Semantic memory is impaired in both dementia with Lewy bodies and dementia of Alzheimer’s type: a comparative neuropsychological study and literature review

M A Lambon Ralph, J Powell, D Howard, A B Whitworth P Garrard, J R Hodges

Abstract

Objective—To test the hypothesis that semantic impairment is present in both patients with dementia with Lewy bodies (DLB) and those with dementia of Alzheimer’s type (DAT).

Methods—A comprehensive battery of neuropsychological tasks designed to assess semantic memory, visuoperceptual function, verbal fluency, and recognition memory was given to groups of patients with DLB (n=10), DAT (n=10) matched pairwise for age and mini mental state examination (MMSE), and age matched normal controls (n=15).

Results—Both DLB and DAT groups exhibited impaired performance across the range of tasks designed to assess semantic memory. Whereas patients with DAT showed equal comprehension of written words and picture stimuli, patients with DLB demonstrated more severe semantic deficits for pictures than words. As in previous studies, patients with DLB but not those with DAT were found to have impaired visuoperceptual functioning. Letter and category fluency were equally reduced for the patients with DLB whereas performance on letter fluency was significantly better in the DAT group. Recognition memory for faces and words was impaired in both groups.

Conclusions—Semantic impairment is not limited to patients with DAT. Patients with DLB exhibit particular problems when required to access meaning from pictures that is most likely to arise from a combination of semantic and visuoperceptual impairments.

Keywords: dementia of Alzheimer’s type; dementia with Lewy bodies; semantic memory; neuropsychology

Dementia with Lewy bodies (DLB) is now considered to be the second most common pathological cause of dementia in elderly people after dementia of Alzheimer’s type (DAT). As many as 12%–26% of patients with a clinical diagnosis of Alzheimer’s disease meet the neuropathological criteria for a diagnosis of DLB. Various labels have been used to categorise dementia associated with Lewy bodies, including diffuse Lewy body disease (DLBD), senile dementia of Lewy body type (SDLT), and Lewy body variant of Alzheimer’s disease (LBV). We have adopted the term DBL as recommended by a recent consensus group; DLB is characterised pathologically by Lewy body formation in the cerebral cortex, brain stem nuclei (substantia nigra and locus coeruleus), and components of the basal forebrain cholinergic system. The clinical features of DLB include a cortical dementia with fluctuating confusion, spontaneous parkinsonism, sensitivity to neuroleptic drugs, and psychiatric manifestations of especially well formed and recurrent visual hallucinations early in the course of the disease. A recent SPECT study that compared the regional cerebral blood flow (rCBF) differences between DLB and DAT found that rCBF was lower in the occipital lobes bilaterally but higher in the right medial temporal lobe in the DLB group than in the DAT group.

Although DLB is now accepted as a separate clinical entity, differentiating it from DAT remains problematic especially in those cases where initial presentation of DLB is impaired cognition. Overlapping distributions of pathology can result in very similar clinical presentations, especially in the early stages, with memory impairment often being the earliest and most prominent feature of both types of dementia. This generally leads to a misdiagnosis as DAT rather than Parkinson’s disease due to the predominance of cognitive changes and only mild extrapyramidal symptoms. Detailed neuropsychological investigation into the exact nature of the cognitive decline, therefore, may provide us with knowledge of key differentiating features of DLB.

In comparison with Alzheimer’s disease relatively little is known about the neuropsychological deficits in DLB. Table 1 summarises the results from the few studies that have compared DLB and DAT performance on a range of neuropsychological assessments. The global impression from this summary is that ability in DLB is impaired across all areas of cognition. Perceptual and spatial impairments are nearly always more pronounced in DLB than DAT. This is true not only of those assessments that tap both visuoperceptual/spatial ability and praxis such as picture copying or construction tasks, but also true of purely visuoperceptual and spatial tasks such as those included in the visual object and space perception battery (VOSP) battery. Whereas it is clear from the extensive literature that attentional function is compromised in Alzheimer’s disease, there is...
Table 1 Overview of neuropsychological findings

<table>
<thead>
<tr>
<th>Authors (year)</th>
<th>Mean age of DLB patients</th>
<th>Mean MMSE of DLB patients</th>
<th>n</th>
<th>Perceptual and spatial skills:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calderon et al (submitted)</td>
<td>72.5</td>
<td>20</td>
<td>10</td>
<td>ADAS: Construction</td>
</tr>
<tr>
<td>Connor et al (1998)</td>
<td>75.9</td>
<td>19.5</td>
<td>23</td>
<td>—</td>
</tr>
<tr>
<td>Galasko et al (1997)</td>
<td>73.2</td>
<td>21</td>
<td>13</td>
<td>—</td>
</tr>
<tr>
<td>Gnanalingham et al (1997)</td>
<td>76.4</td>
<td>12.5</td>
<td>16</td>
<td>—</td>
</tr>
<tr>
<td>Hassen et al (1990)</td>
<td>80.1</td>
<td>16.8</td>
<td>9</td>
<td>CAMCOG: visual perception</td>
</tr>
<tr>
<td>Sahgal et al (1992)</td>
<td>77.3</td>
<td>19.4</td>
<td>7</td>
<td>DAT>DLB</td>
</tr>
<tr>
<td>Sahgal et al (1995)</td>
<td>75.0</td>
<td>21.1</td>
<td>10</td>
<td>CAMCOG: visuospatial praxis</td>
</tr>
<tr>
<td>Salmon et al (1996)</td>
<td>72.6</td>
<td>23.2</td>
<td>5</td>
<td>DAT>DLB</td>
</tr>
<tr>
<td>Shimomura et al (1998)</td>
<td>73.1</td>
<td>16.4</td>
<td>2</td>
<td>Clock drawing</td>
</tr>
<tr>
<td>Walker et al (1997)</td>
<td>73.3</td>
<td>20.3</td>
<td>17</td>
<td>Copy a cross</td>
</tr>
<tr>
<td>Mean age of DLB patients</td>
<td>72.5</td>
<td>75.9</td>
<td>73.2</td>
<td>76.4</td>
</tr>
<tr>
<td>Mean MMSE of DLB patients</td>
<td>20</td>
<td>19.5</td>
<td>21</td>
<td>12.5</td>
</tr>
<tr>
<td>n</td>
<td>10</td>
<td>23</td>
<td>13</td>
<td>16</td>
</tr>
</tbody>
</table>

ADAS: Construction | — | — | — | — | — | — | — | — | — | — |
CAMCOG: visual perception | — | — | — | — | — | — | — | — | — | — |
CAMCOG: visuospatial praxis | — | — | — | — | — | — | — | — | — | — |
Clock drawing | DAT>DLB | — | DAT>DLB | NC>DAT>DLB | — | — | — | — | — | — |
Copy clock | DAT>DLB | — | DAT>DLB | NC>DAT>DLB | — | — | — | — | — | — |
Copy cube | DAT>DLB | — | DAT>DLB | NC>DAT>DLB | — | — | — | — | — | — |
Copy a cross | DAT>DLB | — | DAT>DLB | NC>DAT>DLB | — | — | — | — | — | — |
Delayed matching to sample | — | — | — | — | — | — | — | — | — | — |
Kendrick digit copying task | DAT>DLB | — | DAT>DLB | NC>DAT>DLB | — | — | — | — | — | — |
MDRS: construction | DAT>DLB | — | DAT>DLB | — | — | — | — | — | — | — |
Visual reproduction test (copy) | DAT>DLB | — | DAT>DLB | — | — | — | — | — | — | — |
VOSP: cubes | NC>DAT>DLB | — | DAT>DLB | — | — | — | — | — | — | — |
VOSP: letters | NC>DAT>DLB | — | DAT>DLB | — | — | — | — | — | — | — |
VOSP: object decision | NC>DAT>DLB | — | DAT>DLB | — | — | — | — | — | — | — |
VOSP: shape detection screening test | NC>DAT>DLB | — | DAT>DLB | — | — | — | — | — | — | — |
VOSP: silhouettes | NC>DAT>DLB | — | DAT>DLB | — | — | — | — | — | — | — |
WISC/WAIS-R: block design | — | — | — | — | — | — | — | — | — | — |
Attention and executive ability: |
CAMCOG: abstract reasoning | — | — | — | — | — | — | — | — | — | — |
CANTAB: attentional set shifting | — | — | — | — | — | — | — | — | — | — |
CANTAB: visual search | — | — | — | — | — | — | — | — | — | — |
Della Sala dual performance test | — | — | — | — | — | — | — | — | — | — |
Letter fluency | NC>DAT>DLB | — | DAT>DLB | NC>DAT>DLB | — | — | — | — | — | — |
MDRS: attention | DAT>DLB | — | DAT>DLB | — | — | — | — | — | — | — |
Nelson card sort | — | — | — | — | — | — | — | — | — | — |
Raven's coloured progressive matrices | — | — | — | — | — | — | — | — | — | — |
TEA: elevator counting | DAT>DLB | — | DAT>DLB | — | — | — | — | — | — | — |
TEA: elevator counting with distraction | DAT>DLB | — | DAT>DLB | — | — | — | — | — | — | — |
TEA: map search | DAT>DLB | — | DAT>DLB | — | — | — | — | — | — | — |
WAIS-R: digit symbol substitution | DAT>DLB | — | DAT>DLB | — | — | — | — | — | — | — |
WAIS-R: object assembly | DAT>DLB | — | DAT>DLB | — | — | — | — | — | — | — |
WAIS-R: picture arrangement | DAT>DLB | — | DAT>DLB | — | — | — | — | — | — | — |
WAIS-R: picture completion | DAT>DLB | — | DAT>DLB | — | — | — | — | — | — | — |
Episodic and working memory: |
ADAS: recall | DAT>DLB | — | DAT>DLB | — | — | — | — | — | — | — |
ADAS: recognition | — | — | — | — | — | — | — | — | — | — |
Buschke-Fuld selective reminding test | — | — | — | — | — | — | — | — | — | — |
CAMCOG: current information | — | — | — | — | — | — | — | — | — | — |
CAMCOG: delayed recall | — | — | — | — | — | — | — | — | — | — |
CAMCOG: orientation | — | — | — | — | — | — | — | — | — | — |
CAMCOG: remote memory | — | — | — | — | — | — | — | — | — | — |
Cori's blocks | — | — | — | — | — | — | — | — | — | — |
Digit span: backward | NC>DAT>DLB | — | DAT>DLB | NC>DAT>DLB | — | — | — | — | — | — |
Digit span: forward | NC>DAT>DLB | — | DAT>DLB | NC>DAT>DLB | DAT>DLB | NC>DAT>DLB | — | — | — | — |
Kendrick object learning task | NC>DAT>DLB | — | DAT>DLB | NC>DAT>DLB | DAT>DLB | NC>DAT>DLB | — | — | — | — |
Logical memory: % of story recalled | NC>DAT>DLB | — | DAT>DLB | NC>DAT>DLB | DAT>DLB | NC>DAT>DLB | — | — | — | — |
MDRS: memory | DAT>DLB | — | DAT>DLB | — | — | — | — | — | — | — |
MDRS: orientation | DAT>DLB | — | DAT>DLB | — | — | — | — | — | — | — |
MDRS: sentence recall | DAT>DLB | — | DAT>DLB | — | — | — | — | — | — | — |
Table 1—continued

<table>
<thead>
<tr>
<th>Author (year)</th>
<th>MMSE: date</th>
<th>MMSE: orientation</th>
<th>Visual reproduction test (delayed copy)</th>
<th>Semantics: Boston naming test</th>
<th>CAMCOG: naming</th>
<th>Category fluency</th>
<th>Graded naming test</th>
<th>WAIS-R: comprehension</th>
<th>WAIS-R: information</th>
<th>WAIS-R: similarities</th>
<th>WAIS-R: vocabulary</th>
<th>Writing to dictation</th>
<th>Other: Motor sequencing task</th>
<th>WAIS/CAMCOG: arithmetic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calderon et al (submitted)</td>
<td></td>
</tr>
<tr>
<td>Galasko et al (1996)</td>
<td>DLB>DAT</td>
<td></td>
</tr>
<tr>
<td>Gnanalingham et al (1997)</td>
<td>DLB>DAT</td>
<td></td>
</tr>
<tr>
<td>Hansen et al (1990)</td>
<td>DLB>DAT</td>
<td></td>
</tr>
<tr>
<td>Sahgal et al (1992)</td>
<td>DLB>DAT</td>
<td></td>
</tr>
<tr>
<td>Sahgal et al (1995)</td>
<td>DLB>DAT</td>
<td></td>
</tr>
<tr>
<td>Salmon et al (1996)</td>
<td>DLB>DAT</td>
<td></td>
</tr>
<tr>
<td>Shimomura et al (1998)</td>
<td>DLB>DAT</td>
<td></td>
</tr>
<tr>
<td>Walker et al (1997)</td>
<td>DLB>DAT</td>
<td></td>
</tr>
</tbody>
</table>

In all cases, however, the stimuli were visually presented (for example, Raven's coloured progressive matrices, WAIS-R digit symbol substitution) leaving open the possibility that the poor performance in DLB reflects a combination of impaired executive as well as visuoperceptual/spatial skills.

Episodic and working memory provide the only examples of cognitive tasks in which performance is usually found to be relatively better in DLB than in DAT. In simple working memory assessments such as digit span, there is an equivalent impairment in DLB and DAT. Although immediate recall is impaired, patients with DLB can often recall a much greater proportion of this information after a delay. One possible explanation for this difference may be that initial encoding of the to be remembered information is compromised by the pervasive attentional deficit seen in DLB, but the reduced amount of information that is successfully encoded is more likely to be recalled later. The amnestic syndrome in DAT, however, increasingly compromises recall as the delay increases. In addition two studies have found patients with DLB to be better oriented than those with DAT.

Little is known about the status of semantic memory (our store of conceptual knowledge relating to objects, people, words, etc) in patients with DLB and this central component of cognition has not been the focus of any previous neuropsychological study with this patient group. Each of the studies summarised in table 1 has included some measures that require access to semantic memory within the test battery administered. These can be split into two types: measures of comprehension and of verbal output. Some of the studies have analysed the results from various subtests from the WAIS-R battery. These all require access to word meaning and to our store of conceptual knowledge—that is, semantic memory—and DLB and DAT groups showed an equivalent impairment. These results, however, have the weakness of confounding comprehension with attentional and executive function—that is, these subtests from the WAIS-R require the subjects not only to access their conceptual knowledge but then to problem solve and organise the information further. The same potential problem is true of category fluency, for which there seems to be a similar level of impairment in these two patient groups. Thus it is important to note that when Salmon et al compared the two types of fluency directly, they found that category and letter fluencies were equally reduced in DLB, unlike patients with DAT.
with DAT, where category fluency was lower than letter fluency. Category fluency is assumed to rely more heavily on semantic memory whereas the requirements for working memory and executive ability seem to be the same for the two tasks. These results would seem, therefore, to point to a semantic deficit over and above any other concurrent deficits in DAT whereas the poor fluency in DLB might just reflect their poor attention, executive abilities, and working memory. Confrontational naming, however, provides a neuropsychological measure that requires automatic, online access to meaning (the meaning of a picture must be retrieved before naming can proceed) with little or no requirement for attention and executive abilities. Where picture naming has been assessed using either the Boston naming test or the graded naming test, patients with DLB or DAT have exhibited a similar level of impairment, and as there is no evidence for a postsemantic speech production deficit in either DAT or DLB, this result suggests that both patient groups have impaired semantic memory.

The aim of this study was to compare matched groups of patients with DLB and DAT using a comprehensive battery of neuropsychological tests designed specifically to evaluate semantic memory. The collection of semantic memory tasks varies in the reliance on other cognitive domains such as attention and executive function. In respect of the clear evidence for visuoperceptual/spatial deficits in DLB, two of the tasks include written and pictorial conditions. It is possible that the patients with DLB might perform better on tasks that assess semantic memory using word stimuli than those relying on pictorial input due to visuoperceptual difficulties in addition to a potential semantic memory deficit. The patients with DAT, who typically have little or no visuoperceptual impairment in the early course of the disease, should perform equally on tests of comprehension regardless of the modality of input.

Methods

SUBJECT GROUPS

Three subject groups participated in this study. Ten patients with DLB, 10 with DAT, and 15 normal controls. Consultants from Bensham Hospital, Gateshead and Newcastle General Hospital referred patients with a current diagnosis of DLB according to the consensus criteria. Patients with DAT were identified through the Memory and Cognitive Disorders Clinic at Addenbrooke’s Hospital, Cambridge. The diagnosis of DAT was made according to the criteria developed by the National Institute of Neurology and Communication Disorders and Stroke (NINCDS) and the Alzheimer’s Disease and Related Disorders Association (ADRA). Due to the amount and type of assessment in this study, patients were required to have a mini mental state examination (MMSE) score of no less than 10 and testing was completed over several short sessions to minimise fatigue. Patients with a history of known or suspected transient cerebral ischaemic event or stroke, head injury, or major medical illness were excluded, as were those with major depression. The control subjects were selected from the MRC Cognition and Brain Sciences Unit volunteer subject panel.

Patients with DLB and those with DAT were matched as closely as possible by MMSE and age. Control subjects were matched as closely as possible for age. An analysis of variance (ANOVA) confirmed that there were no significant differences in age across the three groups ($F(2,37)=2.3$, $p=0.12$). There was a significant difference in MMSE across the groups ($F(2,37)=37.3$, $p<0.001$). Post hoc analyses (Tukey’s HSD) confirmed that the patients with DLB and those with DAT scored significantly below the normal controls but were not different from each other (for mean age and MMSE of each group, see table 2).

Table 2 Semantic assessment results for DLB, DAT, and normal control (NC) groups

<table>
<thead>
<tr>
<th>Test (maximum score)</th>
<th>NC</th>
<th>DLB</th>
<th>DAT</th>
<th>One way ANOVA F Value</th>
<th>p Value</th>
<th>Significant post hoc difference*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (y)</td>
<td>71.5 (3.5)</td>
<td>76.4 (9.1)</td>
<td>71.7 (5.1)</td>
<td>2.3</td>
<td>0.12</td>
<td>N/A</td>
</tr>
<tr>
<td>MMSE</td>
<td>28.8 (1.1)</td>
<td>18.8 (5.2)</td>
<td>20.6 (3.0)</td>
<td>34.3</td>
<td><0.001</td>
<td>NC=DLB=DAT</td>
</tr>
<tr>
<td>Semantic assessments:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graded naming test (30)</td>
<td>25.1 (2.3)</td>
<td>9.4 (3.0)</td>
<td>14.2 (6.1)</td>
<td>31.5</td>
<td><0.001</td>
<td>NC>DAT=DLB</td>
</tr>
<tr>
<td>64 item picture naming (64)</td>
<td>62.1 (1.9)</td>
<td>56.3 (4.3)</td>
<td>56.7 (3.8)</td>
<td>12.1</td>
<td><0.001</td>
<td>NC=DLB>DAT</td>
</tr>
<tr>
<td>Spoken word to picture matching (64)</td>
<td>63.8 (0.4)</td>
<td>59.3 (3.0)</td>
<td>62.6 (1.5)</td>
<td>19.2</td>
<td><0.001</td>
<td>NC>DAT=DLB</td>
</tr>
<tr>
<td>Camel and cactus test:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pictures (64)</td>
<td>58.4 (3.4)</td>
<td>41.4 (10.5)</td>
<td>54.8 (4.5)</td>
<td>See text</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Words (64)</td>
<td>60.0 (2.0)</td>
<td>48.2 (6.8)</td>
<td>51.8 (4.2)</td>
<td>See text</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Category sorting pictures:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level 1 (proportion correct)</td>
<td>0.99 (0.03)</td>
<td>0.97 (0.05)</td>
<td>0.97 (0.06)</td>
<td>See text</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level 2 (proportion correct)</td>
<td>0.97 (0.02)</td>
<td>0.90 (0.08)</td>
<td>0.96 (0.03)</td>
<td>See text</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level 3 (proportion correct)</td>
<td>0.93 (0.03)</td>
<td>0.85 (0.06)</td>
<td>0.92 (0.03)</td>
<td>See text</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Category sorting words:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level 1 (proportion correct)</td>
<td>1.0 (0)</td>
<td>0.97 (0.05)</td>
<td>0.99 (0.03)</td>
<td>See text</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level 2 (proportion correct)</td>
<td>0.96 (0.03)</td>
<td>0.85 (0.09)</td>
<td>0.96 (0.04)</td>
<td>See text</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level 3 (proportion correct)</td>
<td>0.93 (0.03)</td>
<td>0.85 (0.05)</td>
<td>0.92 (0.03)</td>
<td>See text</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Category fluency (mean number/category)</td>
<td>15.0 (2.3)</td>
<td>6.2 (2.5)</td>
<td>6.4 (2.3)</td>
<td>See text</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Results are reported as mean (SD). *Denotes no significant difference; > denotes significantly higher score. N/A=Not applicable.
Semantic memory is impaired in dementias of both Lewy body and Alzheimer’s type. The specific tasks included were:

(1) **Graded naming test**\(^{23}\)
This is a stringent 30 item picture naming test in which the target items become increasingly unfamiliar.

(2) **Semantic battery**
This is a collection of tests that use the same set of stimulus items to assess conceptual knowledge systematically across different input and output modalities. It contains 64 items selected from the corpus of line drawings by Snodgrass and Vanderwart,\(^{21}\) representing three categories of living things (animals, birds, and fruit) and three categories of artefacts (household items, tools, and vehicles). The following subtests from the semantic battery were administered:

- (a) Picture naming.
- (b) Spoken word to picture matching using picture arrays containing the target plus nine within category foils.
- (c) The camel and cactus test assesses knowledge of semantic association and is based on the principle of the pyramids and palm trees test.\(^{24}\) Subjects are asked to choose one of four same category items that has an associative relation with the target. For example, in one of the trials the subject is asked to match a camel to one of four types of vegetation: cactus (the target), tree, sunflower, or rose. The target items for this test were the same 64 concepts as those included in the rest of the semantic battery. The assessment is administered in two forms: in one, all items (targets and response choices) were presented as pictures; in the other form, all stimuli were written words.
- (d) The category sorting test investigates conceptual knowledge at three levels. Subjects are required to sort the 64 concepts into living or non-living domains (level 1), into the appropriate categories (level 2), and by specific attributes (for example, by the real life size of an object: level 3). The stimuli for sorting are presented either as written words or pictures.
- (e) Category fluency in which the subject is asked to produce as many exemplars as possible in 1 minute for each of the six categories.

OTHER NEUROPSYCHOLOGICAL ASSESSMENTS
The following tasks were also administered:

(1) **Letter fluency**
In this task subjects are asked to generate as many words as possible beginning with the letters F, A, and S within 1 minute. As noted in the introduction above, letter fluency can be used as a direct contrast to category fluency.

(2) **Visual object and space perception battery (VOSP)**\(^{23}\)
Three subtests were administered:

- (a) Shape detection screening test—this assessment establishes whether or not the subject has adequate shape discrimination skills.
- (b) Incomplete letters—this subtest requires the subject to identify a series of letters that have been perceptually degraded by removing up to 70% of the target letter.
- (c) Object decision—the subject is asked to select which of four silhouettes is of a real object (the other three are nonsense silhouette forms).

(3) **Short recognition memory test**\(^{24}\)
The two versions of this task assess recognition memory for 25 faces and 25 words.

(4) **New adult reading test (NART)**\(^{27}\)
This test provides an estimate of premorbid IQ by requiring the subject to read aloud a list of increasing rare words with unique pronunciations.

Results

ASSESSMENT OF SEMANTIC MEMORY
A summary of the semantic assessments for each group is shown in table 2, along with a series of one way ANOVA and subsequent post hoc analyses (Tukey’s HSD), where appropriate. (Fifteen separate ANOVAs were used to test the differences between the three subject groups. Where there was an effect of group, the effect was highly significant in all but two tests (p<0.001), and they survive correction for multiple comparisons.) The patients with DLB demonstrated impaired performance across all the administered assessments (their scores were significantly worse than normal controls). On the graded naming test and the 64 item picture naming, both DAT and DLB groups performed worse than the control subjects. The DLB group was also significantly impaired on the simple spoken word to picture matching task. Given that the three assessments require little in the way of attentional and executive abilities, these results support the notion of a semantic impairment in both DAT and DLB.

Results from the camel and cactus test (fig 1) were first analysed using a 3×2 split plot ANOVA. This disclosed an effect of group \((F(2,30)=23.8, p<0.001)\) and Tukey’s HSD post hoc analysis showed that there were significant differences between all three groups in the order NC>DAT>DLB. There was also a main effect of modality \((F(1,30)=4.9, p=0.04)\) and a significant interaction \((F(2,30)=8.6, p=0.001)\). Repeated measures post hoc t tests

Figure 1 Camel and cactus test results for dementia of Lewy body and Alzheimer’s type, and normal controls.
Table 3 Other neuropsychological results for DLB, DAT, and normal control (NC) groups

<table>
<thead>
<tr>
<th>Test (maximum score)</th>
<th>NC</th>
<th>DLB</th>
<th>DAT</th>
<th>One way ANOVA F Value</th>
<th>p Value</th>
<th>Significant post hoc differences*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Letter fluency (mean number/letter)</td>
<td>14.9 (3.4)</td>
<td>5.7 (3.0)</td>
<td>10.5 (4.0)</td>
<td>See text</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOSP Shape detection screen test (20)</td>
<td>19.3 (0.9)</td>
<td>17.8 (2.3)</td>
<td>19.7 (0.5)</td>
<td>5.5</td>
<td>0.009</td>
<td>NC=DAT>DLB</td>
</tr>
<tr>
<td>VOSP Fragmented letters (20)</td>
<td>19.3 (0.8)</td>
<td>15.0 (6.1)</td>
<td>18.6 (1.2)</td>
<td>5.2</td>
<td>0.01</td>
<td>NC=DAT>DLB</td>
</tr>
<tr>
<td>VOSP Object decision (20)</td>
<td>16.4 (2.8)</td>
<td>14.8 (2.8)</td>
<td>17.1 (2.3)</td>
<td>2.6</td>
<td>0.16</td>
<td>N/A</td>
</tr>
<tr>
<td>SRMT Faces (25)</td>
<td>24.4 (0.6)</td>
<td>19.1 (2.9)</td>
<td>19.6 (3.6)</td>
<td>See text</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRMT Words (25)</td>
<td>24.4 (1.2)</td>
<td>18.3 (2.8)</td>
<td>17.0 (1.9)</td>
<td>See text</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NART (50)</td>
<td>40.9 (6.0)</td>
<td>20.0 (7.3)</td>
<td>36.6 (6.0)</td>
<td>31.7</td>
<td><0.001</td>
<td>NC=DAT>DLB</td>
</tr>
</tbody>
</table>

Results are reported as mean (SD).

* = Denotes no significant difference; > denotes significantly higher score.
N/A = Not applicable.

Discussion

The neuropsychological results collected in this study confirm that semantic impairment is not limited to patients with dementia of Alzheimer's type (DAT) but is also a feature of dementia with Lewy bodies (DLB). Irrespective of whether semantic memory was tapped using measures of comprehension for pictures or words, or production tasks such as naming or category fluency, the patients with DLB performed worse than control subjects and in most cases at an equivalent level to a set of matched patients with DAT. The study also replicated previous findings of visuoperceptual deficit in DLB\(^\text{13}\) as well as poor recognition memory for face and word stimuli.\(^\text{17-23}\) These

Figure 2 Category and letter fluency for dementia of Lewy body and Alzheimer's type, and normal controls.
Semantic memory is impaired in dementias of both Lewy body and Alzheimer's type. This evidence adds to the picture of a generalised dementia seen in both conditions. The summary of the neuropsychological findings (see table 1) suggests that the disorders are most likely to be correctly differentiated on neuropsychological grounds by the profound attentional and visuoperceptual deficits and, perhaps, the relatively good orientation and delayed recall seen in DLB.

Conclusion

The present study found clear evidence for a semantic impairment in both DLB and DAT. This evidence adds to the picture of a generalised dementia seen in both conditions. The summary of the neuropsychological findings (see table 1) suggests that the disorders are most likely to be correctly differentiated on neuropsychological grounds by the profound attentional and visuoperceptual deficits and, perhaps, the relatively good orientation and delayed recall seen in DLB.