal nerve:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DL (ms)/NCV/NCV (ms)</td>
<td>6.6/42/39</td>
<td>5.2/33/31</td>
</tr>
<tr>
<td>F wave latency (ms)</td>
<td>86.9</td>
<td>62.5</td>
</tr>
<tr>
<td>Motor conduction block</td>
<td>+</td>
<td>—</td>
</tr>
<tr>
<td>SNAP</td>
<td>Absent</td>
<td>Absent</td>
</tr>
</tbody>
</table>

V ariable Patient 1 Patient 2

<table>
<thead>
<tr>
<th>Antibody titres:</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>IgM sulfatide</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>IgG sulfatide</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Right peroneal nerve:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DL (ms)/NCV/NCV (ms)</td>
<td>4.5/48/56</td>
<td>4.6/32/65</td>
</tr>
<tr>
<td>F wave latency (ms)</td>
<td>33.0</td>
<td>43.6</td>
</tr>
<tr>
<td>Motor conduction block</td>
<td>Absent</td>
<td>Absent</td>
</tr>
<tr>
<td>SNAP</td>
<td>Absent</td>
<td>Absent</td>
</tr>
</tbody>
</table>

Correspondence

Alterations of muscarinic acetylcholine receptor subtypes in diffuse Lewy body disease: relation to Alzheimer’s disease

The article by Shiozaki et al. demonstrating significantly less muscarinic acetylcholine receptor binding sites in the temporal cortex in dementia with Lewy bodies than in Alzheimer’s disease and other upregulation of the m1 and m2 receptor subtypes suggests differences in the manner of deregulation of the cholinergic system between both dementing disorders that may be of basic and practical therapeutic relevance. The more severe reduction of ChAT activity in the neocortex in dementia with Lewy bodies than in Alzheimer’s disease, the higher upregulation of the postsynaptic m1 receptor in dementia with Lewy bodies, and the higher level of the presynaptic m2 receptor subtype in Alzheimer’s disease suggest a severe depletion of presynaptic projection neurons in dementia with Lewy bodies but their relative preservation or upregulation in Alzheimer’s disease. These data are in line with previous—including personal—findings on cell loss and shrinkage in the cholinergic magnocellular posterior part of the nucleus basalis of Meynert in dementia with Lewy bodies and the higher level of the presynaptic m2 receptor subtype in Alzheimer’s disease suggest a severe depletion of presynaptic projection neurons in dementia with Lewy bodies but their relative preservation or upregulation in Alzheimer’s disease. In Parkinson’s disease (brain stem type of dementia with Lewy bodies), cell depletion in the nucleus basalis of Meynert averages 30% to 40% without correlation with age or duration of the illness. It is much higher in demented patients with Parkinson’s disease (similar to Alzheimer’s disease range 50% to 70%) than in non-demented patients (0% to 40%), who show neuronal loss similar to or only slightly higher than age matched controls. Cell loss in the nucleus basalis of Meynert in non-demented patients with Parkinson’s disease is usually associated with little or no cortical Alzheimer’s disease pathology, whereas in severely demented patients with Parkinson’s disease, heavy cell depletion in the nucleus basalis of Meynert is often, but inconsistently, accompanied by severe cortical neuritic Alzheimer’s disease pathology, suggesting threshold levels of cholinergic forebrain impairment and deficit for the development of dementia. Even more severe depletion of the nucleus basalis of Meynert with 75% to 80% loss of large cholinergic neurons is found in dementia with Lewy bodies (figure). There were no major differences in cell loss in the nucleus basalis of Meynert between dementia with Lewy bodies with “plaque only” Alzheimer’s disease (two cases) and with “true” Alzheimer’s disease (eight cases with Braak stages V or VI). Lewy bodies and neurofibrillary tangles in the nucleus basalis of Meynert neurons were seen in eight brains of patients with Lewy body disease.
These changes are associated with a decrease in cholinergic innervation of the cortex and hippocampus that may or may not correlate with the severity of cell loss in the nucleus basalis of Meynert and mental status. Neocortical cholinergic activity (choline acetyltransferase) is far more severely depleted in dementia with Lewy bodies than in Alzheimer’s disease and Parkinson’s disease, and correlates well with dementia and nucleus basalis of Meynert pathology (neuron loss, tangles, and Lewy bodies), but not with local cortical pathology. The heterogeneity of degeneration of cholinergic neurons in the basal forebrain and its relative independence from cortical pathology suggests primary involvement of the basal forebrain in Alzheimer’s disease, by contrast with probable retrograde damage in Alzheimer’s disease and dementia with Lewy bodies confirmed by defective retrograde transport of nerve growth factor to the nucleus basalis of Meynert in Alzheimer’s disease. 1

These morphological differences in the degeneration of the cholinergic forebrain system between various dementing neurodegenerating disorders are, at least in part, supported by the data presented by Shiozaki et al. 2 indicating differences between Alzheimer’s disease and Parkinson’s disease. These and other genetic, morphological, and biochemical differences between the three disorders may strengthen the hypothesis that they represent different nosological entities. This, however, needs further confirmation.

KURT A JELLINGER
Ludwig Boltzmann Institute of Clinical Neurobiology, PKHB-Building, Baumgartner Hoehe 1, A-1140 Vienna, Austria
Correspondence to: Kurt A Jellinger
e-mail kurt.jellinger@univie.ac.at

Mortality from Parkinson’s disease

The publication of the 10 year mortality data from the Sydney multicentre study of Parkinson’s disease serves as a timely reminder that patients with this condition still die at a rate in excess of their peers despite advances in therapeutics and surgery. 1 This fact has been lost on many of our colleagues working in this area, both on the clinical and the research fronts. On many occasions at local and national meetings, I have been forced to remind people that levodopa has not normalised mortality rates in this condition.

Figure A indicates, as Hely et al. 2 point out, the fall in standardised mortality rates (SMRs) in the early years of levodopa use but a return to mean SMRs of between 1.5 and 2.0 over the past decade. All of the studies over the past 10 years show a statistically significant difference as the 95% confidence intervals (95% CIs) do not embrace 1. In some, the upper 95% CI overlaps the original Hoehn and Yahr study in the prelevodopa era. These results mirror national mortality statistics for England and Wales (figure B). The fall in death rates in the late 1970s and early 1980s has now returned to a steady rise, thought to be due to the aging of the population.

These data must act as a spur to attempts to develop neuroprotective or restorative therapies which substantially reduce mortality from Parkinson’s disease. Large pragmatic studies in the future which examine novel treatments or approaches in early Parkinson’s disease must consider not only quality of life and health economics issues, but also mortality in the hope of establishing reduced death rates.

C E CLARKE
Department of Neurology, City Hospital NHS Trust, Dudley Road, Birmingham B18 7QH, UK

Anaphylactoid reaction to methylprednisolone. Is it surprising when pharmacological and immune effects of a drug differ?

Clear reports a case of anaphylactoid reaction to methylprednisolone which developed after starting treatment with interferon β-1b. She states that “allergic reaction to steroids is rare and anaphylactoid reaction to methylprednisolone rarer still with only three reports in the literature.” Her report surprised us as on the week of publication of her case we had a patient with multiple sclerosis who developed an urticarial rash within 15 minutes of commencing treatment with intravenous methylprednisolone. Although we thought this to be an unusual response to methylprednisolone, we were not overly perplexed by the drug’s capacity to induce a presumably IgE mediated immune response. Surely for almost all drugs the pharmacological and immune properties are quite distinct.

I undertook a brief literature search. The database was interrogated using Medline Pubmed and the words “anaphylaxis” and “methylprednisolone”. At least 29 cases of anaphylactoid reaction to methylprednisolone are documented in this simple search. Kamm and Hagmeyer systematically review allergic reactions to corticosteroids in the April 1999 publication of *Annals of Pharmacotherapy*. Their primary data source is a Medline search from January 1966 to December 1997. They report 36 allergic-type reactions to intravenous corticosteroids, including death in 12 patients suspected to be related to corticosteroid anaphylaxis. Methylprednisolone and hydrocortisone were the most commonly implicated corticosteroids. Is it surprising that the frequency of reporting of anaphylactoid responses to corticosteroids is low? I can see no inherent paradox between the ability of methylprednisolone to bind IgE and its pharmacological anti-inflammatory action. Clear’s speculation about mechanisms by which interferon β may predispose to anaphylaxis may be interesting. However, it is unreasonable to ascribe the anaphylactoid response to methylprednisolone to interferon β.

M F YOUNG

Clear replies:
M F YOUNG
Department of Neurology, Royal Victoria Hospital, Grosvenor Road, Belfast, Northern Ireland, UK
Correspondence to: Dr J P McConville, 10 Shorts Close, Oxford OX1 7PG

Clear’s report, and its review, reminds us of the disparity in yield of our literature searches reflects different search strategies. These are often problems in electronic search systems. It is still reasonable to state, though, as Van den Berg and Van Eikema Hommes do in their report,1 that anaphylactoid reaction to methylprednisolone is rare. Few clinicians have come across it. I agree that it is unreasonable to ascribe the anaphylactoid response to methylprednisolone without adverse effect had...
anaphylactoid reactions to the drug soon after the introduction of interferon β, and that such an unusual event should alert us to the possibility that interferon β may have paradoxical effects. If we see only what we expect to see we run the risk of missing the truth.

BOOK REVIEWS

This slim volume is the result of a small meeting held towards the end of 1997 by a largely European group of scientists designed to explore recent advances in the treatment of some neurodegenerative conditions. The result is a highly eclectic collection of short chapters ranging from the general to highly specific, which overall makes the book hard to follow and thus recommend. For example the second chapter discusses a whole variety of different types of myelin mutant mice, whereas three chapters later we are treated to a discussion on the inhibitory effects of apoptosis on the proliferative potential of a Chinese hamster ovary cell line.

In addition the book tends to leap from clinical to scientific topics with no obvious linking sections; thus we move from a discussion on the newer dopamine agonists to others on animal models of multiple system atrophy and their treatment by neural transplantation. Indeed, the book, by presenting short, often unrelated topics, suffers from being misleading to the uninformed reader. For example, the book begins with a chapter on neural precursor cells isolated from the rat spinal cord and their differentiation potential. This is followed by a chapter on current interest given the potential of these cells for repairing the damaged and diseased CNS. However, this chapter, while giving an insight to the field is bereft of companion chapters, and so it is not obvious to the newcomer how this chapter relates to embryonic stem (ES) cells, neural precursor cells from other mammalian species as well as those isolated from the adult CNS. Furthermore, it is not clear how the content of one chapter can have credibility and insights presented in this chapter relate to other strategies being adopted with neural precursor cells in animal models of Parkinson's disease, for example. Indeed many chapters can mislead the reader as a result of their failure to put their topics fully into context—for example, the use of riluzole and gabapentin in amyotrophic lateral sclerosis as discussed by Ludolph et al in their chapter. However, other chapters are more successful by virtue of being more balanced and as a result are more appealing. For example, the chapter by Karl Kiebutz on emerging drug therapies in Huntington's disease and Steve Dummott on striatal grafts are particularly good examples of this.

Overall, although the book presents a series of short unrelated articles that often contain bias and no overall context for interpretation, it is of use to people familiar with the field of restorative neuroscience, but even then it is often only helpful in summarising small islands of work. For those not familiar to the field, this book will be misleading and hard to follow, and as result it is unlikely to appeal to many neurologists or neuroscientists.

What I liked most reading through the Shiloh, Nuit, and Weizman's *Atlas of Psychiatric Pharmacotherapy* is its completeness. It is indeed a magnificent and clinical psychopharmacology, divided into four main sections: basic principles of psychiatry treatment have clear cut, partial, or only anecdotal support from scientific literature. So far, so good. So, what is the problem? The authors say in the Introduction that many of this book is written, first and foremost, for the clinician who is required to... decide efficiently about options for biological treatments. A second target is "students in other fields—for example, pharmacology, psychology, and neuroscience". Unfortunately, one possible problem of this book is that the tables, schemes, figures, and algorithms may be too complex for it to be used as a "quick reference by the busy clinician" or somebody without prior knowledge of the topic. It is possible, therefore, that the book could not reach these two stated target audiences. However, it is well suited to be used in "various academic spheres" (the third stated target). In an academic setting, this book will be used as a teaching tool or as a consultation book to find important details that are not available from other sources. Also, this book has two other minor shortcomings: the absence of an index and some misspellings.

In summary, the *Atlas of Psychiatric Pharmacotherapy* is clearly the result of a detailed and updated revision of the literature in all fields of psychopharmacology, from basic science to treatment of rare psychiatric conditions. It may be too complex to be used as the main or only source of knowledge by a student or by a clinic involved with everyday clinical practice, but is definitely a must for those academics involved in psychopharmacology teaching or research. Also, departmental or medical school libraries should buy this book, because it will be used by those doctors and students who are looking for an answer to specific or difficult psychopharmacology questions.

CARMINE M PARIANTE

CORRECTION

Sheppard DM, Bradshaw JL, Mattingley JB, Lee P. Effects of stimulant medication on the lateralisation of line bisection judgements of children with attention deficit hyperactivity disorder. J Neurol Neurosurg Psychiatry 1999;66:57–63. In this paper, figs 4 and 5 were wrongly ascribed the legends for figs 4 and 5 and figs 4 and 5 were given the legends for figs 2 and 3.