LETTERS TO THE EDITOR

Coexisting vertical and horizontal one and a half syndromes

Supranuclear ocular movements comprise chiefly vertical and horizontal movements; horizontal movements are controlled by the subcortical centres located mainly at the pontine level and vertical movements at the level of the rostral midbrain. The classic one and a half syndrome is produced by a unilateral pontine tegmental lesion that includes the paramedian pontine reticular formation and medial longitudinal fasciculus on the same side, and has been considered an important ocular sign in neurological diagnosis. Vertical, as distinct from horizontal, one and a half syndrome, has also been documented recently. We report on a patient with concurrent vertical and horizontal one and a half syndromes.

A 57 year old man was admitted to hospital with a sudden onset of dysarthria and loss of consciousness while playing golf. He had a history of aortic regurgitation and heart failure 8 years previously, and underwent aortic valve replacement 5 years previously, when he started to take oral antplatelet and anticoagulant drugs. On admission, he was comatose, and his blood pressure was 140/76 mm Hg. He also had atrial fibrillation, Cheyne-Stokes respiration, bilateral miosis, and a positive Babinski's sign. Brain CT showed lesions suspected of being infarcts in the right medial thalamus and the left upper cerebellum. According to neurological findings on day 4 after onset of disease, he was in a state of hypersomnia. While awake, his head tilted slightly to the left, the right eye was slightly deviated upward, the left eye slightly downward, and there was bilateral miosis. For horizontal ocular movements, only the right eye could abduct with monocular horizontal nystagmus. Also, there was bilateral conjugated leftward palsy, indicating horizontal left one and a half syndrome. On the other hand, for vertical ocular movement, only the left eye could gaze downward. Also, difficulty in downward gaze of the right eye and bilateral conjugated upward palsy, indicating vertical one and a half syndrome, were noted (figure A). Doll's eye test (oculoccephalic reflex) was weak but positive, and the eyes were unable to converge. There was also ataxic dysarthria, cerebellar ataxia of the left limbs and trunk, right sided hemisensory disturbance, and bilaterally positive Babinski's sign. Brain MRI showed infarcts in the right medial thalamus, left dorsal portion of the upper midbrain, and left upper cerebellum (figure B). On magnetic resonance angiography performed at the same time, partial obstruction of the left posterior cerebral artery was noted at its origin. Cardiogenic cerebral embolism was suspected in the pathogenesis of the serial episode in this patient.

At 7 days the patient still tended to become unconscious, accompanied by Cheyne-Stokes respiration, when talking to a familiar person. About 1 month later he talked about occurrences at the onset and began to show an interest in his surroundings. At 2 months, adduction of the left eye, bilateral leftward gaze, downward gaze of the right eye, and bilateral upward gaze showed moderate improvement. The gait disturbance persisted and he is still in a wheelchair.

Classic horizontal one and a half syndrome is commonly caused by a vascular accident.

(A) Ocular movements of the patient. The right eye was slightly deviated upward, the left eye slightly downward in the primary position (P). For vertical movement, only the downward gaze of the left eye is possible. Downward palsy of the right eye and bilateral conjugated upward palsy were seen. For horizontal movements, the rightward gaze of only the right eye is present. The rightward palsy of the left eye and bilateral conjugated leftward palsy are shown. The eyes are unable to converge (C) and Doll's eye test (D) is weak but positive. (B) Brain MRI. a, b axial FLAIR imaging, c, d coronal T2 weighted imaging. High signal intensity areas are noted in the right medial thalamus, the left dorsal part of the rostral midbrain, and the left upper cerebellum.
occurring in the lower pons involving the paramedian pontine reticular formation and the medial longitudinal fasciculus. In the present patient one and a half syndrome, however, was thought to be due to two concurrent lesions of distinct nerve tracts in the upper left midbrain—that is, descending fibres from the frontal eye fields of the cerebral cortex after descent at the midbrain level and medial longitudinal fasciculus fibres ascending on the opposite side. Attention has recently focused on the rostral interstitial nucleus of the medial longitudinal fasciculus, interstitial nucleus of Cajal, resulting in tilting of the eyes and the mesencephalon, as the brain stem centres for vertical eye movement. Vertical one and a half syndrome consists of a bilateral conjugate upgaze palsy and a unilateral downward palsy, or a bilateral conjugate downward palsy and a monococular upgaze palsy. It has been reported that the fibres involved in upward gaze from the posterior commissure may explain bilateral upgaze palsy, and the fibres involved in downward gaze may be affected on one side before their decussation in contralateral lesion, or after their decussation in ipsilateral lesion. A patient was also reported with bilateral downgaze palsy and bilateral lesions of the rostral interstitial nucleus of the medial longitudinal fasciculus. Furthermore, it was reported that a unilateral lesion of the interstitial nucleus of Cajal resulted in tilting of the head towards the opposite side. Therefore, it can be assumed that the leftward tilting of the head seen in the patient under study was caused by a lesion of the right interstitial nucleus of Cajal. The present patient thus seems to be a rare case of the coexistence of two distinct syndromes, vertical and horizontal one and a half syndromes, although the lesions responsible for these syndromes are different. Even though the exact anatomical and physiological mechanism underlying vertical gaze still remains obscure in many respects, vertical gaze is mediated by the tegmentum of the mesencephalon, as the brain stem centres for vertical eye movement.

This work was supported by the Research Grant for Longevity Sciences (11C-05) from the Ministry of Health and Welfare.

Malignant catatonia secondary to sporadic encephalitis lethargica

Catatonia is a neuropsychiatric syndrome characterised by a combination of psychosomatic withdrawal and various movement disorders. Kahalbaum first described this syndrome in 1868 when he noted this condition of "profound mental and neurological demence". Kraepelin limited catatonia to a subtype of dementia praecox, later redefined by Bleuler in 1906 as catatonic schizophrenia. Since then, it has become increasingly apparent that the catatonic syndrome is not just a feature of schizophrenia, but in affector disorders as well as secondary to various underlying medical conditions, leading the DSM-IV to broaden its categorisation of catatonia to include these other entities. In the early 1900s, a condition known variously as epidemic encephalitis, encephalitis lethargica, or Von Economo's disease was described, affecting more than 65 000 patients from 1919 to 1929. Case descriptions from this time bear striking similarities to our modern definitions of catatonia. Throughout recent years, isolated cases of encephalitis lethargica have been reported. We present a patient with features of sporadic encephalitis lethargica and discuss management of this entity in the context of catatonia.

The patient was a 22 year old previously psychologically and neurologically healthy woman who was transferred to the Barrow Neurological Institute after a 4 week stay in hospital for progressive immobility, mutism, posturing, and tremor. Initial evaluation had shown a CNS syndrome with increased liver transaminases, and an EEG with bifrontal slowing. Further investigation as to aetiology of her meningoencephalitis was negative including brain MRI, brain biopsy, vasculitic features of sporadic encephalitis lethargica were ruled out. A diagnosis of malignant catatonia was made. She had a brief trial of intravenous lorazepam that improved her motor symptoms but produced excessive sedation and respiratory compromise. She was then referred for electroconvulsive therapy (ECT) and had four treatments over 2 weeks with dramatic improvement in her symptoms. Repeat FDG-PET was normal. She was discharged to a rehabilitation facility and at 6 month follow up, she had made a full recovery and returned to full time employment.

The diagnosis of catatonia has not been standardised but instead relies on a range of typical clinical features that combine an alteration of behaviour with stereotypic movement disorders. Catalepsy, although considered by Bleuler to be intrinsic to the condition, is currently not considered mandatory for the diagnosis. Cardinal signs are felt to be immobility, mutism, and withdrawal with secondary features including rigidity, posturing or grimacing, negativism, waxly flexibility (catatlepsy), echophenomen, stereotypy, and verbigeration. Criteria have been proposed which include many of the above signs in an effort to standardise diagnosis and treatment. Lethal (or malignant) catatonia has additional features of hyperthermia, autonomic instability, and rigidity often severe enough to lead to death through rhabdomyolysis, renal failure, and cardiovascular collapse.

Aetiologies of catatonia are varied and although its association with schizophrenia is accepted, it is most often seen with affective disorders. Medical conditions are increasing becoming recognised as causes of a catatonic syndrome. When first described, encephalitis lethargica produced three relatively distinct, although often overlapping neurological syndromes. The first, and most common, began with the patient progressing with increased sleepiness, ocular motility problems (including oculogyric crisis), and pupillary abnormalities and is known as the somnolent-ophthalmoplegic form. The parkinsonian form is presented with bradykinesia, catalepsy, and mutism and most closely resembles catatonia.

The final variety, recognised as the hyperkinetic form, had a more psychiatric presentation with agitation, motor restlessness, obsessional behaviour, psychosis, and dyskinesia. There are no contemporary criteria for diagnosis of encephalitis lethargica, however based on historical data, we think that our patient represents a progression from the hyperkinetic form into a more parkinsonian picture punctuated by occasional dyskinesias.

The pathological substrate for catatonia is largely unknown. When it is produced by anatomical derangement, abnormalities, obsessional behaviour, psychosis, and dyskinesia. It is most often seen in the thalamus, subthalamic, and substantia nigra. In patients dying from encephalitis lethargica, severe destructive changes were seen in the substantia nigra and, to a lesser extent, in the subthalamic nuclei and other basal ganglia structures. Our patient had a normal brain MRI and FDG-PET suggesting asymmetric thalamic hypometabolism which resolved with ECT, suggesting at least functional impairment in these anatomical areas.
Evaluation for the aetiology of catatonia is outlined in our report. Treatment is aimed at addressing any underlying medical conditions that may be producing the syndrome and once this is done, directly treating the catatonia itself. Historically, this has been varied, but recent studies suggest excellent efficacy for both high dose intravenous benzodiazepines and ECT.1 Our patient began responding within 24 hours of her first ECT and although spontaneous recovery remains a possibility, we think that her improvement is due to ECT. Data regarding outcome in epidemic encephalitis lethargica reports a mortality up to 35% with an additional 50% experiencing neuro- logical and psychiatric sequelae.1 Post-encephalitic parkinsonism could be seen as far out as 20 years in patients who seemed to have recovered from the acute infection. Recovery in our patient has been complete without evidence for a progressive or relapsing neurological or psychiatric disorder, although follow up has been limited to 1 year.

In conclusion, catatonia may be produced by various both neurological and psy- chiatric. Without a history of previous psychi- atric impairment, aggressive investigation should be pursued for treatable medical conditions. Catatonia due to medical conditions may be additionally treated with therapies typically reserved for psychiatric indications. The clinical syndrome of encephalitis lethar- gica, although no longer epidemic in nature, is still sporadically seen and the underlying inflammatory cause is, as yet, unknown.

HOLLY A SHILL
MARK A STACY
Muhammad Ali Parkinson Research Center, Barrow Neurological Institute, Phoenix, Arizona, USA
Correspondence to: Dr Mark A Stacy
mstacy@bng.chew.com


Downbeat nystagmus from heat stroke

Downbeat nystagmus is an ocular motility dis- turbance that may be seen in various patho- logical conditions. Although classically associated with structural lesions of the cervicomedullary junction or cerebellum, it can also occur in the setting of toxic insults and metabolic abnormalities.2 Heat stroke is the most severe form of heat related illness, and is associated with multisystem organ failure. Heat stroke is infrequently associated with a cerebellar syndrome. We describe a patient in which downbeat nystagmus was associated with a midline cerebellar syndrome in a patient with heat stroke, suggesting that the vermal cerebellum and vestibulocerebellum may be particularly susceptible to thermal injury. A previously healthy 22 year old man with- out relevant medical history collapsed while on a 4 mile run during military basic training. Initial core body temperature was 39ºC. He was incoherent and combative. Laboratory data showed increased creatine kinase, increased liver function tests, and prolonged coagulation variables. Measures to lower body temperature were initiated and he was transferred to our institution.

On arrival, core body temperature was 37ºC. He could not follow commands. His sodium concentration was 135, potassium 3.2, calcium 7.5, magnesium 1.6, alanine transaminase (ALT) 2739, aspar- tate transaminase (AST) 2112, white blood count 4.2, haemoglobin 12.5, platelet count 43 000, international normalised ratio (INR) 2.9, and ammonia 33. Serological tests for HIV and RPR were negative. An ECG and chest radiograph were unremarkable.

Over the next 72 hours, the patient’s liver enzyme activity improved. He received sev- eral transfusions to correct his thrombocytope- nia and hypocoagulability. Three days after admission, the patient’s family noted that his speech was slurred. The patient complained of blurred vision when reading or looking down. Neuro-ophthalmological examination 5 days after the onset of his visual symptoms showed near visual acuity of J16 in primary gaze (second degree), and J1 in up- gaze. Kinetic perimetry was full in both eyes. Pupils, external examination, anterior segments, and fundi were within normal limits. Motility examination showed full ductions and versions. Vertical and horizontal saccades were hypometric. Vertical and horizontal smooth pursuit were abnormal (vertical more than horizontal), showing low pursuit gain. There was impaired suppression of the vestibulo- ocular reflex. Downbeat nystagmus was present in primary gaze, worsening in down- gaze, and gaze down and laterally. This was poorly suppressed by fixation. His neurological examination showed cerebellar ataxia (truncal more than appendicular), and dysarthria. A high quality MRI of the brain with and without contrast and with di- fferential weighting was performed 6 days after the onset of visual symptoms and was normal. A lumbar puncture showed normal opening pressure and normal CSF flow. Thiamine was added empirically with no effect. Magnesium was corrected to a concentration of 2.6 mg/dl, without change in the patient’s downbeat nystagmus. The patient was discharged to a rehabilitation facility. He was lost to follow up.

Slow upward drifts and downward rapid phases characterise downbeat nystagmus. The velocity and amplitude of the rapid phases are often maximal when looking downward and laterally. Upward gaze typically dampens or eliminates downbeat nystagmus. Several mechanisms responsible for the syndrome have been proposed, including dysfunction of a neural integrator located in the brainstem, tonic imbalance in the vertical semicircular canal and ocular motor pathways, and an imbalance in the vestibulocerebellar region. It provides a neural integrator located in the brainstem,

...
Clinical characteristics of published cases of cerebellar syndrome from heat stroke

<table>
<thead>
<tr>
<th>Patient</th>
<th>Year</th>
<th>Age (years)</th>
<th>Temperature (°C)</th>
<th>Cause of fever</th>
<th>Clinical syndrome</th>
<th>Initial Imaging</th>
<th>Recovery and Follow-up Imaging</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1970</td>
<td>47M</td>
<td>42.2</td>
<td>Confusion in heat</td>
<td>Hypotonia, intention tremor, ataxia, dysarthria</td>
<td>NMS=neuroleptic malignant syndrome; CBLR=cerebellar; NL=normal.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1987</td>
<td>50F</td>
<td>43.2</td>
<td>Exertion in heat</td>
<td>NMS=neuroleptic malignant syndrome; CBLR=cerebellar; NL=normal.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1983</td>
<td>50F</td>
<td>42.5</td>
<td>NMS</td>
<td>Ataxia, dysmetria, hypotonia</td>
<td>CT NL Complete 5 months</td>
<td>CT at 5 months CBLR atrophy</td>
</tr>
<tr>
<td>4</td>
<td>1991</td>
<td>39M</td>
<td>41.9</td>
<td>NMS</td>
<td>Gait ataxia</td>
<td>CT NL None</td>
<td>CBLR atrophy</td>
</tr>
<tr>
<td>5</td>
<td>1996</td>
<td>44F</td>
<td>42.1</td>
<td>Exertion in heat</td>
<td>Dysarthria</td>
<td>MRI Complete 3 weeks</td>
<td>None</td>
</tr>
<tr>
<td>6</td>
<td>1996</td>
<td>40F</td>
<td>40.7</td>
<td>Heat stroke</td>
<td>Gait ataxia</td>
<td>MRI Complete 3 days</td>
<td>None</td>
</tr>
<tr>
<td>7</td>
<td>1996</td>
<td>53M</td>
<td>40.9</td>
<td>Pneumonia</td>
<td>Gait ataxia</td>
<td>MRI Complete 5 days</td>
<td>None</td>
</tr>
<tr>
<td>8</td>
<td>1996</td>
<td>40F</td>
<td>40.0</td>
<td>Pneumonia</td>
<td>Gait ataxia</td>
<td>MRI Complete 6 days</td>
<td>None</td>
</tr>
<tr>
<td>9</td>
<td>1996</td>
<td>40F</td>
<td>40.7</td>
<td>Erythropsis</td>
<td>Gait ataxia</td>
<td>MRI Complete 10 days</td>
<td>None</td>
</tr>
<tr>
<td>10</td>
<td>1996</td>
<td>40F</td>
<td>40.8</td>
<td>Exertion in heat</td>
<td>Nystagmus, ataxia, dysarthria</td>
<td>CBLR</td>
<td>None</td>
</tr>
<tr>
<td>11</td>
<td>1997</td>
<td>45M</td>
<td>42.0</td>
<td>Heat stroke</td>
<td>ataxia</td>
<td>NMS=neuroleptic malignant syndrome; CBLR=cerebellar; NL=normal.</td>
<td></td>
</tr>
</tbody>
</table>

NMS=neuroleptic malignant syndrome; CBLR=cerebellar; NL=normal.


Apolipoprotein E ε2 may be a risk factor for sporadic frontotemporal dementia

Frontotemporal dementia (FTD) is the second most common form of presenile dementia, after early onset Alzheimer's disease. Up to half of cases of FTD are thought to be due to di differences in diagnostic and exclusion criteria. This work was supported by Bristol-Myers Squibb. Fernando, C Johnston, D Warden and S Litchfield. We examined eight previous reports 1–3 6 8 11 45M 42 Exertion in heat Nystagmus, ataxia, dysarthria CT NL None MRI at 10 weeks

Controls (136) — 11 6 83 35 1


Apolipoprotein E ε2 may be a risk factor for sporadic frontotemporal dementia

Frontotemporal dementia (FTD) is the second most common form of presenile dementia, after early onset Alzheimer's dis ease. Up to half of cases of FTD are thought to be familial, probably with an autosomal dominant mode of inheritance, some with mutations on chromosome 17. The genetics of sporadic FTD have been less studied, although several groups have examined the potential association of FTD with apolipoprotein E (APOE) ε4, with inconclusive results. 1–3

We studied 11 patients with sporadic FTD (excluding patients with first degree relatives with dementia) in the cohort of the Oxford project to investigate memory and aging (OPTIMA). Nine of the 11 were histopathologically confirmed and the remaining two fulfilled the consensus criteria of Neary et al (three of the first nine had also been clinically diagnosed by these criteria and all three were confirmed at necropsy); only one of the nine confirmed cases was Pick-type. Apo lipro
Bilateral visual improvement after unilateral optic canal decompression and cranial vault expansion in a patient with osteopetrosis, narrowed optic canals, and increased intracranial pressure

Osteopetrosis (Albers-Schonberg disease, marble bones) is a relatively rare disease that is characterized by increased skeletal mass and bone density. It results from a defect in the development or function of osteoclasts with consequent impairment of bone resorption. The defect may be intrinsic to the osteoclast lineage or the mesenchymal cells that support the development and activation of the osteoclasts. Osteopetrosis is inheritable, and four clinical forms have been distinguished: autosomal-recessive, autosomal-dominant benign, mild autosomal-recessive, and autosomal-recessive osteopetrosis with renal tubular acidosis.

Of the four, the first two are the most prevalent. The disease is characterised clinically by multiple fractures, abnormally shaped bone, and anaemia. Its neurological manifestations include cerebrovascular complications, visual loss, papilloedema, and blindness from optic nerve atrophy.

Optic nerve atrophy is common and can result from the chronic effects of increased ICP. Papilloedema can be prevented by aggressive management of intracranial pressure (ICP), whereas that associated with narrowing of the optic canal is usually treated by neurosurgical decompression.

A 19 year old man, diagnosed with autosomal recessive osteopetrosis at about 5 months of age, presented in March 1997 with a dramatic decline in vision. He previously had a visual acuity of 20/30 in his right eye, 20/50 in his left eye, and full visual fields for most of his life. A brain CT in 1986 showed no optic canal narrowing. In 1994, he developed increased ICP and underwent a left optic nerve sheath fenestration and placement of a lumbarperitoneal shunt (LPS). His vision remained normal until August of 1996 when he began to experience declining vision. He was referred to the Johns Hopkins Hospital in March of 1997.

Visual acuity with correction was 20/200 in each eye. Near vision was 20/400 in each eye. Visual fields were limited in each eye to a tiny para-centric area of about 5 degrees. Colour vision was markedly impaired, with the patient being unable to identify any of the figures on the Hardy-Rand-Rittler (EHR) pseudoisochromatic plates. Pupils were equal and reactive to light, and there was a left relative afferent pupillary defect of 0.3 log units when measured using a neutral density filter. Extraocular movements were normal. Ophthalmoscopy disclosed bilaterally pale optic discs.

Non-contrast CT of the head showed marked diffuse thickening of the calvarium with a ground glass appearance. The bony dysplasia involved the skull base, and there was narrowing of both optic canals, the petrous carotid canals, the internal auditory canals, and the cochlear and vestibular apparatus (figure A). There was also ossification of the mastoid and frontal sinuses. The CT also showed evidence of increased ICP, including an effaced third ventricle. An indium radiotracer study showed that the LPS catheter was patent, but ultrasonography demonstrated bilateral enlargement of the retrobulbar optic nerves and a positive 30 degree test, consistent with increased ICP, and a lumbar puncture disclosed an opening pressure of 450 mm Hg, with normal CSF contents.

Consideration was given to treating the patient with acetazolamide, but because of the severity of visual loss associated with a pale optic disc, and because it was unclear if his decreased visual function was caused by compression of the optic nerves by the narrowed optic canals or increased ICP, it was decided to perform bilateral non-simultaneous optic canal decompressions combined with a cranial vault expansion. A bicoronal incision was made, a full thickness scalp flap was turned down to the level of the superior orbital rims bilaterally, and a large bifrontal bone flap was removed. The roof of the right optic canal was then removed along its entire length using a high speed drill and curettes. The bone flap, which was 3 cm thick, was thinned to about 1 cm and replaced, producing a significant cranial expansion.

Four days after surgery, the patient's visual acuity had improved to 20/30 bilaterally, he could correctly identify figures on seven of 10 HRR plates with the right eye and six of 10 colour plates with the left eye, and his visual fields were markedly expanded, almost to normal. A postoperative CT confirmed complete unroofing of the right optic canal (figure B).

Osteopetrosis related visual loss is often ascribed to optic nerve compression secondary to the narrowing of the optic foramina. However, optic nerve dysfunction can also result from the effects of increased ICP. Because our patient's unilateral optic canal decompression resulted in bilateral improvement in visual acuity and visual fields, it is reasonable to conclude that increased ICP and not narrowing of the optic canals was the cause of his visual deterioration. Thus, the cranial vault expansion that was performed in addition to the unilateral optic canal decompression was responsible for the rapid and dramatic improvement in the patient's visual function.

This case provides an important lesson on the evaluation of any patient with optic neuropathy that is presumed to be secondary to narrowing of optic canals in the setting of one of the craniostenoses. Although direct compression may indeed be primarily responsible for visual deterioration in patients with osteopetrosis and related conditions, increased ICP, related to either thickening of the skull or secondary occlusion of one of the cerebral venous sinuses, should always be considered a potential aetiology, and aggressively treated when identified or suspected.
Correspondence to: nrmiller@jhmi.edu

1 Felix R, Hofstetter W, Cecchini MG. Recent developments in the understanding of the pathophysiology of osteopetrosis. Eur J Endo-

Correspondence to: Dr Neil R Miller, Wilmer Eye

1 J Neurol Neurosurg Psychiatry 2000;69:401–409

www.jnnp.com

The London handicap scale

Jenkinson C et al show that London handicap scale scores are about the same if items are weighted equally rather than using the published scale weights.1 We reached much the same conclusion using the data from which the scale weights were derived.1 Handicap is defined as disadvantage in role performance due to impairments or disabili-

ities, which implies valuation of the extent to which role performance is affected. Value—

The fact that equal weighting gives roughly the same scores as the empirically derived weights is probably because the items were carefully chosen on the basis of clinical experience to be approximately equally spaced across the range of possible severity. Does it matter if different weighting meth-

ods lead to much the same results? Weighting processes are inexact, be they empirically derived or equal weighting, but the second approach simply increases the level of approx-

imation. The 95% confidence intervals around the agreement between estimated and measured scores were about ±10 (on a 0–100 scale). This measurement improvement arises because rating health states is difficult, leading to random measurement error, and the modelling assumed that overall valuation of a state of health could be estimated by the sum of the component parts of the descrip-

tion, which is almost certainly an oversimplifi-

fication (although goodness of fit statistics for the model were reasonable). The London handicap scale is primarily an epidemiologi-

cal tool—that is, it is intended for use in groups (such as in a clinical trial). If scores are calculated for individual patients—for example, in clinical practice—there is a further approximation, that between the values and opinions of that individual, and “average” views of the population from which the values were derived. There is some evidence that the handicap dimensions have general validity, and there is some consensus on the values assigned to states of handicap. As part of the revision process of the International Classification of Impairments, Dis-


2 Harwood R, Rogers A, Dickinson E, et al. Meas-


3 Harwood RH, Ibrahim S. Manual of the London handicap scale. Nottingham: University of Nott-


4 Lo R, Harwood R, Woo J, et al. Cross-validation of London handicap scale weights (derived from Londoners).1 Neither was there convincing between popu-

lation variation in scale weights assigned in the original scale development work.3 It is not safe, however, to assume that there are no between person differences. We are pleased to see a further independ-

ent validation of the London handicap scale. If simplification makes the scale more useful than we welcome it. The additional burden in applying the weights, however, is no more than that of adding six lines of commands in a statistical computer program (for instance, using SPSS). Moreover, the empirically derived estimates of valuations of handicap states, we see no reason why the further approximation of equal weighting is neces-

sary.

JONATHAN MANT

Department of Primary Care and Public Health, University of Birmingham, B15 2TT, UK

CRISPIN JENKINSON

Health Services Research Unit, University of Oxford, Oxford, UK

JUDY CARTER

DERICK WADE

Rivervale Rehabilitation Centre, Oxford, UK

SIMON WINNER

Department of Clinical Gerontology, Radcliffe Infirmary, Oxford, UK

Mass volume measurement in severe head injury

We read with interest the article by Stocchetti et al on the accuracy and feasibility of the ellipsoid and the Cavalieri method in assessment of the volume of intracranial mass lesions in patients with severe head injury.1

We agree with the authors that the volume of intracranial lesions, and its change over time, is important in the diagnosis and manage-

ment of patients with head injury and in the evaluation of clinical trials. However, the methodology used in the study raised our concern. We have several comments on their statements, because they are potentially misleading.

(1) The statement that computer based reading of mass lesions is the choice when accurate volume estimation is necessary, is insufficiently founded. Tracing CT lesions on a digitised screen automatically calculating area and hence volume, is a hazardous task: delineating hyperdense and hypodense le-

sions from normal surrounding intracranial structures cannot always be performed reli-

ably, due to isodensity of normal brain tissue at some edges and due to partial volume effects. Moreover, lesion tracing is the same as area estimation using a simple device such as a point counting grid with sufficient grid points, and is in fact not superior at all.2

(2) Volume estimations based on Cavalieri’s principle have to fulfill one absolute requirement: randomness.3,4 The volume of any object may be estimated from ran-

domised and parallel sections separated by a known distance by summing up the areas of all cross sections of the object and multiply-

ing this sum by the known intersection distance. The total area of all cross sections may be estimated by a stereological point counting method.4 A systematic array of grid intersection points is superimposed on each section. Giving random positioning of the test array on each section, the total number of grid intersection points hitting the object of interest affords an unbiased estimate of the volume of the object.


3 World Health Organisation. International classifi-

fication of impairments, disabilities and handi-


ROWAN H HARWOOD

Health Care of the Elderly, University Hospital, Nottingham NG7 2UH, UK

SHAH EBRAIM

Department of Social Medicine, University of Bristol, Canyone Hall, Whiteladies Road, Bristol BS8 2PR, UK

ROBERT J JENKINSON

Department of Clinical Geratology, Radcliffe Infirmary, Oxford, UK

Mant et al reply

Whether one decides to use the original weighting scoring system of the London handicap scale or the simpler unweighted scoring system as we propose is essentially a trade off between the advantages of each approach. As argued by Harwood and Ebra-

him, the weighting system will provide what at least seems to be a more accurate estimate of the value of a health state for only limited additional analysis. However, it should be noted that weighted systems more often than not give the same result with better accuracy when in fact all they produce is different results.1 Further, even if the weights are regarded as “the gold standard” the increase in accuracy is small, and there is scope for confusion due to the weights having been published,1 and the derivation of the score is more complex, which might lead to computational errors. However, perhaps the greatest advantage of the unweighted scoring system is that there is a simpler relation between the questionnaire responses and the final score, which makes interpretation more straightforward. There is a role for both methods of analysing the London handicap scale. Use of the simpler unweighted scoring would be likely to increase uptake and use of the instrument, without any apparent loss of accuracy. On the other hand, researchers who are already familiar with the weighting system have little to gain from switching to the unweighted system.
(I=normal, II=disorder of the severity of the initial injury, III=severe head injury with swelling, IV=death). The presence of a mass lesion provides a ranking of the area of the cisterns, the degree of midline shift, and the resultant of the status of the mesencephalic midbrain, and the possibility of Cavalieri's principle is its applicability to any mass lesion irrespective of size and form of the object.

The average difference between the applied technique and the reference computer based value is 0.57 (SD 9.99) ml for the Ellipsoid method and 0.20 (SD 15.48) ml for the ellipsoid method, suggesting on average an acceptable agreement. However, what really matters is the accuracy, validity and reliability of the individual volume measurements. These that are not very high can be derived from huge standard deviations of the average differences and from the considerable limits of agreement in the graphical depiction of the results.

Accuracy of the individual measurements hinges on the quality of the trauma coma data bank. In the TCDB classification a volume of greater than 25 ml is defined as a mass lesion. The interobserver variability was not omitted, but was in fact logically considered, and we must apologize if the text was not clear.

(3) Our data did not obscure the beauties of Cavalieri's method; performed better than the Ellipsoid method, particularly for irregularly shaped lesions. We agree that the method performs even better with bigger lesions reconstructed using thin slices. As one of our goals was to describe feasibility, however, the comments of Vos et al further stress that the best can be obtained from the Cavalieri method at the price of more time and work, as we verified and reported in the paper. Counting more than 50 points in more than 10 slices adds to the precision, but seriously increases the burden of measurements.

(4) We do not think, however, that our data, and the conclusions drawn from them, are potentially misleading, and we will try to clarify our arguments. As indicated in the paper, we compared two pragmatic methods and a computer based method. There are, of course, limitations to each method, and tracing on the computer screen can be tricky; however, a careful tracing is feasible in expert hands and we think that the result of the calculation still gives a very acceptable reference point. If this reference method is to be questioned, an appropriate, preferably superior, method should be identified. We cannot think of any pragmatic method that would be the best choice.

Regarding the other points that aroused the concern of Vos et al, we agree on many and will try to clarify them.

(1) Randomness is an important prerequisite; it was not mentioned in the paper but the grid was placed on the CT slices at each reader’s convenience and choice. Whether this was random enough can be debated, but it seems to ensure an adequate guarantee against systematic error.

(2) Our data did not obscure the beauties of the Cavalieri method. The direct estimator performed better than the Ellipsoid method, particularly for irregularly shaped lesions. We agree that the method performs even better with bigger lesions reconstructed using thin slices. As one of our goals was to describe feasibility, however, the comments of Vos et al further stress that the best can be obtained from the Cavalieri method at the price of more time and work, as we verified and reported in the paper. Counting more than 50 points in more than 10 slices adds to the precision, but seriously increases the burden of measurements.

(3) We did not base our comparison only on mean data. We stress the concerns of Vos et al on the analysis of mean data to the extent that we have used another method, based on that of Bland and Altman. This method compares every single lesion, obtained with each method, against the corresponding reference value. The results of this detailed comparison are illustrated in figs 1 and 2 of our paper. Numerical data, summarising the analysis according to Bland and Altman, are reported in the text and table. Both in the results section and in the discussion we stated that the mean data were not able to describe the discrepancies found in single cases.

(4) Accordingly, we assessed interobserver variability by ANOVA of individual measurements, and not of the mean data. In other words, we asked whether the measurement of any specific lesion by one examiner was significantly different from the other examiners’ results. The ANOVA on the readings by the three examiners using the Ellipsoid method gave a p value of 0.86, and the same analysis applied to the Cavalieri direct estimator gave a p value of 0.81; we therefore concluded that this analysis excluded significant differences. It seems the intraobserver variability was not omitted, but was in fact logically considered, and we must apologize if the text was not clear.

(5) We agree with the final paragraph of Vos et al on the structure of the Marshall classification, in which volume is one part of the grading. That was correctly indicated in our paper. From our experience in multicentre, international clinical trials, we think more optimistic about the proper feasibility of the TCDB classification and, that is another point in favour of improving the methods for CT readings.

In conclusion we have applied a methodology that seems solid enough to substantiate our conclusion and, we hope, to fulfill the requirements of careful and competent readers.

PIETER E VOS OSCAR J M VOGELS Department of Neurology, University Medical Centre St Radboud, PO Box 9101, 6500 HB Nijmegen, the Netherlands

HENK O M THIJSSEN Department of Neuroradiology

CEES ZIMMERMAN Department of Anatomy

Correspondence to: Dr Pieter E Vos


BOOK REVIEWS


This two volume book is unique in providing a comprehensive overview of all the aspects of basic neuroscience relevant to the neurosurgeon. As such it can be regarded as an essential source of information for neurosurgical trainees around the world. The authors state in the foreword to this edition that their ambition was to “reflect in as up to date fashion as possible the expanding knowledge so essential both to trainees and established neurosurgeons alike if they are to base their clinical practice on a proper scientific basis.” They can be congratulated on fulfilling their objective with such a well presented and beautifully illustrated new edition. Although clearly intended for a neurological readership, there are sections that will be valuable for practitioners in other disciplines, particularly neurologists, oncologists, and orthopaedic surgeons involved in spinal surgery. The third edition has expanded with the increased range of knowledge required by the

Information is a vital tool for patients wishing to gain more control over their lives. Different sources of information will suit different patients, and this book is a useful addition to the range of available resources. Its strength comes from the authors immense clinical experience. Its weakness is that it is too hospital centred. A formidable fist of potential investigations is described (including PET). Idiopathic Parkinson’s disease is described as a diagnosis of exclusion, which will certainly alarm the neuroradiologists in my health service.

Patients are given invaluable forewarning of conditions in a late 20th century British hospital: “Don’t expect to be seen at the time specified on the appointment letter.” ... “You may see a different doctor each time”; “The neurologist may know very little about the interventions and the circumstances and about him or her as a person.” Some advice about how to complain would have been invaluable.

Readers are advised that “You may be presented to a large number of doctors in the course of a clinical ‘presentation’”, but there is no mention of multidisciplinary case conferences, however, with a therapist, or hospital discharge planning.

The limited information about community care arrangements is dated, making no mention of care management, or of the statutory right of carers to have their own needs separately assessed. There is an invaluable and fairly comprehensive list of non-statutory resources, although much more could have been said about management of difficulties in car mobility. Oddly, wheelchairs are not in the index and get scant attention in the text. There are two unusually helpful sections on sexual dysfunction, but not enough on the management of sleep. Levodopa does increase alertness in some patients, but not in others, and in my experience improved night time mobility can sometimes improve sleep. Books of this type can never suit everyone and can never be comprehensive, but there is plenty of useful and accessible information in this one. I commend it to patients and families and especially to neurologists.

CHRISTOPHER WARD


The express aim of the editor of this book was to create “a master reference file on the field of neuroimaging”. This may sound somewhat enigmatic, particularly as, in Europe at least, we recognise two ways of using imaging to look at the nervous system: neuroradiology, a clinical speciality practiced by organ-specialised radiologists familiar with a wide range of techniques, closely related to the clinical neurosciences to which this journal is devoted—neurology, neurosurgery and psychiatry—and neuroimaging, usually the domain of physicists, psychologists, or neuroscientists expert in the application of a single technique, the impact of which on routine clinical practice has, it can be argued, often been negligible. A failure to distinguish clearly between the two markedly upsets the balance of this book.

The text is divided into four sections: history and technology (16 chapters); brain (11); head, neck, and spine (13, of which only four deal with the spine); and paediatrics (10). In each of these spaces devoted to some subjects seems inversely proportional to their clinical impact. Thus, in section I, the physical basis of CT and MRI merits 24 pages, with 15 references, whereas functional MRI occupies 22 pages, supported by no fewer than 154 references. Functional MRI is in vogue, but come on, chaps, what about a sense of proportion? If that were not enough, two chapters on radionuclide studies (PET and SPECT respectively) have 60 pages of text between them, with 1011 references; one could be forgiven for wondering if the author had simply downloaded his Reference Manager!!! I can only suppose the reason magnetic resonance imaging (MRI) and SPECT are neglected is generous. Much useful information is to be found between these hard covers, although for me the book fails to live up to the promise of the rather facetious foreword. Does it deserve a place on that already perilously overburdened departmental bookshelf? Neuroimagers will, I imagine, identify rival texts as more suited to their specially focused needs; trained neuroradiologists who seek a comprehensive and adequate source material. The chapter on degenerative disease of the spine, written by musculoskeletal specialists who seem to deal principally with orthopaedic surgeons or rheumatologists, should carry a hazard warning that it presents views so personal as to be not only idiosyncratic but potentially misleading. Conversely, the chapter on the orbit and visual system, sensibly concentrating on the use of CT for the former, is admirable, apart from the caption to figure 77: the lesion described as a dermoid is almost certainly a dermolioma.

Some 75 North American authors, few—as yet major international figures, contributed to the 52 chapters, more than a dozen of which are the result of collaboration between at least three people. As this might lead one to expect, the literary and intellectual level, including the critical evaluation of the literature central to review-type chapters, is very variable. However, the illustrations are almost uniformly excellent and the 75 page index, included in both volumes, if also somewhat too long, is generous.

Much useful information is to be found between these hard covers, although for me the book fails to live up to the promise of the rather facetious foreword. Does it deserve a place on that already perilously overburdened departmental bookshelf? Neuroimagers will, I imagine, identify rival texts as more suited to their specially focused needs; trained neuroradiologists who seek a comprehensive and adequate source material, but also some worrisome deficiencies and debatable notions.

IVAN MOSELEY


This is a multiauthor reference book with contributions from epidemiologists, neuroradiologists, neurologists, and cardiologists. It succeeds in being both comprehensive and concise, making it a valuable book to have available to “dip into”. However, it is quite a long haul to read from start to finish.

www.jnnp.com
There are chapters of practical use to physicians, both community and hospital based, who are involved in vascular risk factor management and specifically the primary and secondary prevention of stroke. For example, the chapter on “when to anticoagulate and at what dose” is particularly useful. Topics such as lipid lowering, antipletaly strategies, and the management of carotid disease are covered well with pragmatic advice based on the available evidence. Where there are gaps in the evidence is also clearly stated.

There is a helpful section on haematological disorders and stroke risk with detailed information on the congenital and acquired thrombophilias and the management of antiphospholipid syndrome, which lay out the historical perspective of neuroanatomy and describe beri-beri. These chapters on regional neuroanatomy are rife in this area. For example, Vieussens de Montpellier dissected 500 fixed brains in his bid to clarify some of the finer points of neuroanatomy. A book such as this is always going to struggle to define its audience, not least because historical medicine seems irrelevant to the high tech age of molecular genetics and functional imaging. If we can see the acetylcholine receptor at the resolution of a few Angstroms, why bother with the gross descriptions of various brain tumours. The book concludes with a chapter on the modern age of neuroscience and a magnificent list of references. If this were not enough, we are then treated to three appendices on art and neurology, medical, forms, and a glossary of neurological syndromes. All most illuminating, although the account on art and neurology is not as exhaustive as it could be, given the fascinating speculations that are rife in this area. For example, what was the problem with Monet giving rise to his visual failure in later life and what, if anything, is the neurological abnormality shown in Dürer’s drawing of praying hands. This book is, though, a treasure trove of fascinating facts—for example, it was news to me that Galen was the first to describe the corpus callosum while the quadrigeminal bodies had to wait until Willis before they were acknowledged. This attention to detail and the ingenuity of these earlier investigators is inspiring, although many of these early investigators may have run into problems with local ethics committees or the Home Office inspector—for example, Galen cut the spinal cord at a closing time on the modern state of the animal. Indeed the industry of some of these early investigators is to be greatly admired. For example, Raymond de Vieussens de Montpellier dissected 500 fixed brains in his bid to clarify some of the finer points of neuroanatomy.

A book such as this is always going to struggle to define its audience, not least because historical medicine seems irrelevant to the high tech age of molecular genetics and functional imaging. If we can see the acetylcholine receptor at the resolution of a few Angstroms, why bother with the gross descriptions of various brain tumours. The book concludes with a chapter on the modern age of neuroscience and a magnificent list of references. If this were not enough, we are then treated to three appendices on art and neurology, medical, forms, and a glossary of neurological syndromes. All most illuminating, although the account on art and neurology is not as exhaustive as it could be, given the fascinating speculations that are rife in this area. For example, what was the problem with Monet giving rise to his visual failure in later life and what, if anything, is the neurological abnormality shown in Dürer’s drawing of praying hands. This book is, though, a treasure trove of fascinating facts—for example, it was news to me that Galen was the first to describe the corpus callosum while the quadrigeminal bodies had to wait until Willis before they were acknowledged. This attention to detail and the ingenuity of these earlier investigators is inspiring, although many of these early investigators may have run into problems with local ethics committees or the Home Office inspector—for example, Galen cut the spinal cord at a closing time on the modern state of the animal. Indeed the industry of some of these early investigators is to be greatly admired. For example, Raymond de Vieussens de Montpellier dissected 500 fixed brains in his bid to clarify some of the finer points of neuroanatomy.

A book such as this is always going to struggle to define its audience, not least because historical medicine seems irrelevant to the high tech age of molecular genetics and functional imaging. If we can see the acetylcholine receptor at the resolution of a few Angstroms, why bother with the gross descriptions of various brain tumours. The book concludes with a chapter on the modern age of neuroscience and a magnificent list of references. If this were not enough, we are then treated to three appendices on art and neurology, medical, forms, and a glossary of neurological syndromes. All most illuminating, although the account on art and neurology is not as exhaustive as it could be, given the fascinating speculations that are rife in this area. For example, what was the problem with Monet giving rise to his visual failure in later life and what, if anything, is the neurological abnormality shown in Dürer’s drawing of praying hands. This book is, though, a treasure trove of fascinating facts—for example, it was news to me that Galen was the first to describe the corpus callosum while the quadrigeminal bodies had to wait until Willis before they were acknowledged. This attention to detail and the ingenuity of these earlier investigators is inspiring, although many of these early investigators may have run into problems with local ethics committees or the Home Office inspector—for example, Galen cut the spinal cord at a closing time on the modern state of the animal. Indeed the industry of some of these early investigators is to be greatly admired. For example, Raymond de Vieussens de Montpellier dissected 500 fixed brains in his bid to clarify some of the finer points of neuroanatomy.

A book such as this is always going to struggle to define its audience, not least because historical medicine seems irrelevant to the high tech age of molecular genetics and functional imaging. If we can see the acetylcholine receptor at the resolution of a few Angstroms, why bother with the gross descriptions of various brain tumours. The book concludes with a chapter on the modern age of neuroscience and a magnificent list of references. If this were not enough, we are then treated to three appendices on art and neurology, medical, forms, and a glossary of neurological syndromes. All most illuminating, although the account on art and neurology is not as exhaustive as it could be, given the fascinating speculations that are rife in this area. For example, what was the problem with Monet giving rise to his visual failure in later life and what, if anything, is the neurological abnormality shown in Dürer’s drawing of praying hands. This book is, though, a treasure trove of fascinating facts—for example, it was news to me that Galen was the first to describe the corpus callosum while the quadrigeminal bodies had to wait until Willis before they were acknowledged. This attention to detail and the ingenuity of these earlier investigators is inspiring, although many of these early investigators may have run into problems with local ethics committees or the Home Office inspector—for example, Galen cut the spinal cord at a closing time on the modern state of the animal. Indeed the industry of some of these early investigators is to be greatly admired. For example, Raymond de Vieussens de Montpellier dissected 500 fixed brains in his bid to clarify some of the finer points of neuroanatomy.

A book such as this is always going to struggle to define its audience, not least because historical medicine seems irrelevant to the high tech age of molecular genetics and functional imaging. If we can see the acetylcholine receptor at the resolution of a few Angstroms, why bother with the gross descriptions of various brain tumours. The book concludes with a chapter on the modern age of neuroscience and a magnificent list of references. If this were not enough, we are then treated to three appendices on art and neurology, medical, forms, and a glossary of neurological syndromes. All most illuminating, although the account on art and neurology is not as exhaustive as it could be, given the fascinating speculations that are rife in this area. For example, what was the problem with Monet giving rise to his visual failure in later life and what, if anything, is the neurological abnormality shown in Dürer’s drawing of praying hands. This book is, though, a treasure trove of fascinating facts—for example, it was news to me that Galen was the first to describe the corpus callosum while the quadrigeminal bodies had to wait until Willis before they were acknowledged. This attention to detail and the ingenuity of these earlier investigators is inspiring, although many of these early investigators may have run into problems with local ethics committees or the Home Office inspector—for example, Galen cut the spinal cord at a closing time on the modern state of the animal. Indeed the industry of some of these early investigators is to be greatly admired. For example, Raymond de Vieussens de Montpellier dissected 500 fixed brains in his bid to clarify some of the finer points of neuroanatomy.

A book such as this is always going to struggle to define its audience, not least because historical medicine seems irrelevant to the high tech age of molecular genetics and functional imaging. If we can see the acetylcholine receptor at the resolution of a few Angstroms, why bother with the gross descriptions of various brain tumours. The book concludes with a chapter on the modern age of neuroscience and a magnificent list of references. If this were not enough, we are then treated to three appendices on art and neurology, medical, forms, and a glossary of neurological syndromes. All most illuminating, although the account on art and neurology is not as exhaustive as it could be, given the fascinating speculations that are rife in this area. For example, what was the problem with Monet giving rise to his visual failure in later life and what, if anything, is the neurological abnormality shown in Dürer’s drawing of praying hands. This book is, though, a treasure trove of fascinating facts—for example, it was news to me that Galen was the first to describe the corpus callosum while the quadrigeminal bodies had to wait until Willis before they were acknowledged. This attention to detail and the ingenuity of these earlier investigators is inspiring, although many of these early investigators may have run into problems with local ethics committees or the Home Office inspector—for example, Galen cut the spinal cord at a closing time on the modern state of the animal. Indeed the industry of some of these early investigators is to be greatly admired. For example, Raymond de Vieussens de Montpellier dissected 500 fixed brains in his bid to clarify some of the finer points of neuroanatomy.