LETTERS TO THE EDITOR

Treatment of paroxysmal sympathetic storm with labetalol

First described by Penfield in 1929, paroxysmal sympathetic storm is characterised by episodic hyperhidrosis, hypertension, hyperthermia, tachypnoea, tachycardia, and posturing. It has commonly been associated with closed head traumatic brain injury, agenesis of the corpus callosum, hydrocephalus, and suprasellar or diencephalic tumours. Penfield hypothesised that these sympathetic spells were caused by epileptiform discharges in thalamic nuclei irritated by increased intracranial pressure, thereby leading him to name this entity “diencephalic autonomic seizures”. Electroencephalograms obtained on patients during these autonomic attacks, however, have not shown epileptic activity, and anticonvulsant therapies have not proved useful in their treatment. Bromocriptine and morphine have been the standard treatments for paroxysmal sympathetic storm, and propranolol has been shown to reduce the hyperpyrexia seen during autonomic spells. In this case report, we describe a patient treated successfully with labetalol, but not metoprolol, suggesting that β1 antagonism alone is not sufficient to suppress paroxysmal sympathetic storm.

A 21 year old white man was an unrestrained passenger in a motor vehicle accident and developed a closed head shear injury. He was admitted to a hospital where a head CT showed hydrocephalus necessitating a ventriculoperitoneal shunt placement. A head MRI showed abnormal T2 signal in the corpus callosum and the dorsal midbrain consistent with shear injury. Although initially comatose, he improved to near baseline over the next few months. He was admitted to our hospital 15 months later with a shunt infection, necessitating treatment with vancomycin, shunt externalisation, and, eventually, replacement. During and after resolution of the shunt complications, he developed episodes of sympathetic hyperactivity while under continuous monitoring in an intensive care unit. These attacks were characterised by (1) diaphoresis throughout the entire body, (2) tachycardia (heart rate 140-160 bpm) measured by automated pulse oximetry or by ECG, (3) hypertension (blood pressure 170-180/100 mm Hg) measured by arterial line pressure transducers or by sphygmomanometer, (4) fevers to 39.1 °C orally, and (5) flexor posturing. He was alert during these episodes, and responded to questions appropriately with denial of any acute onset of discomfort or pain. Furthermore, these attacks were not correlated with periods of bladder distension (Foley catheter in place) or impaction (radiograph not suggestive of retained stool). Individual episodes lasted 5-10 minutes and recurred at 5-10 minute intervals. Clusters of these spells would last 1 to 2 hours with more than three clusters a day.

Multiple CSF and blood cultures were negative. Serial head CT showed marked reduction of hydrocephalus and no brain stem abnormalities after shunt correction. No other intracranial pathology was noted. Plain films and MRI of the spine showed no myelopathic findings suggesting autonomic dysreflexia. Abdominal and pelvic CT did not show any hidden masses or lesions. Toxicology screen at onset of symptoms was negative. Electroencephalograms obtained during these episodes of dysautonomia disclosed theta and delta slowing with some sharply contoured waves, but no definite ictal or interictal epileptiform activity (figure).

Although initially treated successfully with bromocriptine (5 mg twice daily) and morphine (15 mg every 6 hours), he was withdrawn from morphine with a methadone taper at the request of his parents secondary to concerns over addiction. He was then started on metoprolol (25 mg thrice daily) with little effect on the frequency or severity of these attacks. In this case, labetalol (200 mg every 6 hours) was administered and resulted in a marked reduction of hyperpyrexia and other symptoms while under continuous monitoring. These findings suggest that β1 antagonism alone is not sufficient to suppress paroxysmal sympathetic storm.

EEG obtained during episodes of paroxysmal sympathetic storm (tachycardia with heart rate of 120 bpm) shows predominant delta and theta waves (greater on the right than on the left) with no clear epileptiform activity, indicating that these attacks are not of seizure origin.
of the hyperautonomic episodes. Replacement with 100 mg labetalol twice daily led to reduction in the frequency of events to about one a day. Subsequent increase of the medication to 200 mg twice daily resulted in a marked decrease to less than one paroxysmal sympathetic storm over several days. At the time of discharge, the patient had returned to his preadmission baseline.

The current observations lend support to the prevailing view that paroxysmal sympathetic storm may represent disruption of autonomic function in the diencephalon and brainstem. Bullard has proposed that the clinical syndrome may be the result of a release phenomenon within the brainstem and hypothalamus from loss of overlying cortical or subcortical inhibition. More recent case studies suggest localisation to the central sympathoexcitatory regions including the paraventricular hypothalamic nucleus, lateral periaqueductal grey matter, lateral parabrachial nucleus, or rostral ventrolateral medulla. Compromised autonomic neuronal integrity centrally is not surprising in the setting of infection after traumatic brain injury. As these conditions can potentiate each other, they can be used in managing central sympathetic storm. Imidazoline agonists and specific α_2 adrenergic receptor antagonists, such as clonidine and methyldopa, have recently been shown to have beneficial effects with inhibitory actions centrally within the rostral ventrolateral medulla. These agents have so far been used in the treatment of essential hypertension, tetanus, or autonomic dysreflexia. β Blockers such as propranolol however, have long been used as the mainstay of treatment of the hypertension, tachycardia, and hyperpyrexia associated with paroxysmal sympathetic storm. This non-selective β adrenergic antagonist acts through inhibition of peripheral catecho- lamine activity, and being highly lipophilic, may also exert central effects through membrane stabilisation or receptor blockade. Moreover, propranolol may reduce sustained muscle contraction. Taken together, these findings suggest that non-selective β receptor antagonism is sufficient to inhibit the clinical manifestations of diencephalic seizures.

The present case suggests that β receptor antagonism alone is not sufficient to control hyperautonomia during paroxysmal sympathetic storm. This patient was initially placed on starting doses of metoprolol, a selective β_1 antagonist, to control clinical effect in controlling the frequency of the autonomic attacks; however, labetalol, an α_1 and $\beta_1-\beta_2$ adrenergic receptor antagonist did lead to an observable decline in symptoms. Both sympatholytic agents were given at doses typically used in initiating treatment of systemic hypertension, suggesting that the observed response seen with labetalol could not be explained solely by a dosage phenomenon. Prior studies also demonstrate that small amounts of propranolol (20 mg four times a day) can achieve demonstrable effects with small amounts of propranolol (20 mg four times a day) can achieve demonstrable effects with inhibition of autonomic dysregulation. The clinical ineffectiveness of metoprolol further suggests a necessary role for β_2 and/or α_1 receptors in the clinical presentation of paroxysmal sympathetic storm. Labetalol may prove an alternative equal to or better than morphine in the treatment of these spells, especially when addiction and dependency are of concern.

D DO V L SHEEN E BROMFIELD
Departments of Neurology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA

Correspondence to: E B Bromfield ebromfield@partners.org

4 Head GA. Central imidazoline- and α_2- receptors involved in sympathovagal actions of centrally acting antihypertensive agents. Ann NY Acad Sci 1998; 850.

Moyamoya disease presenting with singing induced chorea

Moyamoya disease is a relatively uncommon, chronic cerebral vasculopathy of unknown aetiology that characterised by unilateral or bilateral stenosis or occlusion of the proximal portion of the carotid arteries, together with an abnormal vascular network at the base of the brain. Most childhood cases manifest with the signs and symptoms of cerebral ischaemia or infarction, whereas intracerebral haemorrhage prevails in adults. We describe here a case of moyamoya disease in a 29 year old multipa- rous woman, who presented with involuntary limb movements while singing. A 29 year old woman, gravida two, para two, presented to the neurological outpatient clinic at Chungbuk National University Hospital with recurrent episodes of brief involuntary move- ments affecting her left hand and arm. The movements were characterised as unilateral, brief, coarse, irregular, and worsening. There was no history of neuroleptic therapy, or family history of involuntary movement.

General physical, neurological, and neuro- psychological examinations were unremarkable. Baseline blood tests, CT, and MRI imaging and angiography all yielded normal results. The episodes of the patient’s involuntary move- ments were unique, in that they usually appeared while she was opera singing in a choir at church. They were also occasionally provoked by some conditions of hyperventilation such as blowing to cool hot soup, or blowing the dust off a table. This suggested an underlying ischaemic pathophysiology and prompted us to investigate a possible underlying ischaemia to vasculature and parenchyma. The short lived choreiform movements were usually pre- ceded by a tingling sensation in her left hand, which occasionally extended to the left leg. An EEG between ischaemic episodes disclosed diffuse slow waves bilaterally over the hemispheres; these slow waves increased as “build up” with the appearance of delta waves during hyperventilation. Magnetic resonance imaging and sub- jective four vessel angiography showed nearly complete obstruction of the terminal portion of each internal carotid artery and the outline of a moyamoya network (fig C and D). Staged encephaloduroarteriosynangiosis was performed on the left and right sides, 1 week apart, resulting in an evident amelioration of the patient’s involuntary movements. Chorea is one of the rarer, although acknowledged, presenting features of moyamoya disease; chorea is usually observed in children. It is suggested that about 6% of patients with moyamoya disease have chorea. Other types of involuntary movements have been described in patients with moyamoya disease, including ataxia, seizures, complex partial epilepsy, and confusional episodes of carpopedal spasm, recurrent tor- ticollis, and limb shaking transient ischaemic attack. Hemichorea is characterised by uni- lateral, brief, coarse, involuntary movements, and is usually caused by some asymmetric, focal brain lesion. The clinical presentation of our patient was associ- ated with opera type singing. Singing requires both hyperventilation and the breath holding Valsalva’s manoeuvre. Hyperventilation causes an increase in arte- rial oxygen tension, which subsequently causes vasoconstriction, which, in turn, reduces blood flow. In addition, Valsalva’s manoeuvre increases cerebral venous pressure, which then increases intracranial blood volume and intracranial pressure, thereby reducing the arterial perfusion pressure. Thus, in those regions of the brain and cortex that are already critically perfused, hyperventilation and Valsalva’s manoeuvre can easily lead to transient ischaemic insult, which may be clinically manifested by involuntary movements. It seems likely that hyperventilation and breath holding act synergistically to reduce brain perfusion. In this patient, the hemichorea episodes were attributed to hyperfusion of the contralateral cerebral hemisphere, and sympathetically to epilepsy.
occlusive carotid disease is important in the recognition of this uncommon form of differential diagnosis of adult onset chorea. Moyamoya disease should be included in the clinical differential diagnosis of adult onset chorea. However, the causes of chorea are manifold and careful neuroradiological and clinical evaluation is required to distinguish them.

Our findings emphasise that moyamoya disease is a rare condition, occurring with a frequency of about 1% of that of trigeminal neuralgia. Medical treatment, particularly with carbamazepine, is usually effective if the diagnosis is correct although it is not without morbidity and even mortality. Late recurrence after such treatment, as described below, has not previously been reported and raises interesting issues of mechanism and method of treatment which are considered in this brief report.

The patient initially presented in 1988 as a 23 year old woman with typical glossopharyngeal neuralgia, experiencing severe intermittent pain in the left side of the throat, the back of the tongue, and the ear. The pain was aggravated by talking and swallowing and relieved, to some degree, by pressure on the left side of the neck. At first there was a good response to carbamazepine. When medication was stopped after several months the pain returned and was less well controlled with a further course of the drug. Neurological examination, CT, and MRI were normal. In 1989 she underwent posterior fossa craniectomy and exploration of the IXth and Xth cranial nerve roots. No lesion, in particular no vascular compression, was identified. The left IXth nerve root and the two uppermost Xth nerve rootlets were divided adjacent to the brain stem. Her postoperative course was uncomplicated and she remained entirely symptom free for over 9 years.

In 1998, now aged 33 years, she developed recurrence of her original pain which she described as essentially identical to that at the initial presentation. Again the pain responded to carbamazepine but required a high dose (1200 mg daily) which was accompanied by troubling side effects (drowsiness and dizziness). In addition she was not completely pain free. Neurological examination and further MRI were normal. In October 1998 a further posterior fossa exploration was carried out. The previously divided nerve roots were identified and the completeness of the posterior rootlets was confirmed. The normal and previously sectioned nerve rootlets were divided adjacent to the IXth nerve root and the two uppermost Xth nerve rootlets. No lesion, in particular no vascular compression, was identified. The left IXth nerve root and the two uppermost Xth nerve rootlets were divided adjacent to the brain stem. Her postoperative course was uncomplicated and she remained entirely symptom free for over 9 years.

The first description of glossopharyngeal neuralgia is credited to Weisenberg in 1910, who described a patient in whom the pain was secondary to a carotid-vagal neuralgia. The pain is characteristic although two variants have been described; an otitic form with pain predominantly deep in the ear, in the external acoustic meatus, and the mastoid region and an ophthalmic neuralgia in which the pain is experienced in the pharynx, the tonsilar area,
the soft palate, and the posterior third of the tongue. For patients refractory to medical treatment several surgical options are available including extracranial avalvulization, intracranial preganglionic root section, trigeminal tractotomy, either open or percutaneous CT guided, and microvascular decompression. As mentioned at the outset, intracranial root section has been the most often employed and is generally regarded as curative. It was, however, realised early that section of the upper vagal rootlets is important in that some cases without the additional section were either not relieved or experienced early recurrence. More recently microvascular decompression has been employed, particularly by one author with complete relief of pain in 76% and substantial improvement in a further 16% in the largest series, with a mean follow up of 48 months. As with trigeminal neuralgia, the actual incidence of presumed causative “neurovascular conflict” and, indeed, the exact mechanism of causation are as yet unresolved questions.

The particular dilemma posed by the present case had both a diagnostic and a therapeutic arm, referable in each case ultimately to mechanism. The only reported cases of recurrence after preganglionic section are the small group, referred to above, in which the upper vagal rootlet was cut and who subsequently responded to section of the upper vagal rootlets and one patient who had both had a IXth and partial Xth rhizotomy and who later responded to a trigeminal nerve procedure. In these cases failure was typically either immediate or not long delayed. In the largest series reporting the results of treatment and in a smaller series with long follow up there were no recurrences after preganglionic section of the IXth and upper Xth roots. Likewise, after total sensory root section via the posterior fossa (Dandy procedure) trigeminal neuralgia does not recur.

In our case, assuming completeness of the initial section, there seemed to be, essentially, three possible explanations for the recurrent pain. First, that the pain was due to involvement of the remaining non-trigeminal somatic afferent pathways to the cranial trigeminal nucleus (in the VIIth and the remainder of the Xth cranial nerves); secondly, that it was some form of postdenervation pain akin to the anaesthesia dolorosa described in the spinal root sections and one instance after IXth nerve section; and, thirdly, it was a form of trigeminal neuralgia, there being a reported coincidence of the two forms of neuralgia in a few cases. The close similarity of the recurrence to the initial pain, both in nature and site, the long period since the initial pain, and the response to carbamazepine all favoured the first possibility. On the basis of this diagnosis, coupled with the patient’s relative youth and, if it must be said, her strong insistence, re-exploration was undertaken as described above. Whatever one’s position on the vascular compression theory of the cause of cranial nerve neuralgias this is an impressive and, in conjunction with the undesirability of further nerve section, encouraged treatment by microvascular decompression alone. The immediacy of pain relief, sustained now for 18 months, supports this decision. It might be argued that the presumed vascular compression was overlooked at the first procedure but there are several points against this. Firstly, both procedures were performed by the same surgeon, experienced in posterior fossa surgery, and the area of compression was in the same place as the initial section. Secondly, the young age at first presentation is against a vascular pathology, particularly where the vertebral artery is causative; and thirdly, there is a reported incidence of new vascular compression in re-exploration for recurrent trigeminal neuralgia.

In conclusion, the salient points to emerge from this brief report are that vagoglossopharyngeal neuralgia can recur after IXth and partial Xth nerve section and that this patient provides evidence for a pure vagal neuralgia. This supposition is supported by the finding that even the most casual vagal rootlets may carry general somatic afferent fibres to the spinal trigeminal tract. In addition, the two separate episodes with differing pathologies raise the interesting question of whether there is a particular propensity for neuralgia which may or may not require a vascular trigger. This bears on the point raised by Adams et al as to why there are so many possibly causative vessels and so few neuralgias.

Clinical Pick’s disease is characterised by frontal and anterior temporal lobe dysfunction and progressive dementia, whereas neuropsychopathologically the underlying frontotemporal atrophy is complemented histologically by the presence of large, swollen, achromatic neurons, the Pick cells, and by tau positive intraneuronal inclusions, the Pick bodies. The clinical features of corticobasal degeneration include asymmetric extrapyramidal disturbances, parkinsonism, and the “alien limb” phenomenon (apparent purposeful movements which are not under voluntary control) followed by cognitive impairment. Histologically there is neuronal loss, astrocytosis, and Pick cell (tau) neuronal and glial inclusions, but the most prominent feature is the presence of large, swollen neurons, morphologically indistinguishable from Pick cells. It is the occurrence of these cells in both disorders which causes most of the differential diagnostic problems.

In the human central CNS six tau isoforms are generated by alternative splicing and these are then posttranslationally phosphorylated. At molecular level the electrophoretic profiles of aggregated tau proteins in these neurodegenerative disorders are disease specific. For example, although both Pick’s disease and corticobasal degeneration are tauopathies, characterised by tau positive cellular inclusions, their tau profile is apparently different: the tau doublet is 64 and 69 kDa in corticobasal degeneration, but 55 and 64 kDa in Pick’s disease. However, the two disorders which exhibit the different phosphorylation patterns of these two disorders, has made a more accurate neuropathological diagnosis possible.

Sections from the frontal and temporal lobes and the temporal lobe (including the hippocampus) from 10 cases of corticobasal degeneration and 10 cases of Pick’s disease were examined by immunohistochemistry, using phosphorylation independent (SMI15, TP007, TP70, 304, 189) and phosphorylation dependent (AT180, AT270, AT8, 12E8) anti-tau antibodies. All sections were immunostained with polyclonal antibodies to tau and with antibodies to phosphorylated tau. All sections were immunostained at a standardised protocol using the avidin-biotin complex (DAKO) and with appropriate positive and negative controls. All the swollen neurons and neuronal and glial inclusions were positively immunostained with all the anti-tau antibodies in corticobasal degeneration. However, in Pick’s disease all the antibodies but one immunostained the Pick bodies and the large swollen Pick cells: antibody 12E8 gave negative results (figure A and B).

Phosphorylation at the site of Ser262/Ser356 is thought to be one of the most prominent factors affecting the biological activity of tau. In corticobasal degeneration antibody 12E8 detected the phosphorylated epitopes Ser262 and/or Ser356 whereas in

Immunohistochemistry distinguishes between Pick’s disease and corticobasal degeneration

The clinical syndrome of frontotemporal dementia is associated with several neurodegenerative disorders. Pick’s disease, corticobasal degeneration, motor neuron disease-associated dementia (MND-dementia), frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17), and frontal lobe degeneration (FLD). These disorders, although they do not match the frequency of Alzheimer’s disease, are far from uncommon, and present clinicians and neuropathologists with formidable, if not insurmountable, challenges. However, recent advances in cellular and molecular pathology, biochemistry, and molecular genetics have been instrumental in their nosological definition. The discovery of a mutation in the tau protein gene on chromosome 17 in 1998 has established that several phenotypically heterogeneous familial dementias with a confusing variety of names all belong to FTDP-17. Most but not all frontotemporal dementias are characterised by intracellular inclusions formed by abnormal cytoskeletal components, both in neurons and glial cells. Pick’s disease, corticobasal degeneration, and FTDP-17 belong to the larger group of tauopathies, as their hallmark lesions contain tau protein, distinguishing them from MND-dementia and FLD, two disorders without tau pathology. Of the three tauopathies, FTDP-17 can be defined by its genetic abnormality, whereas the differential diagnosis of Pick’s disease and corticobasal degeneration remains difficult and uncertain.

Correspondence to: Dr I Johnston, GPO Box 811, Hobart, Tasmania 7001, Australia

Firstly, the authors make a brief comment on the use of anticoagulants in the treatment of cerebral venous thrombosis (CVT) indicating that a recent randomised trial showed a non-significant favourable effect. This may lead to a misinterpretation. Most experts currently agree that anticoagulation should be used in the acute treatment of CVT based on the available evidence. In 1991, Einhaupl et al published the results of their randomised double blind prospective study comparing heparin and placebo. This study was prematurely interrupted after enrolling 20 patients because of the dramatic differences noted in outcome in favour of the heparin group (basically eight patients recovered fully and no deaths occurred in the heparin arm whereas only one patient recovered completely and three others died in the placebo group). Concerns about possible methodological flaws in this German trial fueled some controversy about its results. This led to a new trial by the Cerebral Venous Sinus Study Group which randomised 60 patients with CVT to receive nadroprarin or placebo for 3 weeks. Poor outcome was defined as death, Barthel index of less than 15 at 3 weeks or Oxford handicap score equal or greater than 3 at 12 weeks. The results showed poor outcome in six of 30 patients (20%) in the nadroprarin arm and seven of 29 (24%) in the placebo group at 3 weeks and four of 30 (13%) in the nadroprarin treated patients versus six of 29 (21%) in the placebo group (absolute risk reduction of 7% and relative risk reduction of 38% for a non-statistically significant difference). But also very remarkably, there were no new symptomatic cerebral haemorrhages even among the 15 patients treated with anticoagulation who had haemorrhagic lesions on the initial CT. Finally, the same authors performed a meta-analysis combining the results of the two available trials which showed a “modest but clinically important” (although not statistically significant) benefit in the use of anticoagulation (absolute risk reduction of 14% in mortality and 15% in death or dependency, with relative risk reductions of 70% and 56% respectively). When combined with the proved safety of anticoagulation even in the setting of pre-existing haemorrhagic infarct and the highly unpredictable course of patients with CVT, these results should encourage the use of anticoagulation in the treatment of CVT.

Secondly, Davenport and Dennis mentioned the use of decompressive craniectomy as one of the interventions that may be used in patients with stroke who are rapidly deteriorating from raised intracranial pressure. However, they questioned whether this aggressive approach was associated with “improved survival with acceptable quality of life.” Growing experience with our patients as well as the available literature seems to indicate that it does, especially when decompressive surgery is performed early. Schwab et al studied 63 patients with complete middle cerebral artery (MCA) infarctions and evidence of increased intracranial pressure treated with either early (within 24 hours of symptom onset) or late craniectomy. Mortality was 27% (compared with 78% in historical controls) and all survivors were reported to be able to walk short distances without assistance and none were left with global aphasia. Mean Barthel index scores were 68.8 in the early hemicraniectomy group, 62.6 in the late hemicraniectomy group, and 60 in historical controls (but the very high mortality in this last group may account for a less dramatic difference in functional outcome). Similar favourable results were reported by Carter et al. in their retrospective analysis of 14 patients treated with decompressive surgery after massive non-dominant hemispheric infarctions. Eight of their 11 surviving patients were able to function with minimal to moderate assistance (Barthel index >60) 1 year after the surgery. Depression and failure to reintegrate socially were often found in this group of patients’ as opposed to the experience reported by Schwab et al.

In conclusion, decompressive craniectomy seems a valuable treatment option in cases of malignant MCA infarction, especially when involving the non-dominant hemisphere. This surgery is potentially lifesaving and reported functional outcomes are encouraging. Therefore, it needs to be considered early in every patient with complete MCA strokes showing incipient signs of increased intracranial pressure.

K BELL
N J CAIRNS
P L LANTOS
Institute of Psychiatry, King’s College London,
Department of Neuropathology, Denmark Hill, London
SE5 8AF, UK

M N ROSSOR
Institute of Neurology, University College London,
Department of Clinical Neurology, Queen Square,
London WC1N 3BG, UK

Correspondence to: Dr PL Lantos
npath@ion.kcl.ac.uk

We greatly enjoyed reading the recently published review on acute stroke by Davenport and Dennis. Their didactic approach and strict compromise to distinguishing between evidence based approaches and their personal beliefs deserve compliment. We would like to contribute by clarifying some information on two topics.

Davenport and Dennis reply:
We are grateful for Rabinstein’s interest and comments. Although our interpretation of the available data may be more conservative, we do indeed consider anticoagulation for CVT, but do not think that it is appropriate in all cases. Similarly, we have considered craniectomy for “malignant MCA occlusion, but so far we have not thought it appropriate to proceed. We note the good outcomes from the published case series and await the results of randomised trials with interest. However, many of the case series have involved rather younger than average

The immediate practical implication is a practical and from a theoretical point of view.

not label any of the Pick bodies or Pick cells. Pick’s disease these sites remain unphospho-

nations. In addition, new insights into the

tenable to distinguishing between

distinguish or Pick’s disease to be distinguished

enabling Pick’s disease to be distinguished

more accurate neuropathological diagnosis, but so far we have not thought it appropriate to proceed. We note the good outcomes from the published case series and await the results of randomised trials with interest. However, many of the case series have involved rather younger than average
Illusory movements of the paralysed upper limb in stroke

Feinberg et al have recently reported the association between anosognosia for hemiplegia and the illusion of movement of the paralysed upper limb. They considered the illusion a form of confabulation that is distinct from other phantom phenomena. This is not supported by my findings in a patient with a stroke who experienced transient purposeful movements of his paretic hand.

The patient was a 66-year-old right-handed man who presented with acute onset weakness of his right arm and leg and slurring of his speech. He was known to be hypertensive and a non-insulin dependent diabetic patient. Neurological examination confirmed the patient's right hemiplegia with facial involvement and mild to moderately severe dysphasia. Muscle power, as measured by the Medical Research Council (MRC) scale, was 5/5 in the upper and lower limbs respectively. Allothetic and posterior column sensations were intact. No visual field defects were found on examination using the confrontation method. There was no asterognosia or sensory extinction of tactile or visual stimuli. The patient was alert and cooperative. His comprehension of spoken and written language was good but there was evidence of moderately severe nominal dysphasia. The rest of the physical examination was normal. Brain CT confirmed the presence of a non-haemorrhagic infarct in the left parietal lobe.

Six weeks after his stroke the patient developed an itchy skin condition, probably a drug hypersensitivity reaction. When he scratched his skin with his left (good) hand to relieve the itching he thought that his right hand was also simultaneously scratching the same skin area. The right hand “stopped working” when he ceased scratching his skin but the perception of movement occurred each time he scratched the same or a different skin area until his symptoms resolved 2 weeks later. The use of the left hand for other activities did not result in a similar phenomenon. The patient had good insight into his motor functional disability and described his perceived hand movement as a “silly situation.”

The case reported here demonstrates that illusory movements in stroke are independent of anosognosia for hemiplegia. This finding is in agreement with those of a previous study. It also suggests that illusory movements are unlikely to be the product of confabulations. Confabulation is primarily a memory disorder and results from lesions in the forebrain and medial temporal lobe that disrupt connections of the limbic system. The patient reported here did not have an amnestic syndrome; neither was his brain lesion (as demonstrated with CT) in the limbic system area. It seems likely that the illusory movements described by Feinberg et al were phenomenon associated with reorganisation of cortical maps and neural plasticity.

A M O BAKHEIT
University of Plymouth, Mount Gould Hospital, Plymouth PL4 7QD, UK

Feinberg and Roane reply:
The patient described by Bakheit is of interest but is not relevant to our investigation. To be included in our investigation, patients were required to have right hemispheric strokes and left hemiplegia. Therefore, our study had left hemispatial neglect and left hemisensory defect. The patient described by Bakheit had a right hemiplegia, and no sensory or neglect defects. Therefore, Bakheit’s patient would not have qualified for our study and cannot be fairly compared with our study population. Additionally, the factitious movements described in Bakheit’s patient differed from those experienced by our patients in two significant ways. Bakheit’s patient experienced a “mirroring” phantom movement of the plegic right limb only when the normal hand was active. In our study, to minimise the potentially confounding role of completion, we specifically excluded from the main analysis those patients who only experienced illusory limb movements when the non-plegic limb was active. Secondarily, the phantom movements experienced by Bakheit’s patient were restricted to a particular idiosyncratic action—namely, scratching—as opposed to our patients who experienced illusory limb movements when simply asked to raise the left arm, an action which presumably failed to elicit factitious movements in Bakheit’s patient.

According to the criteria set out in our investigation, the movements experienced by the patient of Bakheit would not be categorised as illusory limb movements in our study. Finally, it should be further noted that our patients were examined within a week of onset, whereas Bakheit’s patient was examined 2 weeks after onset of hemiplegia and a non-insulin dependent diabetic patient. In our opinion, Bakheit has committed the same mistake. It is in this group in which we found illusory limb movements and which bears a relation to anosognosia and represents a variety of confabulation. Finally, we point out that confabulation is not confined to amnestic patients, and occurs in other conditions such as Anton’s syndrome.

Social deprivation and prevalence of epilepsy and associated health usage

I read the study of Morgan et al on social deprivation and prevalence of epilepsy and associated health usage with great interest. I would caution that it is especially in a poor and traumatised population, extremely difficult to differentiate between true epileptic and non-epileptic (or pseudo) seizures. We have known since Charcot about the correlation between psychological traumatic states, to which poverty is intimately related, and idiopathic, or “hysterical” seizures. There is a substantial comorbidity of epileptic and non-epileptic seizures. In fact, what I see here in Mississippi is more often than not a mixture of both and without proper, expensive testing, such as video EEG, it is sometimes impossible to make the difference. Because of the way the data were collected, it is difficult to know from the paper of Morgan et al whether pseudoseizures were properly assessed when assessing the prevalence of epilepsy. The same caveat applies to the ascertainment of psychiatric comorbidity. A thorough neuropsychiatric screening of an epilepsy clinic would disclose a much higher psychiatric comorbidity than the record linkage used here. Because of the way neuropsychologists are trained, at least in the United States, most psychiatric comorbidity in neurology patients in general probably goes undiagnosed.

What the usage data of Morgan et al do show is how vain the treatment of neurological illness remains without accounting for social ecology. This certainly is true in Wales as well as in Mississippi.

M PRETER
Departments of Psychiatry and Neurology, University of Mississippi Medical Center, 721 North 23rd Avenue, Durant, MS 39063–3007, USA

Correspondence to: mpreter@psychiatry.umsmed.edu

motor asymptomatc first degree relatives (mean age 52.6 (SD 10.6) years) of families with at least two members affected by Parkinson’s disease to 29 relatives (mean age 52.1 (SD 4.1) years) of patients with sporadic Parkinson’s disease and to 32 healthy controls (mean age 51.9 (SD 4.6) years). To account for a possible “low dopamine syndrome”, we studied memory, frontal lobe function, mood, personality traits, somatic complaints, and self motor abilities. Tests used were the short form of the Wechsler adult intelligence scale, the auditory verbal learning test, the controlled oral word associ-ation test, the Wisconsin card sorting test (Nelson version), the paranoid depression scale, the revised version of the Freiburg per-sonality inventory, a list of complaints, and a standardised finger tapping test. We found that first degree relatives of both patients with familial Parkinson’s disease and those with sporadic Parkinson’s disease differed signifi- cantly from controls in several tests. They had lower scores in total fluency and fewer categories in the Wisconsin card sorting test. Relatives of those patients with familial Parkinson’s disease and with sporadic disease expressed more impulsiveness, more strain, and less extraversion on personality assess-ment. In addition, relatives of patients with familial Parkinson’s disease had more errors than controls in the Wisconsin card sorting test. Relatives of patients with sporadic Parkinson’s disease showed more depression, more somatic complaints, and inhibitedness than controls and also less extraversion, less emotionality, and a lower tapping rate of the right hand. Our results, both motor and non- motor, were comparable with those of patients with Parkinson’s disease and are in keeping with some of the findings of Dujardin et al.

On average, our proband sample was 14 years older than that of Dujardin et al., and by contrast with that study, we included assessment of depression as a possible confounder of the neuropsychological test results. Depression may have a substantial impact on cognitive performance, and a history of depression is thought to be a risk factor for developing Parkinson’s disease. In our study, there were no correlations between cognitive impairment and depression. We therefore considered the role of lobe dysfunction and depression as independent signs of the “low dopamine syndrome” in our samples. Another important result of our investigation was that, apart from one personality trait (“aggressiveness”), we could not establish differences between relatives of patients with familial Parkinson’s disease and those of patients with sporadic Parkinson’s disease in any test item, nor were there item clusters in subsets of probands. Thus, according to our data, frontal lobe dysfunction and depression can be found to a variable degree in some relatives of patients with both the familial and the sporadic form of Parkinson’s disease. It should be kept in mind, however, that the finding of such neuropsychological abnormalities does not prove that their origin is genetic.

We enjoyed reading the paper by Dujardin et al., who investigated possible preclinical features of asymptomatic relatives in families with Parkinson’s disease. A battery of neuropsychological tests disclosed impaired frontal executive function in 15 of 41 first degree relatives of patients with familial Parkinson’s disease. Nine showed general frontal execu-tive impairment. The other six only had lower scores in parts of motor dynamic sequences and in the Wisconsin card sorting test. We concluded that this dysexecutive syndrome could be a premorbid expression of Parkinson’s disease. It could represent an early nigrostrial dysfunction in first degree relatives of patients with familial Parkinson’s disease who may thus carry a higher genetic risk of developing the disease.

Dujardin et al. describe modifications of the cognitive status which we reported in unaffected co-twins patients with Parkinson’s disease. After this, 3 years ago our group published a similar study to the one by Dujardin et al. As they do not mention our findings, we briefly discuss our data in relation to their results. We compared 35

J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.69.6.832 on 1 December 2000. Downloaded from http://jnnp.bmj.com/ on November 2, 2023 by guest. Protected by copyright.