Epilepsy

A new antiepileptic drug

S D Shorvon, K van Rijckevorsel

Levetiracetam, a pyrrolidone recently licensed as an antiepileptic drug

Recently a new antiepileptic drug, levetiracetam (LEV), was approved for the add on treatment of partial epilepsy, both in the United States and in Europe. This is of potential importance, because this drug is from a class not previously used in epilepsy, although piracetam, a compound with a structure similar to that of levetiracetam, is useful in myoclonus. Both drugs are pyrrolidone derivatives, a class of drugs of interest for both psychotrophic and nootropie applications and potentially as neuroproteectors. Levetiracetam (available under the registered trademark of UCB S.A., Keppra) is the S-enantiomer of α-ethyl-2-oxo-1-pyrrolidine acetamide (fig 1). Homologues sharing the S configuration include a range of other compounds, some of which also have antiepileptic action. The range and extent of the compounds’ activity in experimental models of epilepsy and other conditions varies considerably with minor changes to chemical structure, but the full extent of the range of properties of these drugs in humans has not been explored. This article reviews the experimental and clinical data relating to the antiepileptic action of levetiracetam.

EXPERIMENTAL STUDIES

Levetiracetam shows an unusual profile of antiepileptic activity in experimental animal models of partial and generalised epilepsy. Unlike other antiepileptic drugs, levetiracetam has no effect on tonic seizures induced by maximal electroshock or clonic seizures induced by pentyleneetetrazol (PTZ) stimulation in the classic rodent models. If however it has very marked protection against seizures in audiogenic mice, mice kindled with corneal electroshock or PTZ, and amygdaloid kindled rats. It protects against spontaneous spike and wave discharges in the GAERS model and in pilocarpine or kainic acid induced focal seizures in rats. The dose dependent ability of levetiracetam to inhibit the development of kindling suggests a potential antiepileptogenic effect as well. Levetiracetam is the most effective of any of the pyrrolidone drugs in these epilepsy models. Its R-enantiomer has no antiepileptic activity. The dose at which toxic effects on the rotarod test are produced is much higher than the effective antiseizure dose in both the GAERS model and the cornically kindled mice. The safety margin of levetiracetam in these models is much greater than for other drugs. In acute and chronic toxicity studies in animals, levetiracetam shows generally low toxicity. Oral doses up to 5000 mg/kg acutely (maximum tested dose) are not lethal in mice and rats. Levetiracetam has not displayed any teratogenic, mutagenic, or carcinogenic properties.

The mechanism of action of levetiracetam (or indeed the other -acetam drugs) is not clearly understood, and it does not seem to involve any conventional modulation of the three main mechanisms relevant for the action of classic antiepileptic drugs. The drug does not bind to receptors associated with excitatory or inhibitory neurotransmitters (for example, γ-aminobutyric acid (GABA), glutamate, glycine, adenosine), has no effect on sodium or T-type calcium channel function, and does not affect GABA transaminase or glutamic acid decarboxylase (GAD) activity or second messenger systems (cyclic adenosine monophosphate, protein kinase C). By contrast, it has recently been reported that levetiracetam reduces high voltage activated Ca⁺⁺ currents, reverses inhibition of GABA and glycine gated currents induced by negative allosteric modulators, and effects voltage gated potassium channel conductance, suggesting that its mechanism of action differs from other antiepileptic drugs. Levetiracetam also has a specific stereoselective binding site in the CNS, and cannot be displaced from this site by other classic anticonvulsant drugs (carbamazepine, phenytoin, valproate, phenobarbital), although ethosuximide does show binding affinity. The extent of the antiepileptic efficacy in the audiogenic seizure model in mice was found to be correlated with the affinity for the binding site of a series of S-homologues of levetiracetam. Levetiracetam has no binding to membranes outside of the CNS.

CLINICAL PHARMACOKINETICS

The pharmacokinetic properties of levetiracetam have been studied in healthy adult volunteers, patients with epilepsy, and special populations, including paediatric and elderly patients and patients with renal or hepatic insufficiency. Levetiracetam is rapidly and almost completely absorbed after oral administration of doses ranging from 250 mg to 5000 mg, with peak plasma concentrations achieved in about 1 hour and steady state concentrations achieved in 48 hours. Absolute oral bioavailability is nearly 100%. When taken with food, the extent of absorption is not affected, although the rate of absorption may be slowed. Levetiracetam is not significantly bound to plasma proteins (<10%), and its volume of distribution is about 0.6 l/kg, similar to the volume of distribution of intracellular and extracellular water. In addition, levetiracetam exhibits linear, dose proportional, kinetics, with low intra-subject and inter-subject variability, and a half life of 6 to 8 hours. Levetiracetam does not undergo hepatic metabolism, nor does it induce or inhibit cytochrome P-450 enzymes. Levetiracetam is to a limited extent metabolised (by hydrolysis) by a serine esterase enzyme in blood and other tissues and excreted through the kidneys unchanged or as inactive metabolites.

Renal clearance of levetiracetam is directly proportional to creatinine clearance. Clearance of levetiracetam is significantly reduced in patients with severe hepatic impairment and concomitant renal impairment (hepatorenal syndrome). No differences are seen in patients with mild to moderate hepatic impairment. In studies with elderly patients, the elimination half life of levetiracetam is prolonged to 10 to 11 hours.
hours and is likely attributable to the age related decline in renal function. After single oral dose administration of 20 mg/kg levetiracetam in children between 6 and 12 years old, total body clearance was about 30% to 40% higher than in adults, and the half-life was roughly 6 hours.7

Because it does not undergo hepatic metabolism and is not significantly protein bound, levetiracetam has a very low potential for pharmacokinetic interactions. Findings from studies in vitro,5 clinical trials in patients,6–10 and specific studies with digoxin,11 phenytoin,11 warfarin,11 valproic acid, and oral contraceptives11 support this assertion.

CLINICAL ANTIEPILEPTIC EFFECT

Add on therapy in partial epilepsy

The efficacy of levetiracetam as add on therapy has been assessed in three prospective, double blind, placebo controlled trials in patients with refractory epilepsy. The studies were powered for parallel group comparison.4–6 Doses of levetiracetam evaluated in these trials included 1000, 2000, and 3000 mg/day given in twice daily regimens. A total of 904 patients with refractory partial seizures, with or without secondary generalisation, who were not controlled despite being on a stable dose regimen of one to a maximum of two marketed antiepileptic drugs, participated in these trials. Patients were evaluated after 12 or 14 weeks, and seizure frequency during the evaluation period was compared with a baseline period of 8 or 12 weeks. Demographic characteristics across studies were comparable for sex, age, race, and other baseline assessments. Responder rate and seizure count analyses were based on the patients who completed titration and entered the stable dose evaluation period (n=860). In addition, the responder rates were also analysed for the total randomised population during the treatment period (the intent to treat population; n=904). The data from both analyses are presented in table 1.

At all doses evaluated in these studies, levetiracetam was significantly more effective than placebo. The median percentage reduction from baseline was 32.5 for patients receiving levetiracetam compared with 7 for patients receiving placebo (p<0.001). The responder rate (the proportion of patients experiencing a 50% or greater reduction in seizure frequency compared with baseline) during the evaluation period was 27.7% (54/195), 31.6% (30/95), and 41.3% (111/269) for patients receiving 1000, 2000, and 3000 mg/day respectively, compared with 12.6% (38/301) of patients who received placebo (fig 2; p<0.001, all doses versus placebo). The percentage of patients experiencing a 75% or greater reduction in seizures was 11.8% (23/195), 16.8% (16/95), and 22.3% (60/269) of patients receiving 1000 mg, 2000 mg, and 3000 mg of levetiracetam respectively, compared with 3.3% (10/301) of placebo treated patients (p<0.001, all doses versus placebo). In addition, 5.7% (32/559) of patients treated with levetiracetam became seizure free, compared with 0.6% (2/301) in the placebo group (p<0.001). A statistically significant reduction in seizure frequency for all different subtypes of partial seizures (simple partial, complex partial, and secondarily generalised seizures) was found with levetiracetam treatment (fig 3).

Monotherapy

One of the efficacy trials was extended into a levetiracetam responder selected monotherapy phase.13 Forty nine of the 69 patients (71%) who were selected for the monotherapy phase were successfully down titrated, and 36 of 69 (52%) completed the monotherapy phase. The median percentage reduction compared with baseline was 73.8% (p=0.037), the 50% responder rate was 59.2% (29/49), and nine patients (18.4%) remained seizure free during monotherapy.

Long term efficacy studies

Long term analysis of results from the 1422 patients with epilepsy from the first day of exposure to levetiracetam or placebo in phase I, II, or III studies show estimated retention rates (Kaplan-Meier analysis) of about 60% after 1 year (number of patients at risk=826), 44% after 2 years (number of patients at risk=489), and 32% after 4 years (number of patients at risk=175), for up to 8 years (number of patients at risk=1).11 Twenty per cent of patients withdrew due to reasons inherent to clinical trials, 16% due to adverse events and 18% due to lack of efficacy. Of the patients with a baseline evaluation (n=1321), 548 (41.5%) had 50% and 355/1321 (26.9%) had 75% reduction in seizure frequency compared with baseline during the last 6 months of therapy. Of the 1422 patients, 183 (12.9%) were seizure free for at least 6 months, and 109 (7.7%) were seizure free for at least 1 year. The efficacy of levetiracetam was maintained over time. Sixty six (5%) of the patients were successfully converted to monotherapy.
Other seizure types

The range of effectiveness of levetiracetam in human epilepsy has not yet been fully explored, but there are some indications that the drug will be useful in a wider range of seizure types and syndromes. Preliminary open studies of levetiracetam in patients with generalised tonic clonic, absence, and myoclonic seizures have been very encouraging, as they have in the multiple seizure types of the Lennox-Gastaut syndrome. The drug also has a dramatic effect on photosensitivity, and there is pilot data suggesting potential effectiveness in re-fractory juvenile myoclonic epilepsy.

SIDE EFFECTS

One of the striking aspects of the clinical trial programme of levetiracetam was the low rate and mild nature of the reported side effects. The incidence of the most common adverse reactions (the FDA term) and the most common undesirable effects (the European Medicinal Evaluation Agency term) derived from three efficacy trials and one safety placebo controlled, double blind trial are shown in table 2. The side effects were primarily related to the CNS. Somnolence, asthenia, and dizziness were most commonly reported. In the pooled analysis, there was no evidence of a dose dependent relation within the recommended dose range of 1000 to 3000 mg/day. Patients receiving levetiracetam also reported a slightly higher incidence of symptoms of upper respiratory infection, which was not associated with leukopenia or dose reduction. The proportion of patients who discontinued treatment prematurely or required a dose reduction because of an adverse event was not significantly different between levetiracetam and placebo groups (15.0% vs 11.6%). Adverse events that led to withdrawal in patients treated with levetiracetam included somnolence (4.4%), convulsion (3.0%), dizziness (1.4%), asthenia (1.3%), and headache (1.0%). A greater percentage of patients from the placebo groups discontinued because of convulsion (3.4%) and rash (1.1%). A worsening of seizure, defined as an increase in seizure frequency of ≥25%, was significantly lower in patients treated with levetiracetam compared with placebo (levetiracetam, 14.2%; placebo, 25.6%; p<0.001). During long term treatment, only 225 (16%) of the 1422 patients withdrew because of an adverse event.

During long term treatment, there was a slightly higher incidence of psychiatric side effects recorded than in the placebo controlled phase and these included irritability, aggression, anger and hostility, and hallucinations. It would be wise to monitor patients for these side effects especially if prone to psychiatric disorders.

Throughout the entire clinical development programme, there were 22 deaths of patients with epilepsy receiving levetiracetam (crude mortality rate 0.91 per 100 patient-years). Eight were sudden and unexplained death in epilepsy (SUDEP) in the levetiracetam group (3.54 per 100 person years) versus one in the placebo group (6.58 per 100 person years). The difference was not significant.

Safety data regarding laboratory and physical examinations have been obtained from 3347 patients exposed to levetiracetam (adults with epilepsy, n=1393; children, n=29; patients with other diseases, n=3158; healthy volunteers, n=367), for a total of 2421 patient-years. Overall, physical and neurological examinations were unremarkable in patients treated with the drug. Minor but statistically significant decreases were found in mean values of the red blood cell count, haemoglobin, and packed cell volume, but there were no significant changes in other laboratory parameters.

DOSSING RECOMMENDATIONS

The recommended dosing regimen for levetiracetam as add on therapy is twice daily doses of 500 mg to 1500 mg, for a total daily dosage of between 1000 mg and 3000 mg. Higher doses have been studied, but with little evidence of added effectiveness. The initial starting dose of 1000 mg/day has been shown to be clinically effective, but if sufficient seizure control is not obtained, doses can be increased up to 3000 mg/day. In patients with renal impairment, doses should be adjusted downwards in accordance with creatinine clearance.

ACKNOWLEDGEMENTS

Professor Shorvon has received hospitality and speaker’s honoraria from UCB and was the author of the clinical expert report submitted to the European Medicine Evaluation Agency on Levetiracetam. Professor van Rijckevorsel has received consultant’s honoraria from UCB and has participated in the analysis of data for the redaction of the clinical expert report submitted to the European Medicine Evaluation Agency on Levetiracetam.

Authors’ affiliations

S D Shorvon, Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK and National Hospital for Neurology and Neurosurgery London, UK; and the National Neuroscience Institute, Singapore
K Van Rijckevorsel, Centre Neurologique William Lennox, Université Catholique de Louvain, Ottignies-Louvain La Neuve, Belgium

Correspondence to: Professor S Shorvon, Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK; s.shorvon@ion.ucl.ac.uk

Table 2 Adverse events (%) according to FDA and EMEA standards

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Adverse reaction* (FDA)</th>
<th>Undesirable effect† (EMEA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Levetiracetam (n=769)</td>
<td>Placebo (n=439)</td>
<td>Levetiracetam (n=672)</td>
</tr>
<tr>
<td>Somnolence</td>
<td>15</td>
<td>8</td>
</tr>
<tr>
<td>Asthenia</td>
<td>15</td>
<td>9</td>
</tr>
<tr>
<td>Dizziness</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>Infection</td>
<td>13</td>
<td>-</td>
</tr>
</tbody>
</table>

*Adverse reaction: any event reported during clinical trial; FDA, Food and Drug Administration; †Undesirable effect: all adverse events at least possibly related to the study drug; EMEA=European Medicinal Evaluation Agency.


Cervical dystonia

Respective potencies of Botox and Dysport: a double blind, randomised, crossover study in cervical dystonia

W Poewe

Clinically appropriate conversion factor may be less than three

The issue of apparently different potencies of the two available formulations of botulinum toxin type A—Dysport and Botox—has continued to perplex clinicians for more than a decade. Empirically chosen doses expressed in mouse units in different series and different indications reported in the literature seemed to differ by factors of three to six. To date only two randomised controlled studies have tried to answer the question of what the correct conversion factor yielding bioequivalence should be. One was conducted in previously untreated patients with blepharospasm or hemifacial spasm and found a bioequivalence ratio of Botox to Dysport of 1:4 with duration of effect as the primary outcome variable. The second comparative trial randomly assigned patients with cervical dystonia previously treated with Botox to receive either their clinically defined individual dose of Botox or three times that dose as Dysport units and found similar effect size, duration of effect, and rates of adverse events. In the paper by Ranoux et al (this issue pp 459–462) of this issue, results of another double blind randomised study comparing efficacy and safety of the type A preparations seem to suggest that the clinically appropriate conversion factor may be less than three.

Fifty four patients with cervical dystonia and a satisfactory response to two consecutive injections of Botox at the same dose into identical muscles received three successive treatments of either their usually effective dose of Botox or three or four times that dose of Dysport. Treatments were given in randomised order using identical volumes of injection and muscle patterns. The effect size as assessed by changes in Tsui scores and Toronto Western Spasmodic Torticollis rating scale (TWSTRS) pain scores was significantly greater with both Dysport treatments and duration of effect was also longer. Three-fold or four-fold doses of Dysport produced similar effect sizes but duration tended to be increased with the four-fold dose. Side effects were significantly more frequent with both Dysport doses than with Botox but again not significantly different between the two Dysport doses (17.6% of patients treated with Botox, and 33% and 36% of patients treated with Dysport 1:3 and 1:4, respectively).

In summary, the authors suggest that even lower conversion ratios be used than 3:1 for Dysport to Botox. Should it then be 1:2.5 or even 1:2? If so, should we be using lower doses of Dysport or higher doses of Botox to achieve this? With only three randomised trials available differing in design, target population, and results, it is impossible to give a conclusive answer to this question. For the time being clinicians may be best advised to use the following landmarks for their dosing decisions when treating patients with dystonia. Firstly, the equivalence ratio of Dysport to Botox should not be greater than 3:1 according to the majority of available comparative clinical studies. Secondly, for cervical dystonia, the indication studied by Ranoux et al, a double blind dose ranging study has shown that Dysport doses needed for a satisfactory response are greater than 250 units and that doses greater than 500 units are associated with clear increases in adverse event frequency and severity.

REFERENCES


Rehabilitation

Intensity of rehabilitation: some answers and more questions?

P Langhorne

No benefits to intensive rehabilitation in the long term

For many years rehabilitation researchers have pondered whether the observed recovery of patients from stroke occurs at the optimum natural recovery rate or may be further enhanced by rehabilitation interventions, in particular by increasing the intensity of rehabilitation input. A carefully conducted randomised trial by Kwakkel et al indicated that increasing the intensity of physical training after middle cerebral artery stroke brought about improvements in the recovery during the first 6 months. When the additional training was focused on the upper limb improvements in dexterity were observed; when the lower limb was targeted walking ability and Barthel activities of daily living (ADL) scores improved. In their follow up paper (Kwakkel et al this issue pp 473–479) they address the question of whether these benefits continue in the longer term. This follow up paper indicates that there were no significant differences between the treatment groups at one year after randomisation, an observation that appears to confirm previous similar trials.
Why did the early benefits of intensive training disappear at a later stage? The first possibility is that there were differences in treatment after the intervention period ended but this appears unlikely. None of the patient groups received much rehabilitation input after six months. The second possibility is that the treatment group suffered a decline in function after their intensive treatment was removed. This also appears unlikely, as it is not supported by the longitudinal data. A third possibility is that the control group continued to improve until their function matched that of the intervention groups. On balance, this seems the most compelling explanation.

An additional observation was that patients who were noted to have made an incomplete functional recovery at 6 months showed the largest subsequent changes (including both improvement and deterioration) in impairments and disability. This observation is probably not an artefact of the measures used and does indicate that there is potentially a subgroup of patients in whom increased therapy could be targeted at a later stage.

The main message appears to be that increasing the intensity of upper and lower limb training for selected patients after a stroke can speed up recovery but the longer term effects are uncertain. It remains to be established whether we can identify patients who are exceptions to this general rule and would benefit from later intervention to optimise their recovery.

J Neurol Neurosurg Psychiatry 2002;72:430–431

Headache and hypertension: refuting the myth

D Friedman

Why does the hypertension headache myth persist?

Patients often tell their physicians, “I know when my blood pressure is high because I get a headache.” The relation of headache to hypertension has been debated in the medical literature for almost a century. Janeway observed it in a large clinical study of hypertensive patients (systolic blood pressure > 160 mm Hg) in 1913. He described the “typical” hypertension headache as non-migrainous, present upon awakening and resolving during the morning. However, his illustrative case histories are somewhat misleading because they all had malignant hypertension and systolic pressures > 230 mm Hg. Additionally, one patient was likely in anaglyptic rebound.

There are several reasons why the “hypertension headache” misperception persists: hypertension may be an epiphenomenon of acute pain, headache is associated with hypertensive encéphalopathie as a manifestation of increased intracranial pressure, and headache is a side effect of some antihypertensive treatments. Conversely, many of the antihypertensive medications are also effective for headache prevention, so the risk of concurrent headache may be low unless the influence of treatment is considered.

The Physicians’ Health Study prospectively examined 22,701 American male physicians aged 40–84 years, who were randomly assigned to receive daily aspirin, β carotene, both agents, or placebo. Analysis of various risk factors for cerebrovascular disease found no difference in the percentage of patients with a history of hypertension between the migraine and the non-migraine groups. Additionally, no difference in risk factors was found between physicians with non-migrainous headaches and those with no headaches.

The paper by Hagen et al (this issue pp 463–466) lends definitive clarity to the issue. In their prospective study spanning 13 years of 22,685 adults in Nord-Trøndelag County, Norway, patients’ blood pressure was measured interictally and they provided information regarding headaches and the use of pain relieving medications. Patients were subdivided into those with migraine and those with non-migrainous headache based on modified International Headache Society criteria for migraine. Contrary to popular belief, high systolic blood pressure at baseline was not associated with low headache prevalence 11 years later. This was not related to antihypertensive medication treatment. A similar effect was observed in women with migraine.

Their study is relevant because it is a cross sectional study of a large unselected population. Hypertension is more common in men but women have a higher incidence of headaches. Both women (10,698) and men (11,987) participated in HUNT-1 and HUNT-2 (Nord-Trøndelag Health Survey), supporting the conclusions in both sexes. Generalisation of the results was addressed by the authors in other reports. Race and geographic region contribute to variations in the prevalence of headache and hypertension. Participants in the HUNT studies were a homogeneous white population. Thus, the applicability of the results to other populations, such as African Americans, who have a higher prevalence of hypertension, is uncertain.

J Neurol Neurosurg Psychiatry 2002;72:431

Headache and hypertension

References


Author’s affiliation

P Langhorne, Academic Section of Geriatric Medicine, 3rd Floor, Centre Block, Royal Infirmary, Glasgow G4 0SF, UK

Correspondence to: Dr P Langhorne; p.langhorne@clinmed.gla.ac.uk

REFERENCES