At physical examination his heart, lungs, and abdomen seemed normal, whereas neurological examination disclosed a tetraparesis with emphasis on the proximal upper limbs (power 3/5). The muscles were tender to palpation with normal muscle tonus and no increased activity of tendon reflexes. A mild intention tremor at the left arm was pre-existing.

Laboratory findings showed a marked increase in the concentrations of creatine kinase at 6632 U/l (normal range: 5–70 U/l) with normal concentrations of the isoform CK-MB, lactate dehydrogenase (LDH) at 670 U/l (normal range: 80–240 U/l), and moderately increased liver enzymes, which had been reported since the beginning of IFN-β treatment. Myoglobinuria was not determined and there were no pathological alterations in concentrations of muscle enzymes, creatine kinase, reactive protein, blood cell counts, or glucose. No electrolyte abnormalities were detectable.

With the diagnosis of a rhabdomyolysis, IFN-β application was discontinued, the patient was subsequently monitored in the intensive care unit, and treated with intra-venous fluids and bicarbonate to maintain an alkaline urine output. Under the treatment myalgia and the tetraparesis disappeared within 2 days. The patient returned to his baseline EDSS. With a delayed time course the creatine kinase declined steadily to normal values after 2 weeks. We now treat this patient with glatiramer acetate (copolymer-1) for the relapsing-remitting multiple sclerosis.

To our knowledge, this is the first reported case of rhabdomyolysis associated with IFN-β treatment. This adverse event has been previously associated with IFN-α, which also belongs to the type 1 interferons. However, exhibits only 30% of homology and differs in its immunological profile. Greenfield et al described a patient 10 weeks after initiation of IFN-α treatment starting with 5 MU three times a week for chronic active hepatitis C, and Reinhold et al recorded acute rhabdomyolysis 4 days after high dose IFN-α therapy (20 MU/m² daily) in a patient with malignant melanoma. 5 Remarkably, the manifestion of muscle injury occurred when the dose of IFN-α was being increased in both patients described, suggesting that rhabdomyolysis represents at least a dose dependent side effect of this type 1 interferon.

In the patient presented here the dosage of IFN-β1a was unaltered. Yet, the absence of any other medication, exclusion of infectious and metabolic causes usually related to a non-traumatic rhabdomyolysis, the lack of indications for an underlying metabolic muscle disorder as determined by the patients’ history, the clinical presentation including laboratory investigation, and the temporal relation with IFN-β1a application indicate that rhabdomyolysis is a possible adverse event of IFN-β therapy. Rhabdomyolysis can also be induced by unaccustomed muscular exercise in untrained people. 6 However, our patient often goes bowling and thus is used to this programme.

It is concluded that creatine kinase activity should be measured when a patient complains of severe myalgia differing from the often occurring myalgia under IFN-β treatment and, in particular when weakness is reported. This procedure might be effective in the prevention of irreversible rhabdomyolysis during IFN-β therapy. As a dose dependent effect of IFN-β1a on both clinical and MRI outcomes in relapsing-remitting multiple sclerosis is known, future observations will show whether increase in dosage of IFN-β predicts poses to rhabdomyolysis as reported for IFN-α.

J D Lünenmann, N Kassim, R Zscherdelein, F Zipp
Department of Neurology, Reinickendorf Hospital, Am Nordgraben 2, 13509 Berlin, Germany
Correspondence to: Dr F Zipp; frauke.zipp@charite.de

References
Occasionally the second and seventh cranial nerves are also involved. In addition to the marginal hypointensity created by the paramagnetic ferric ions, high signal in the adjacent cerebellar tissue, due to secondary gliosis, may be seen on T2 weighted MRI.

The most striking and unique feature of the patient described was the extensive limb wastage and fasciculations with asymmetric weakness but preserved reflexes and an absence of sensory signs. These clinical findings, along with the neurophysiology, suggest an anterior horn cell pathology. In the review of Fearnley et al of 63 patients four had lower motor neuron involvement with absent or diminished reflexes thought to be secondary to arachnoiditis or radiculopathy. One patient had muscle wasting with brisk reflexes thought to be due to concurrent lower motor neuron pathology and myelopathy. In our patient the duration of the symptoms and the lack of bulbar and pyramidal features were against this being a classic amyotrophic lateral sclerosis. It is more likely that superficial siderosis was the cause of our patient’s anterior horn cell dysfunction and it is recognised that iron pigmentation may be found deep within the spinal cord and zone 2 Schwann cells.

The clinical picture of anterior horn cell damage in superficial siderosis is of particular interest as in the review of Fearnley et al they note that although heavy haemosiderin deposition is recognised in the anterior horns of the spinal cord there is little in the way of neuronal fall out.

The predominance of CNS involvement and the paucity of lower motor neuron features in superficial siderosis has been the subject of several novel studies. Koeppen and Bourke have shown that an intracisternal injection of red cells produces increased synthesis of ferritin in microglia, especially Bergmann glia in the cerebellum, and this binds with iron to form haemosiderin. It is postulated that the glia and astrocytes of the central nervous system respond to the presence of haemoglobin whereas this process does not occur in Schwann cell of the peripheral nervous system. This is supported by the pathological finding that there is a sharp demarcation of haemosiderin deposition in the cranial nerves and spinal roots at the junction of the central glial and peripheral Schwann cell segments. Koeppen and Detinger have also suggested that the formation of haemosiderin is neuroprotective and it is once this protection has been exhausted that tissue damage occurs, thus it is not the haemosiderin which is toxic but the unbound iron. There are no other case reports of superficial siderosis causing an anterior horn cell syndrome, posing the question of why our patient developed this combination. Whether our patient’s presentation was due to anomalous intracellular processing or an unusual source of haemorrhage impacting on the spinal cord remains speculative. It is also possible that in our case the motor root exit zone is a site of iron deposition with resultant lower motor neuron pathology.

We think that our case of superficial siderosis with anterior horn cell dysfunction is unique, and raises interesting questions about pathological mechanisms in this rare disorder.

Figure 1 T2 weighted MRI demonstrating the characteristic rim of hypointensity around the posterior fossa and spinal cord seen in superficial siderosis.

References

Use of intrathecal baclofen for treatment of spasticity in amyotrophic lateral sclerosis

Baclofen, an agonist of γ-aminobutyric acid, is one of the most effective drugs in the treatment of spastic movement disorders. However, higher oral dosages required for sufficient spasticity control are related to intolerable central side effects. In this situation, continuous intrathecal application of baclofen in microgram dosages showed its efficacy in numerous series of patients with spasticity of cerebral or spinal origin. Nevertheless, the use of intrathecally administered baclofen in amyotrophic lateral sclerosis, representing the most common degenerative motor neuron disease in adult life, has been mentioned in only one short communication. In this context our experience with intrathecal baclofen therapy is worth presenting. These two patients are the only ones we have treated in this manner and both experienced a marked improvement in their quality of life.

Patient 1, a 25 year old man, was previously reported in brief; he is still alive and benefiting from intrathecal baclofen therapy. Five years ago he noticed progressive gait disturbance, weakness of his right foot, and painful nocturnal cramps in his legs. At that time he exhibited neurologically mild paralyses of his right hand and foot, generalised fasciculations, and spasticity. Although the clinical picture of superficial siderosis was diagnosed and oral antispastic treatment with baclofen and memantine was started. The patient remained ambulatory but an increase in spasticity due to the underlying disease required subsequent increase in dosage of baclofen. After 1 year a daily dose of 80 mg baclofen was reached but spasticity was no longer ameliorated. The patient was still able to walk a few steps with help but had to use a wheelchair otherwise. Furthermore, he complained of central side effects, such as weakness, daytime fatigue, and sleepiness. Intrathecal baclofen therapy was started, and at a daily dose of 160 µg the patient showed only minimal clinical signs of spasticity. He was able to walk at large without help and could even climb stairs. Spasticity increased during the next 21 months; however, by adjustment of the daily dosage up to 540 µg the patient remained able to walk without additional devices and was capable of caring for himself. Then increasing paralyses due to progression of amyotrophic lateral sclerosis came into prominence, and the patient is tetraparetic to a high degree depending on special care. Attempts to reduce baclofen dosage led to a significant increase in spasticity and painful muscle cramps and led to substantial discomfort. Thus a daily dose of 540 µg baclofen was maintained.

Due to bulbar involvement the patient was supplied with a nasofacial mask for non-invasive intermittent ventilation to alleviate
symptoms of nocturnal hypoventilation. He has been followed up now for 49 months, and no complications related to intrathecal baclofen therapy have been seen.

Patient 2, a 39 year old man, experienced progressive stiffness and weakness of his legs 2 years ago. Amyotrophic lateral sclerosis was diagnosed, and medical treatment consisting of rifuzole and baclofen was started. Initially, the patient remained ambulatory for 6 months but then rapidly developed a severe spastic tetraparesis. He was able to stand with help, but confined to a wheelchair otherwise and completely in need of care. The major sources of discomfort were frequent nocturnal pain attacks due to uncontrolled spasms and central side effects related to oral baclofen medication. Intrathecal baclofen therapy was initiated, and at a daily dose of 80 µg painful spasms stopped despite preservation of some spasticity on purpose for support and improvement in general ease of care.

None the less, quality of life was improved considerably as the patient was able to sleep through the night without the need for analgesics or any other medication. Further progress of disease had occurred. Continuous intrathecal baclofen therapy had occurred.

Amyotrophic lateral sclerosis is a degenerative motor neuron disease characterized by severe movement disorders. Although progressive pareses result in increasing debilitation of the patient and finally death due to respiratory insufficiency, spasticity and painful muscle cramps are disabling symptoms markedly reducing the patients’ quality of life. As the aetiopathogenesis of amyotrophic lateral sclerosis remains unresolved and no cure for the disease is available progression is poor, demanding optimal palliative treatment. As with all other palliative measures, the primary goal is improvement of quality of life rather than life prolongation. Thus, symptomatic treatment comprises a diverse range of medical and physical measures aiming at relieving the specific symptoms of the patient at any point in the continuous progression of the disease. This includes the administration of antispastic agents. Several antispastic drugs such as baclofen, memantine, or benzodiazepines can effectively relieve spasticity but their use is restricted when the maximum daily dose is reached and side effects occur. Due to the drug's limited ability to penetrate the blood-brain barrier and to reach its site of action this is generally the situation with baclofen when an oral daily dose of 80 mg is exceeded. Continuous intrathecal administration of baclofen produces CSF concentrations that are 10 times higher than those achieved with oral administration even though the amounts infused are 100 times less than those taken orally. Intrathecal infusion simultaneously increases the effect of baclofen on spams and reduces the incidence of side effects.

Despite its widespread use and proved efficacy in the treatment of patients with spasticity of cerebral or spinal origin, this form of treatment has not been mentioned in regard to amyotrophic lateral sclerosis apart from one short communication. In this patient description with amyotrophic lateral sclerosis need adequate palliative treatment more than anything else; the intrathecal application of baclofen offers the maintenance of a functional status for a prolonged period of time and an appreciable improvement in quality of life. It is a marked reduction of disabling spasticity that helps to achieve these goals and not the influence on prevalent muscle weakness. Our clinical findings show that even in the terminal phase of the disease the patients still benefit by relief of painful spasms, making intrathecal baclofen therapy feasible. This finding of palliative treatment has proved to be a safe procedure without substantial risks.

G Marquardt, V Seifert Neurosurgical Clinic, Johann Wolfgang Goethe-University, Schleusenweg 2-16, 60528 Frankfurt am Main, Germany

Correspondence to: Dr G Marquardt; G.Marquardt@em.uni-frankfurt.de

No male predominance in α-synuclein Parkinson’s disease but the affected female fetus might be less viable

In their recent article on the clinical phenotype in Greek patients with α-synuclein Parkinson’s disease (α-sPD) Papapetropoulos et al reported male predominance (60%) in their patients. The authors concluded that the sex ratio in their families does not differ significantly from patients with sporadic idiopathic Parkinson’s disease (3:2) or with autosomal dominant α-sPD in the Contursi kindred (3:7:2) and in the Greek-American family H (2:7:2). The sex ratio as computed by Papapetropoulos et al is somewhat misleading. These results suggest that men are more susceptible to PD, or women less. It would be better to compute the segregation ratio for men and women. The segregation ratio is the percentage of persons at risk who are affected. At risk is defined as having an affected parent or sibling. We computed the segregation ratios for the combined numbers of persons at risk in the Contursi kindred (data from Golbe et al),2 the updated pedigree of the Greek-American family H, and two Greek families.3 The families of Papapetropoulos et al are not included because the total number of persons at risk is not mentioned.

In these kindreds with α-sPD we counted 228 persons at risk: 132 men and 96 women. The total number of patients with α-sPD is 89, comprising 55 men with α-sPD and 34 women. These numbers yield a male/female ratio of 55/34 = 1.6, which is about the same as the ratio 60%/40% = 1.5 in the patients with α-sPD reported by Papapetropoulos et al.4 However, the segregation ratio for male α-sPD in the kindreds mentioned above equals 53/13 = 4.1, for female α-sPD 34/36 = 35%. These segregation ratios do not differ significantly (p = 0.21, χ2 test) suggesting that men and women are equally at risk of acquiring α-sPD, despite the greater number of male patients. There are just more men than women in these families! Furthermore, as far as the sex ratio in sporadic idiopathic PD is concerned, the largest epidemiological analysis we know—comprising 18 506 subjects of seven community surveys in Europe—found no difference in sex prevalence between the sexes (men 1.74%: women 1.79%).5 This seems to confirm the conclusion about absence of sex difference in patients with α-sPD.

The only question that remains is why there are more men (n = 132) than women (n = 96) in these α-synuclein kindreds? If the number of men and women are equal in the general population, the male/female ratio is 1:1. However, in these kindreds the sex ratio is significantly abnormal (p = 0.017: χ2 test). However, normally there are fewer men than women in the older age groups. If we take the ratio male/female = 0.77 as computed for the whole population (patients plus controls),6 then the difference from the α-synuclein kindred is even more remarkable (p = 0.000: χ2 test). If this male preponderance is related to the abnormal α-synuclein gene, it could be speculated that the affected female fetus is less viable and more prone to fetal death. However, as it stands we are inclined to think that this notion is prompted by statistics rather than biological evidence. In transgenic mice and flies expressing mutated α-synuclein, neuronal and immunoreactive nerve cells, Lewy body-type inclusions, and loss of dopaminergic nerve cells have been described,7 but there were no sex related abnormalities or differences in α-sPD. However, sex difference in α-sPD has not been examined specifically, so the actual cause of the male preponderance in α-synuclein kindreds remains to be elucidated.

M W I M Horstink, B R Bloem
Department of Neurology, University Medical Centre Nijmegen, The Netherlands

Correspondence to: Dr M W I M Horstink; m.horstink@cczoneu.azn.nl

References

Authors’ reply:
As Horstink and Bloem suggest, the segregation ratio for men and women is indeed the most appropriate method to calculate the genetic risk for developing a disease. In our recent publication, the sex ratio was calculated from the sample of 15 patients with α-synuclein Parkinson’s disease (α-synPD) included in the study. We now provide additional published data to calculate the segregation ratios and to compare them with the other published series of patients with α-synPD.

In the 10 families examined in our study, 198 members were at risk of developing α-synPD. Of the 103 male members at risk, 27 (26.2%) developed Parkinson’s disease (PD), whereas of the 95 women at risk, 27 (28.4%) developed PD (p=0.73). When our data were combined with the data computed by Horstink and Bloem, the segregation ratio of all patients with α-synPD was 82/235 (34.9%) for men and 61/191 (31.9%) for women (p=0.52; table 1).

Golbe et al had first noted the tendency of the Contursi kindred to have fewer female members at risk for developing α-synPD (male/female ratio 86/56=1.5). The male to female ratio of our subjects at risk was 103/95=1.08 (p=0.31 for the difference from 1:1 ratio and p=0.02 for the difference from 1:1.3 ratio, which is the male to female ratio of the whole population found in the European Parkinson prevalence study1). After excluding the Contursi kindred, the male to female ratio of all subjects of Greek origin combined, was 149/135=1.10 (p=0.22 for the difference from 1:1 ratio and p=0.002 for the difference from 1:1.3 ratio), whereas the male to female ratio of all known subjects at risk of developing α-synPD combined1-11 was 235/191=1.23 (p=0.02 for the difference from a 1:1 ratio and p<0.0001 for the difference from a 1:1.3 ratio)

Our data confirm the finding of Horstink and Bloem that men and women are equally at risk of acquiring α-synPD. The Contursi kindred data are skewing the male to female ratios towards a male predominance. The male to female ratio of our Greek families at risk of developing α-synPD, as well as the ratio of all Greek origin families, did not differ significantly from the 1:1 ratio. However, when the male to female ratios were compared with the expected 1:1.3 male to female ratio in the general population, a statistical significant male predominance was found. Whether this is due to statistical bias, recall bias, or to genetic or environmental factors remains unclear. The identification of larger numbers of families at risk of developing α-synPD may help to resolve the question.

Table 1: The segregation ratios of all α-synPD cases reported

<table>
<thead>
<tr>
<th>Family members at risk for α-synPD</th>
<th>Family members with α-synPD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>Female</td>
</tr>
<tr>
<td>Male (segregation ratio)</td>
<td>Female (segregation ratio)</td>
</tr>
<tr>
<td>Papapetroupolos et al</td>
<td>103</td>
</tr>
<tr>
<td>(27 [26.2%])</td>
<td>(27 [28.4%])</td>
</tr>
<tr>
<td>Papadimitriou et al</td>
<td>14</td>
</tr>
<tr>
<td>(6 [42.8%])</td>
<td>(6 [35.3%])</td>
</tr>
<tr>
<td>Golbe et al</td>
<td>86</td>
</tr>
<tr>
<td>(39 [45.3%])</td>
<td>(21 [37.3%])</td>
</tr>
<tr>
<td>Samii et al</td>
<td>32</td>
</tr>
<tr>
<td>(10 [31.3%])</td>
<td>(7 [20.4%])</td>
</tr>
<tr>
<td>Total</td>
<td>235</td>
</tr>
<tr>
<td>(82 [34.2%])</td>
<td>(61 [31.9%])</td>
</tr>
</tbody>
</table>

α-synPD = α-synuclein Parkinson’s disease.

References
1 Selim M, Drachman DA. Ataxia associated with Hashimoto’s disease. In: Multiple system atrophy (suppl 3). Marcel Dekker, New York, 1999;S21–3.
Reference

BOOK REVIEWS

Conversion hystera: towards a neuropsychological account

It probably would not have pleased Aubrey Lewis to know that one of his lasting legacies to psychiatry is his now often quoted words from his paper “The survival of hystera” to the effect that hystera will outlive its obituarists. It seems that in the past decade, almost in defiant opposition to the mighty DSM goliath, humble hystera is not only again a popular topic for investigation, but its very name lives on. In this book, the term hystera is unashamedly used, even in the title, and it is not cloaked by its suit of new invisible clothes dressing up as somatoform disorders or one of their variants.

This small but very readable book is a collection of papers published as a special edition by the Journal of Cognitive Neuropsychiatry. The aim was to bring modern neuropsychological theory to the field, to balance the “traditional overreliance on psychodynamic accounts”.

However, it also embraces the paradigm, enunciated over a century ago by Charcot, that hystera should be open to investigation as other conditions in medicine, using the same methods and observation techniques. Thus, in the text, several of the chapters touch on the more recent imaging and evoked potential studies. These seem fairly consistent, noting the important association of the frontal and cingulate cortex to symptomatic presentation. With a neurocognitive approach to the field, to balance the “traditional overreliance on psychodynamic accounts”,

Michael Trimbale

Movement disorders in children

This is a truly marvellous book. The authors combine their vast clinical experience with an up to date review of literature scattered throughout neurological and paediatric publications to produce the first text book on movement disorders in children. A clinical approach to movement disorders in childhood is taken with chapters devoted to the predominant movement disorder. Clinical descriptions and illustrations are given for all of the important conditions producing that movement disorder; comprehensive assessment of the rarer causes of movement disorders are also provided.

The authors start by reviewing general concepts relevant to the diagnosis of movement disorders in childhood. The current model of basal ganglia functioning is discussed and this is followed by a description of the main types of movement abnormality. This is followed by a brief, but important, guide to specific areas of clinical history taking and examination in the evaluation of movement disorders in children. Subsequent chapters are based on the predominant movement disorder. Each is organised with an initial introduction and classification followed by a discussion of the major disorders producing that movement abnormality. The features of each chapter are a discussion of conditions that may simulate the movement disorder; the discussion of difficult cases according to the authors’ own experience and from the literature published. The chapters are well balanced treatment of the individual movement disorders. Relevant investigations are also presented within the context of each individual movement disorder. A chapter is also devoted to those complex movement disorders where one type does not predominate. The movement disorders covered include the hypokinetic-rigid syndromes, tremor, chorea, dystonia, myoclonus, tics, and complex. There are also important chapters on movement disorders and movement disorders in cerebral palsy. Last is a chapter about ancillary investigations that either have, or may well in the future, prove useful in our understanding of paediatric movement disorders. Throughout the book, additional authors have contributed their own expertise.

This is a comprehensive and up to date textbook about movement disorders in children. All clinical neurologists and paediatricians with an interest in neurology or neurosociability should have access to this book and I suspect that most will want to own a personal copy. In addition, this book will be an excellent help to adult neurologists evaluating patients with a movement disorder the origins of which are in childhood or adolescence.

R Surtess

Advances in dementia research

This book is a collection of presentations from a symposium “Aging and Dementia” held at the end of 1999 in Graz. As always with such collections, the book is as good as the presentations were and some of these are excellent and useful, others are worth reading. One or two could just have provided an opportunity to go and have a look around Graz. What the book is not is a systematic review of advances in dementia research and probably books are not good places to turn to for such reviews, as this material is generally best accessed directly from the journals themselves. The book starts well enough with an interesting series of papers on the relation between vascular damage to the brain and dementia. Some of the articles are non-systematic and short reviews, others are more thoughtful discussions of an interesting but difficult area of research, and others are straightforward data presentations. I was left with more questions than answers, which is probably healthy. The papers in the book then go on to discuss other important issues in dementia research, including neuroinflammation, apoptosis, mitochondrial dysfunction, and genetics. Some of the most important advances came just a little bit after this book was published. The discussion of transgenic models of Alzheimer’s disease for...
example includes no discussion of transgenic models of the frontal lobe dementias even though that is clearly related and the various papers on immunological approaches do not include any of the amyloid vaccine data.

A more general question arises, to my mind, however, reading this book, as to whether else who is likely to read it. If read by somebody coming new to the dementia field they would have a very unbalanced picture of the field and this cannot be recommended to novices to dementia research. On the other hand, those familiar with dementia research are unlikely to treat this book as other than a collection of primary papers and if browsing, they might well be interested to communicate with JNPN, for example. The participants of the meeting are almost certainly going to look through the book if only to recall what they said. Other readers of course will include reviewers. However, and this is a very personal review, I am not a huge fan of collection of papers from meetings. I suspect they largely go unread and I cannot really recommend this book to anybody. Interestingly the final six or so per cent of our proprietary compound which is being developed for treating Alzheimer’s disease. According to one article, this compound is widely used to relieve symptoms in various neurological disorders, which would not be good news to me. A previous meeting held in 1997 also resulted in a book very similar to this one and is advertised in the back. A review of the 1997 meeting book, published in *Acta Psychiatrica Scandinavica* and used as a promotional blurb mentions that “The book will be of interest to those following the development of neurotrophic factors for treatment of dementia who need an extensive introduction to the clinical studies” of this proprietary compound. Things haven’t changed much.

Simon Lovestone

Limbic seizures in children

Limbic seizures in childhood differ from those in adults. They are more likely to be caused by cortical dysplasias, related malformations, and tumours. They are more easily, but not invariably, controlled by drugs. Have new imaging and EEG techniques advanced the cause and effect debate about febrile seizures and mesial temporal sclerosis (MTS)? Such considerations make this monograph timely.

Initial chapters on the history of the subject, the evolving definition of what constitutes limbic structures, their functional organisation and the relevance of MTS are clear, instructive, and thought provoking. “Limbic” is a border, in this case the border between the midbrain and the rest of the cerebral hemisphere. In non-primates, primarily concerned with smell, it has decreased in size relative to the elaborating neocortex, but in so doing has acquired multiple connections with association cortices. The hippocampus and perihippocampal cortex are distinguished by several features. Their cell properties are particularly determined by the level of activity—long term potentiation or depression. Their learning properties confer subserve memory. Whereas the perihippocampus may code memories by semantic association, the hippocampus assigns them a personal context in time and space. The number of possible associations and ways of filing past events is almost infinite. The original roots in olfactory function may linger as the powerful evocation of memories by smell (Madeleine cakes served Proust for his life’s work). It is possible that the flexibility and enhanced activity of certain hippocampal circuits on which its function is contingent make it particularly liable to epileptogenesis.

Many patients with catastrophic epilepsy do not have MTS. Seizures themselves do not cause MTS. Fifteen per cent of patients with MTS have dual pathology, 15% have increased neuronal heterotopias, and 15% have bilateral involvement. Degree of cell loss is not related to duration of epilepsy. Mossy fibre sprouting is not seen in children younger than 7 years of age, suggesting that this is a secondary progressive lesion. From facts such as these Spencer et al conclude that mesial temporal lobe epilepsy has a probable developmental aetiology. Hippocampal abnormalities pre-exist (and can be demonstrated in unaffected members of familial temporal lobe pedigrees) but convey vulnerability to febrile convulsions and subsequent MTS.

Subsequent chapters treat different aspects of limbic seizures—language disturbances, motor automatisms, impairment of consciousness, autonomic changes, and postural changes. The literature distinguishing frontal from temporal lobe complex partial seizures is summarised. There are chapters on structural and functional imaging. This book arose out of a colloquium. Of the 26 contributions all but four are from French or Italian centres. The two from America are particularly good and perhaps the standard of the rest might have been higher if the net had been spread wider. Some authors speak from very limited experience. The chapters on treatment are particularly disappointingly. That systematic errors in English abound and much information is repeated throughout implies lack of adequately firm editorial grip.

This book will be useful to paediatric epileptologists, but the patchy quality overall precludes a warm recommendation to a wider audience.

Richard Robinson

Spinal cord injury desk reference. Guidelines for life care planning and case management

This book is a reference text. It contains information that will be of considerable assistance to those who are involved in the planning of the long term care of those with spinal cord injury in the United States. The authors, all United States based, include two spinal cord injury physicians, a behavioural scientist, and a rehabilitation counsellor.

The information in this book will assist predominantly those healthcare professionals who are closely involved in the case management of spinal cord injury. It will also be of interest to all who are involved with spinal cord injury including patients, their families, and all the many groups who work in the area including doctors, social workers, healthcare plan- ners, lawyers, and many others. For those who already have wide knowledge of spinal cord injury care the chapter on resources and legislation may be of particular value as it contains numerous addresses and telephone contacts.

Head trauma: basic, preclinical, and clinical directions

Miller and Hayes have assembled chapters from 42 expert contributors renowned for their work in investigation of traumatic brain injury. They have divided the text into three main sections, basic science overview, preclinical studies, and clinical directions.

Organising the text in this way the authors have struck a theme which passes from experimental concepts through to preclinical feasibility studies and eventually on to clinical trials. They acknowledge from the outset that the wealth of basic scientific information gathered over the past 3 decades has not led to substantial clinical gain. The reasons for this are debated in a latter chapter.

The work represents a comprehensive review of the information available on traumatic brain injury. The basic science overview I found to be particularly well written and concise, introducing concepts and experimental data in a highly readable way. The main theories of cytotoxicity, inflammatory response, apoptosis, traumatic axonal injury, and mitochondrial dysfunction have separate attention, as do the important vascular aspects of severe head injury.

The final section refers to the clinical efforts of attempting to translate scientific knowledge. The results of clinical trials organised in the United States, Europe, and Asia are discussed and potential reasons for their failure debated.

In conclusion, the work of Miller and Hayes is a valuable addition to the reading of those involved in traumatic brain injury. This is particularly so for those who engage in the experimental and clinical design of novel therapies for the traumatized brain.

Peter J Kirkpatrick
Meeting the challenge of progressive multiple sclerosis

Having been diagnosed in 1982 I have lived for 19 years with a slowly progressive form of multiple sclerosis. I was therefore glad of the opportunity to catch up on recent developments in the understanding of the disease and discussion of some of the latest options for treatment. Although the book states in the opening paragraph that it is written for people with this form of multiple sclerosis, it is also obvious from the first page that it is going to be very hard work for anyone without a scientific or medical background to make sense of the information it contains. I constantly found myself having to reread and struggle to understand the technical language used throughout the book. Such a pity when there is much potentially useful information there.

I was interested to see what the writers would have to say in the section on management and self help since this is an area the medical profession has often overlooked. There is discussion under various headings such as coping with fatigue, bladder dysfunction, tremor, and cognitive dysfunction, followed in each case by a series of bullet points on the management of symptoms. Once again the language defeats the object of the book as these read more like checklists for doctors and multiple sclerosis nurses than clear, accessible summaries that people with multiple sclerosis can make use of.

It is heartening to see that in these days of disability legislation (the Disabilities Act in the United States and the Disability Discrimination Act in the United Kingdom) questions of access to buildings and equipment and discussions of legal rights and financial entitlements are seen as having a place in a book on multiple sclerosis. The past 19 years have taught me that factors such as attitudes towards disabled people, the design of buildings, and the way in which services are delivered may impact on the lives of people with multiple sclerosis and their families just as much as the effects of the disease.

Michele Wates