Cerebral correlates of psychotic symptoms in Alzheimer’s disease

Michael S Mega, Linda Lee, Ivo D Dinov, Fred Mishkin, Arthur W Toga, Jeffrey L Cummings

Abstract

Background—Psychotic symptoms are produced by distributed neuronal dysfunctions. Abnormalities of reality testing and false inference implicate frontal lobe abnormalities.

Objectives—To identify the functional imaging profile of patients with Alzheimer’s disease manifesting psychotic symptoms as measured by single photon emission computed tomography (SPECT).

Methods—Twenty patients with Alzheimer’s disease who had SPECT and clinical evaluations were divided into two equal groups with similar mini mental status examination (MMSE), age, sex, and the range of behaviours documented by the neuropsychiatric inventory (NPI), except delusions and hallucinations. SPECT studies, registered to a probabilistic anatomical atlas, were normalised and submitted to a voxel by voxel subtraction of the non-psychotic minus psychotic groups. Subvolume thresholding (SVT) corrected random lobar noise to produce a three dimensional functional significance map.

Results—The significance map showed lower regional perfusion in the right and left dorsolateral frontal, anterior cingulate, and left ventral striatal regions along with the left pulvinar and dorsolateral parietal cortex, in the psychotic versus non-psychotic group.

Conclusion—Patients with Alzheimer’s disease who manifest psychosis may have disproportionate dysfunction of frontal lobes and related subcortical and parietal structures.

Keywords: brain mapping; neuropsychiatric inventory; HMPAO-SPECT; behaviour

Methods

PATIENTS

Starting from a pool of 280 patients with Alzheimer’s disease presenting to the University of California, Los Angeles (UCLA) Alzheimer’s Disease Centre, 20 outpatients were selected who met all clinical criteria described below and enabled equal group means across demographic and behavioural domains of the psychotic and non-psychotic groups. All patients met National Institute of Neurological and Communicative Disorders and Stroke/Alzheimer’s Disease and Related Disorders Association (NINCDS/ADRDA) criteria for probable or possible Alzheimer’s disease. In addition, all patients had acquired persistent decline involving at least three of the following domains: language, memory,
visuospatial skills, cognition (calculation, abstraction, judgment, etc.), and emotion or personality. Severity of cognitive deficit was measured in all patients using the mini mental state examination (MMSE).9

BEHAVIOURAL ASSESSMENT

Family members living with the patient were interviewed with the NPI after procedures previously described17 in which screening questions for each behaviour were first posed. The care giver was asked if the behaviour represented a change from that exhibited by the patient before the onset of the dementia and if it was present during the past month. If a positive response was obtained then the behavioural domain was explored with scripted questions focusing on specific features of the behavioural disturbance. The care givers were then asked to rate the behaviours; scores from 1–4 were obtained for the frequency and 1–3 for the severity of each behaviour (a composite score for each domain was the product of the frequency and severity subscores; maximum=12). The 10 domains assessed using the NPI are delusions, hallucinations, agitation, depression, anxiety, euphoria, apathy, disinhibition, irritability, and abnormal motor output. The MMSE was administered at the same time as the NPI.

SPECT SCANNING

For all patients, an intravenous line was placed and 15 minutes were allowed to pass for patients to regain a quiet comfortable state before the intravenous administration of 30 mCi 99mTc labelled HMPAO (Ceretec; Amersham, Arlington Heights, IL, USA). Room lights were dimmed and the rooms kept quiet to minimise visual and auditory stimuli during the 15 minute brain uptake phase after injection. About 1 hour after injection, during which time washout of the tracer from the brain had occurred, SPECT images of the brain were obtained using a Picker 3000XP SPECT scanner (Picker International, Inc, Cleveland, OH, USA) with low energy ultrahigh resolution fan beam collimators. Images were reconstructed by filtered back projection using a low pass filter, eighth order, with a spatial frequency cut off of 0.23 to 0.25 cycles/pixel. Transverse, sagittal, and coronal planes with a 128×128 matrix were generated. Pixel sizes were nominally 3.56×3.56 mm. Resolution of the system was about 6 mm full width at half maximum (FWHM).

IMAGE PROCESSING

Spatial alignment of all 20 SPECT datasets was accomplished via 12 parameter affine registration.30 All datasets were first aligned to a random SPECT target to obtain an average “composite SPECT” which in turn was aligned to the International Consortium of Human Brain Mapping (ICBM) probabilistic atlas.1 To minimise resampling of data, the two registration fields above were concatenated and applied to each SPECT dataset. The relative perfusion scans of each patient then underwent linear intensity normalisation, on a voxel by voxel basis, to the global mean intensity value of all 20 patients, thus equalising the mean intensities across all datasets. This normalisation step did not alter the intersubject data variance or the mean intergroup differences.

Once all normalised datasets were in the common ICBM atlas space, a voxel by voxel subtraction was conducted between the psychotic and non-psychotic groups. Subvolume thresholding (SVT) was used to create a statistical map of these subtraction results according to methods previously detailed.22 Briefly, SVT utilises the probabilistic anatomical partitioning of the ICBM atlas (regions include the frontal, parietal, temporal, insular, and occipital cortex, along with the putamen, caudate, thalamus, and cerebellum) to model the different regions as separate stationary random fields thereby accommodating non-uniform global brain activity. This novel approach is particularly well suited for the assessment of functional imaging studies in Alzheimer’s disease as parietal and temporal regions may have different means and variances, across subjects, than frontal or subcortical regions given the pathological distribution of the disease.33 34 Ignoring these potential differences by modelling the entire dataset as a stationary random field, done by many other functional assessments, will obliterare disease specific variability.

After the location of voxels within a region of interest (ROI) has been assigned a Z score value, a significance level must be determined for voxels above a Z score threshold. The SVT local search within globally significant regions derived from the between group subtraction is corrected for multiple voxelwise testing to control for type I errors in assessing significance. For each of the voxels selected by SVT a Bonferroni correction is conducted by dividing the significance level associated with the Z score by the number of voxels constituting a single search (this voxel number is equal to the size of the FWHM of the scanner—6 mm)

Results

Table 1 shows the demographic and behavioural profile of the two groups. The demographic profile and MMSE mean score of the patients in this study were similar to the larger

<table>
<thead>
<tr>
<th></th>
<th>Psychotic mean (SEM)</th>
<th>Non-psychotic mean (SEM)</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td>M/F</td>
<td>M/F</td>
<td></td>
</tr>
<tr>
<td>MMSE</td>
<td>14.30 (2.31)</td>
<td>17.40 (2.07)</td>
<td>0.37</td>
</tr>
<tr>
<td>Education</td>
<td>11.50 (2.39)</td>
<td>12.89 (2.54)</td>
<td>0.49</td>
</tr>
<tr>
<td>Delusions</td>
<td>4.50 (0.50)</td>
<td>0.00 (0.49)</td>
<td>0.00</td>
</tr>
<tr>
<td>Hallucinations</td>
<td>1.30 (0.14)</td>
<td>0.00 (0.14)</td>
<td>0.01</td>
</tr>
<tr>
<td>Agitation</td>
<td>2.50 (0.36)</td>
<td>1.90 (0.28)</td>
<td>0.54</td>
</tr>
<tr>
<td>Depression</td>
<td>1.20 (0.38)</td>
<td>1.30 (0.39)</td>
<td>0.90</td>
</tr>
<tr>
<td>Anxiety</td>
<td>2.70 (0.31)</td>
<td>1.30 (0.30)</td>
<td>0.28</td>
</tr>
<tr>
<td>Euphoria</td>
<td>0.20 (0.06)</td>
<td>0.40 (0.06)</td>
<td>0.56</td>
</tr>
<tr>
<td>Apathy</td>
<td>4.40 (0.58)</td>
<td>3.20 (0.45)</td>
<td>0.37</td>
</tr>
<tr>
<td>Disinhibition</td>
<td>1.70 (0.61)</td>
<td>1.20 (0.18)</td>
<td>0.65</td>
</tr>
<tr>
<td>Irritability</td>
<td>2.30 (0.61)</td>
<td>2.00 (0.26)</td>
<td>0.81</td>
</tr>
<tr>
<td>Aberrant motor</td>
<td>1.90 (1.20)</td>
<td>3.20 (0.31)</td>
<td>0.44</td>
</tr>
</tbody>
</table>
patient pool except for the overrepresentation of women in our two groups. Delusions ($p<0.001$) and hallucinations ($p<0.01$) were the only behaviours that were significantly different between the two groups. All psychotic patients had delusions and half had hallucinations. Trends for lower MMSE ($p=0.37$), greater agitation ($p=0.54$), and anxiety ($p=0.28$), with lower aberrant motor behaviour ($p=0.44$), were present in the psychotic group compared with the non-psychotic group. The figure and table 2 show the Talairach atlas location of the peak significance for regions with significantly lower perfusion in the 10 patients with Alzheimer’s disease who had psychotic symptoms compared with the 10 non-psychotic patients with Alzheimer’s disease as reported by care givers. The regions showing significantly lower perfusion in the psychotic group included the left and right prefrontal, left striatum, and left parietal cortex.

Discussion

Functional imaging is the best tool for exploring the neuronal basis of neuropsychiatric disorders in life. Functional in vivo dissection of neural systems is only possible with metabolic or perfusion imaging. Psychosis is a complex behavioural disorder that does not manifest from a single brain defect. Disordered reality testing and abnormal inferential thinking are fundamental to psychosis. Such a disorder implicates executive and internal monitoring defects, and abnormal assessment of the emotional relevance of stimuli. We found significant hypoperfusion in the dorsolateral frontal cortex bilaterally, the left anterior cingulate, ventral striatum, pulvinar, and dorsolateral parietal cortex in psychotic patients with Alzheimer’s disease. Both right motor (BA 4, 6, and 8), left prefrontal (BA 11, 8, and 4), and cingulate regions were hypoperfused supporting a defect in motor planning and cognitive executive function as well as the cingulate attentional system.

The left dorsolateral frontal lobe integrates language based executive function$^{56–58}$ whereas the right seems to subserve internal monitoring.

Table 2 The Talairach atlas35 location of brain regions’ peak, Bonferroni corrected, significance for the statistical map shown in the figure.

<table>
<thead>
<tr>
<th>Structure (Brodmann area)</th>
<th>Talairach coordinates (x, y, z)</th>
<th>Peak z score (p Value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left medial orbital frontal (BA 11)</td>
<td>$-11, 46, -14$</td>
<td>6.2 (<0.0001)</td>
</tr>
<tr>
<td>Left anterior cingulate (BA 32)</td>
<td>$-9, 14, 46$</td>
<td>8.5 (<0.0001)</td>
</tr>
<tr>
<td>Left dorsolateral frontal (BA 4)</td>
<td>$-58, -5, 29$</td>
<td>6.5 (<0.0001)</td>
</tr>
<tr>
<td>Left dorsolateral frontal (BA 8)</td>
<td>$-39, 23, 37$</td>
<td>5.4 (<0.0001)</td>
</tr>
<tr>
<td>Left dorsolateral parietal (BA 40)</td>
<td>$-57, -52, 28$</td>
<td>5.2 (<0.0001)</td>
</tr>
<tr>
<td>Left pulvinar</td>
<td>$-12, -26, 9$</td>
<td>4.5 (<0.0001)</td>
</tr>
<tr>
<td>Left ventral striatum</td>
<td>$-16, 13, 8$</td>
<td>5.2 (<0.0001)</td>
</tr>
<tr>
<td>Left cerebellum</td>
<td>$-11, -59, -13$</td>
<td>7.4 (<0.0001)</td>
</tr>
<tr>
<td>Right dorsolateral frontal (BA 4)</td>
<td>$53, -7, 49$</td>
<td>6.6 (<0.0001)</td>
</tr>
<tr>
<td>Right dorsolateral frontal (BA 6)</td>
<td>$59, -2, 28$</td>
<td>9.3 (<0.0001)</td>
</tr>
<tr>
<td>Right medial frontal (BA 8)</td>
<td>$11, 27, 42$</td>
<td>4.7 (<0.0001)</td>
</tr>
</tbody>
</table>

These locations were derived from normalised brain perfusion, as measured by 99mTc-HMPAO SPECT. The map reflects regions with significantly lower perfusion in 10 patients with Alzheimer’s disease who had significantly more delusions and hallucinations compared with 10 patients with Alzheimer’s disease who were matched demographically and across all other behaviours measured by the NPI.
of veridical choice.40 41 The anterior cingulate coordinates executive and self monitoring systems to simultaneously operate on modality specific sensory and association networks42 while coordinating the posterior parietal and dorsolateral frontal attentional network.43 Outflow from the anterior cingulate is directed to the ventral striatum,44 also termed the limbic striatum. This medial frontal subcortical circuit may coordinate the integration of emotionally relevant tone with executive processing; dysfunction could result in emotionally charged aberrant beliefs. Lesions of the left orbitofrontal cortex produce spontaneous confabulation.45 Dysfunction of these reciprocally connected fronto-frontal networks is here associated with the occurrence of psychosis in Alzheimer’s disease.

No single brain location will be the source of psychotic symptoms in Alzheimer’s disease but the medial and dorsolateral frontal cortical networks, in conjunction with the anterior cingulate limbic circuits, subserve many of the functions that seem to disintegrate with increasing psychotic symptoms. These regions have been implicated in the current study. This study has a small sample size selected from nearly 300 patients in an effort to produce similar demographic groups and control co-morbid abnormal behaviours associated with psychotic systems. The drawback of such a sample purification is the loss of representation of a general Alzheimer’s disease population as reflected by the low representation of men in this study. Yet the purification of the groups was needed to isolate and balance sex differences in the groups was needed to isolate and balance sex differences in the study.10 Migliorelli R, Petracca G, Teson A, et al. Clinical and pathological diagnosis of dementia with Lewy bodies (DLB): report of the CDLB international workshop. Neurology 1996;46:130–5.

Support for this work was provided by an NIA career development award (K08AG100784) to MSM; an NIA Alzheimer’s Disease Research Center of California grant; the Sidell-Kagan Foundation, and the Human Brain Project (NIMH/NIDA: P20MHDA 52176, NSF (BIR932334), NCRR (RR05956).

7 Benton AL. Differential behavioral e.
Emil Theodore Kocher (1841-1917)

Theodore Kocher was Professor of Surgery at Berne for almost half a century. His experimental studies which included those on coagulation of blood, function of the brain and spinal cord, investigation of intracranial pressure, and bullet wounds and his contributions to general surgery were overshadowed by his pioneer work on the thyroid gland. He became the first surgeon to receive the Nobel Prize in Physiology or Medicine. The Nobel Committee cited Kocher for his “work on the physiology, pathology and surgery of the thyroid gland”.

Goitre was especially common in Switzerland. In 1883 he found that around one third of his patients who had undergone thyroidectomy developed postoperative myxoedema and the associated idiocy and associated symptoms were indistinguishable from cretinism. He showed that these tragedies could be prevented by not removing the whole of the thyroid gland. By 1898 Kocher reported a series of 600 thyroidectomies with only a single death. He emphasised avoidance of injury to the recurrent laryngeal nerves, which could lead to changes in the voice and tracheal obstruction especially if both recurrent nerves were injured.

At the end of his career Kocher had performed more than 5000 thyroldectomies for goitre with a very low mortality of 1%. Calm, cool, impermeable, and deliberate, Kocher was complete master of all surgical situations. For many years his clinic was a mecca for visiting surgeons from all parts of the world. Harvey Cushing as a young man “found Horsley pre-occupied and everyone else in England on their holidays”. He left England and went to Berne to work with Kocher, who had neurological interests. Cushing’s first impression was recorded in his diary for 1 November 1900. He commented on his “detailed technique, tedious operating, absolute hemostasis”. Of interest, Horsley’s first work was on myxoedema, for which he suggested implantation of normal thyroid tissue. In 1967 the Swiss honoured Kocher philatelically on the 50th anniversary of his death (Stanley Gibbons 746, Scott B365).

LF HAAS