Progressive supranuclear palsy (PSP) is a tau deposition neurodegenerative disorder which usually occurs in sporadic form and is associated with a common variant of the tau gene. Rare familial forms of PSP have been described. Recently familial frontotemporal dementia linked to chromosome 17 (FTDP-17) has been shown to be due to mutations in tau and there may be a clinical and pathological overlap between PSP and FTDP-17. In this study we have analysed the tau sequence in two small families with PSP, and a number of clinically typical and atypical sporadic cases with pathological confirmation of the diagnosis. The tau mutations described in FTDP-17 were not found in the most clinically diagnosed patients with PSP. This suggests that usually FTDP-17 and PSP, including the rare familial form of PSP, are likely to be separate conditions and that usually PSP and typical PSP-like syndromes are not due to mutations in tau.

Progressive supranuclear palsy has occasionally been described as occurring in familial form, and is associated with a common variant of the tau gene. Rare familial forms of PSP have been described. Recently familial frontotemporal dementia linked to chromosome 17 (FTDP-17) has been shown to be due to mutations in tau and there may be a clinical and pathological overlap between PSP and FTDP-17. In this study we have analysed the tau sequence in two small families with PSP, and a number of clinically typical and atypical sporadic cases with pathological confirmation of the diagnosis. The tau mutations described in FTDP-17 were not found in the most clinically diagnosed patients with PSP. This suggests that usually FTDP-17 and PSP, including the rare familial form of PSP, are likely to be separate conditions and that usually PSP and typical PSP-like syndromes are not due to mutations in tau.

RESULTS

Analysis of tau exons 9–13 showed no coding or splice site mutations in patients with familial PSP, patients with sporadic typical or atypical PSP, or in patients with a family history of other neurodegenerative diseases. One additional sporadic patient has recently been identified with clinically diagnosed...
likely PSP, although not meeting NINDS criteria for clinically probable PSP with a young age at onset and a tau exon 10+16 mutation. Full details of this case will be published separately.

DISCUSSION

Mutations in tau have not been identified in most patients with PSP in this study, in common with other groups who have investigated PSP in clinically based series. FTDP-17 kindreds in which the pathogenic mutation is a tau exon 10 coding or splice mutation are particularly similar to PSP. These conditions both involve degeneration of the basal ganglia and brain stem, with deposition of neurofibrillary tangles consisting of two major hyperphosphorylated tau bands at 64 kDa and 68 kDa on western blotting. These bands consist predominantly of four repeat isoforms of tau, and in exon 10 splice mutations this occurs because of a change in the alternative splicing of tau RNA. Progressive supranuclear palsy may also involve a change in the alternative splicing of tau, but this has not been demonstrated in all brain areas, or in all cases. In addition, FTDP-17 involves degeneration of frontal and temporal cortex and often involves marked personality change, obsessional symptoms, and progressive dysphasia.

Although personality change and withdrawal may be early features of PSP, the most characteristic features are of early imbalance and a supranuclear gaze palsy and this probably reflects predominant damage to the brain stem. These features may be seen in FTDP-17, and some families and members affected seem to be indistinguishable from sporadic PSP. However, many of the FTDP-17 kindreds described with supranuclear or oculomotor gaze abnormalities have features atypical for PSP such as prominent asymmetry, prominent cortical sensory signs, psychosis, levodopa induced dyskinesias, prominent neuropsychiatric symptoms, late gait disturbance, or young age at onset. Progressive supranuclear palsy distribution pathology has been described in some FTDP-17 families. Exon 10 FTDP-17 involves extensive neuronal and glial tau deposition and this may include the tufted astrocyte type tau inclusion which has been considered to be relatively specific for PSP. In addition, FTDP-17 exon 10 mutation cases may involve extensive oligodendrogial tau deposition and the formation of astrocytic plaques, considered to be more characteristic of CBD. At the electron microscopic level a distinction can be made between exon 10 FTDP-17 tau filaments and PSP tau filaments, as FTDP-17 involves the deposition of a novel type of filament form, the twisted ribbon filament, which contrasts with the straight filaments typically seen in PSP.

Although PSP has many similarities to FTDP-17 and there may be overlapping features, there are clinical and molecular differences between these conditions, and the absence of tau mutations in the families and most sporadic cases described in this paper reinforces that distinction. Usually PSP or typical PSP-like syndromes are not due to mutations in tau. Furthermore, taken together with the work of Hoenicka et al in excluding tau in the largest PSP family described to date, our data suggest that a separate gene may determine neurofibrillar degeneration in familial PSP.

ACKNOWLEDGEMENTS

HRM was an MRC Clinical Training Fellow and this work is supported by the PSP (Europe) Association and the Reta Lila Weston Trust.

Authors’ affiliations

H R Morris, N Quinn, N W Wood, University Department of Clinical Neurology, Institute of Neurology, Queen Square, London WC1N8G, UK

T Janssen, M N Rosser, Dementia Research Group

T Revesz, Department of Neuropathology

J M Brown, Department Of Neurology, Addenbrookes Hospital, Hills Road, Cambridge CB2 2QQ, UK

R Katzenschlager, M Ozansoy, A J Lees, Reta Lila Weston Institute of Neurological Sciences, Windeseyer Building, University College London, 46 Cleveland Street, London W1T 4JF, UK

S E Daniel, A J Lees, Parkinson’s Disease Society Brain Research Centre, Institute of Neurology, 1 Wakefield Street, London WC1T, UK

Correspondence to: Professor A J Lees, Reta Lila Weston Institute of Neurological Sciences, Windeseyer Building, University College London, 46 Cleveland Street, London W1T 4JF, UK; ales@ion.ucl.ac.uk

Received 27 April 2001

In revised form 12 October 2001

Accepted 25 October 2001

REFERENCES

