Bacterial meningitis is the most common serious infection of the central nervous system. It is still characterised by high mortality and morbidity in adults. This disease extensive perpetuated infection with leucocyte invasion into the central nervous system (CNS) results in breakdown of the blood–brain barrier and promotes neuronal damage.

Tissue type plasminogen activator (tPA) has been shown to have various biological effects that could have an impact on the pathophysiological changes observed in bacterial meningitis. In the CNS, endothelial cells, microglia, astrocytes, and neurons can produce the 70 kDa protein tPA, which normally does not cross the blood–brain barrier. Raised tPA levels in the intracerebral fluid (CSF) have previously been reported for certain CNS diseases such as multiple sclerosis, leukaemia, and encephalitis, and raised serum tPA levels for patients with sepsis.

The tPA converts plasminogen into plasmin, a rate limiting step in the proteolysis of fibrin, but also in the degradation of extracellular matrix, matrix metalloproteinase activation, and the processing of growth factors and cytokines. Further, tPA has been shown to increase neuronal cell death during excitotoxicity and cerebral ischaemia. Thus tPA may promote blood–brain barrier disruption, promote inflammatory signalling, and neuronal damage, and so be involved in the pathophysiology of bacterial meningitis.

We studied the expression of tPA in the CSF and serum of 12 patients with bacterial meningitis (causative pathogens: S pneumoniae (8); S aureus (3); H influenzae (1)) who had been admitted to our hospital (median age 63 years; range 29 to 78). Clinical outcome was measured according to the Glasgow outcome scale (GOS; 1, death; 2, persistent vegetative state; 3, severe disability; 4, moderate disability; 5, good recovery). Ten patients with non-inflammatory neurological diseases (median age 37 years; range 23 to 81) and 10 patients with Guillain-Barré syndrome, an inflammatory demyelinating polyradiculo-neuropathy in which blood–CSF barrier breakdown occurs without CSF pleocytosis, served as controls (median age 59 years; range 34 to 84).

A lumbar puncture was done and venous blood collected for diagnostic purposes after the patient’s informed consent had been obtained. CSF and serum concentrations of tPA were measured by a specific enzyme linked immunosorbent assay (TintElize®, Biopool International, Ventura, California, USA; detection limit 1.9 ng/ml). Immunoreactive tPA concentrations are expressed as ng/ml of biological fluid.

Blood and CSF variables for the three patient groups were compared using the Mann–Whitney U test with α adjustment; a corrected p value of < 0.025 was considered significant. Bivariate correlations between clinical variables and tPA concentrations were analysed according to Spearman ρ (GOS) or Pearson (CSF leucocyte count, CSF/albumin ratio).

In all patients with bacterial meningitis, the CSF leucocyte count was markedly increased (median 1728 cells/µl; range 143 to 23 296). The CSF to serum albumin ratio (1000 CSF albumin/serum albumin; normal < 7.4), the index used to quantify blood–CSF barrier breakdown, was significantly increased in all patients with bacterial meningitis (median 60.3; range 156 to 1400) and, to a lesser extent, in nine of the 10 patients with Guillain-Barré syndrome (median 12.8; range 4.7 to 39.0).

The tPA protein concentrations in the CSF and serum of patients with bacterial meningitis were increased compared with those of control patients and patients with Guillain-Barré syndrome; in both of the latter groups, tPA concentrations in the CSF were not detectable in nine of 10 patients (fig 1). The serum concentrations of tPA (mean (SD)) in patients with bacterial meningitis were about ninefold higher than the CSF concentrations (22.5 (13.8) v 2.4 (1.6) ng/ml; p < 0.005). CSF and serum concentrations in individual patients were positively correlated (r = 0.733, p < 0.01). Remarkably, high serum tPA concentrations in bacterial meningitis correlated with both an increased CSF to serum albumin ratio (r = 0.818, p < 0.01) and an unfavourable outcome according to the GOS (r = −0.72, p < 0.01). The CSF to serum albumin ratio also showed a high correlation with CSF tPA concentrations (r = 0.942, p < 0.001). For patients with bacterial meningitis, no correlations were found between serum tPA and CSF leucocyte count (r = −0.319, p = 0.311), between CSF tPA and CSF leucocyte count (r = −0.070, p = 0.828), or between CSF tPA and the clinical outcome (r = −0.201, p = 0.370).

On the basis of these findings, we hypothesise that increased serum tPA contributes to breaching of the blood–brain/CSF barrier in bacterial meningitis. In turn, the breaching of the blood–brain/CSF barrier in bacterial meningitis, which contributes to CNS complications such as cerebral oedema and increased intracranial pressure, may explain the additional correlation we found between high serum tPA levels and an adverse clinical outcome. A similar correlation was seen in patients with severe sepsis, a disease regularly associated with increased vascular permeability, in which serum tPA activity increased and was associated with mortality.

Acknowledgement
This study was supported by grants from the Förderprogramm Forschung und Lehre of the Ludwig-Maximilians University Munich (to FW) and from the Wilhelm Sander-Stiftung (to HWP). We thank Ms S Walter and B Angele for technical assistance and Ms J Bisenor for copy editing the manuscript.

Competing interests: none declared.

Correspondence to: Dr H W Pfister; pfister@neuro.med.uni-muenchen.de

Figure 1
(A) Concentrations of tissue type plasminogen activator (tPA) in the cerebrospinal fluid (CSF) of control patients (controls, mean (SD)): 1.54 (0.15) ng/ml; patients with bacterial meningitis (Bacterial meningitis): 2.42 (1.59) ng/ml, and patients with Guillain-Barré syndrome (GBS): 1.50 (0.02) ng/ml. (B) Concentrations of tPA in the serum of controls (9.71 (6.92) ng/ml) and patients with bacterial meningitis (22.51 (13.84) ng/ml), and patients with GBS (13.28 (8.74) ng/ml).

References
Amelioration of spinal myoclonus with levetiracetam

Spinal myoclonus has been associated with various spinal cord insults, including mass lesions, ischaemia, infection, and as part of a paucity of the syndrome. It has been postulated that it occurs as a result of deficient inhibitory glycinergic transmission in the spinal cord and subsequent “release” of synchronous motor neurone oscillations within segmental levetiracetam. (UCB Pharma, Smyrna, Georgia, USA) is a new antiepileptic drug that has been shown recently to reduce the effect of glycinergic inhibitors. We describe three patients whose spinal myoclonus was markedly ameliorated by levetiracetam.

Case reports

Patient 1: spinal epidural compression

A 62 year old woman presented with known diffuse large cell lymphoma present to her oncologist with progressive back pain accompanied by a band-like sensation around her waist. In the preceding four weeks, she had also been treated for continuous involuntary abdominal contractions, and in the preceding two weeks these were accompanied by involuntary jerks of her legs. The patient could not suppress these spontaneous movements; mandatory leg movements often precipitated them, she was unable to walk safely because of numerous falls. She denied any limb weakness and bladder or bowel incontinence.

On examination, she had a mild spastic paraparesis with 4+/5 MRC grade power in the lower extremities, involving both proximal and distal musculature, occurring at a rate of 130–240/min. There were also occasional, infrequent resting myoclonic jerks affecting the trunk. The myoclonic jerks were exacerbated in amplitude during attempts to perform purposeful movements, suggesting the phenomenology of action myoclonus. The abnormal movements, rather than weakness, made it impossible for her to stand or walk unassisted. Magnetic resonance imaging (MRI) of the cervical spine revealed malignant transformation of the lower thoracic vertebrae with evidence of cord compression at T11. An EEG was normal.

She was treated with a maximum tolerated dose of clonazepam (1 g/day) with minimal improvement. She was then started on levetiracetam 250 mg twice daily, and within three days the resting and action myoclonus subsided markedly, such that she was able to walk with assistance. On examination, the myoclonic jerk frequency in her lower extremities had decreased to 5–10/min, and the jerk amplitude was markedly diminished.

Patient 2: zoster myelitis

An 85 year old woman presented with a three month history of involuntary trunk movements. The movements consisted of sudden extensor jerks of her back. They were spontaneous, occurring several times a day with no obvious provoking factors. Of note, two months before the onset of the movements, she had been diagnosed as having thoracic herpes zoster (at T8) and had subsequent post-herpetic neuralgia. The back movements began as the pain was subsiding. The movements were not painful, but were distressing to the patient as they were socially embarrassing. She was unable to suppress the movements voluntarily. She had been seen by another neurologist who had treated the movements with sodium valproate. She unfortunately received no benefit from this, and a maximum tolerated dose of 2000 mg/day. Past medical history was notable for cardiac arrhythmia and pace-maker placement.

On examination she had brief, irregular, extensor movements of her thoracic spine, occurring every 10–30 seconds. An EEG was normal. MRI of the thoracic spine was precluded because of her pacemaker. The patient was able to walk with no assistance at a dose of 250 mg twice a day. Within 24 hours of starting this treatment, the myoclonic movements completely ceased. Two months later, she began to have clusters of repetitive movements once to twice daily for periods of 20–60 minutes. Her dose of levetiracetam was increased to 500 mg twice a day. The movements again ceased, but because of sedation and dizziness at this higher dose, the dosage was reduced to 250 mg/day. At this dose, well tolerated dose, she has been having brief clusters of myoclonic movements two or three times a week.

Patient 3: transverse myelitis

A 12 year old boy presented with a three month history of rhythmic spasms of his right thigh. One month before this symptom, he had had onset of bilateral leg weakness and parasthesiae and was diagnosed as having acute transverse myelitis. The paraparesis largely resolved within two weeks of onset, but one month later he began having constant, rhythmic spasms of his right quadriceps and hamstrings. These jerks could not be suppressed voluntarily and made walking difficult. Cerebrospinal fluid analysis and an MRI of the spinal cord were normal. An EEG did not show any epileptiform activity. Sodium valproate (1000 mg/d), phenytoin (300 mg/d), and intravenous lorazepam (as often as 2 mg every 4 hours) failed to relieve the constant myoclonus. A trial of botulinum toxin A injections into the right quadriceps did not ameliorate the movements.

On examination, he had constant, semi-rhythmic myoclonus of his right quadriceps at 120–150 bouts per minute with his knee extended, and of his right hamstrings with his knee flexed. The myoclonus was not suppressed by patellar fixation, but did improve slightly with concentration on mental tasks. On power testing, there was 4+/5 MRC grade power in the right quadriceps and right hamstrings. A repeat EEG was again unremarkable. He was started on levetiracetam at 250 mg daily and the dose increased over a four week period to 1250 mg/day. No clinical change was noted until the dose increased over a four week period to 2500 mg twice a day. The myoclonus slowed and then completely stopped over a seven day period, allowing independence with walking and reduced the frequency of his jerks to two per hour. On repeat EEG was again unremarkable. He was then started on levetiracetam at a dose of 2500 mg/day. Past medical history was notable for cardiac arrhythmia and pace-maker placement. On commencement of treatment, the myoclonus slowed and then completely ceased. Two months later, she began to have clusters of repetitive movements once to twice daily for periods of 20–60 minutes. Her dose of levetiracetam was increased to 500 mg twice a day. The movements again ceased, but because of sedation and dizziness at this higher dose, the dosage was reduced to 250 mg/day. At this dose, well tolerated dose, she has been having brief clusters of myoclonic movements two or three times a week.

Discussion

Glycinergic inhibition is a major neurotransmitter in the spinal cord, and it has been postulated that deficient inhibitory glycinergic transmission results in dysfunction of segmental spinal circuitry, and hence a myoclonic phenomenon in the spinal cord. This postulate is based on studies of animal models of myoclonus and in vitro studies in spinal cord preparations from neonatal rats expressing a central pattern generator responsible for 3 to 15 Hz synchronous motor neurone oscillations. Interestingly, these oscillations—generated from as few as two isolated segments—are synchronised over at least six spinal cord segments, suggesting extensive excitatory commissural connections. Therefore, it is possible that the effectiveness of levetiracetam in our patients may be related to these glycinergic mechanisms. Levetiracetam has been shown to reverse inactivation of glycine and GABA current gates induced by negative allosteric modulators, such as zinc and β-carbolines. It may therefore conceivably be of benefit in patients with spinal myoclonus, by augmenting glycinergic transmission in the spinal cord and thus dampening down myoclonic focis.

In a recent open labelled trial of levetiracetam in eight patients with chronic myoclonus, three of five patients with corticospinal myoclonus experienced reduction in their myoclonus severity, as assessed by the unified myoclonus rating scale. The one patient in this study with spinal myoclonus showed no improvement with levetiracetam. However, the average duration of symptoms in these patients was 7.6 years, ranging from one to 17 years, in contrast to our three patients whose symptoms were one to three months in duration before levetiracetam. It is therefore possible that the differential responsiveness to levetiracetam was because the aforementioned non-responder had a chronic fixed condition whereas our responders had subacute evolving spinal cord injuries.

In a recently published study, levetiracetam was used successfully to treat three patients with posthypoxic and postencephalitic myoclonus, two of whom had failed to respond to valproic acid and clonazepam. Add-on therapy with levetiracetam was shown to suppress disabling post-hypoxic cortical reflex myoclonus in a 16 year old boy. Another fixed condition whereas our responders had

References


Hyperthyroidism with increased factor VIII procoagulant protein as a predisposing factor for cerebral venous thrombosis

Cerebral venous thrombosis (CVT) is a rare disorder, with an incidence of approximately 4/100,000 per year, occurring more frequently in women than in men (ratio of 1.29:1). CVT is a multifactorial condition, known predisposing factors include venous stasis, hypercoagulability, vasculitis, systemic lupus erythematosus, and trauma. Mortality after CVT ranges from 5% to 30%. The optimal treatment consists of anticoagulation for six months and should only be maintained beyond this time if known risk factors for CVT persist. Treatment should not be discontinued in case of an asymptomatic haemorrhagic transformation of the associated venous infarct.

In recent years, a few thyrotoxic patients with CVT have been reported. An association between hyperthyroidism and increase of FVIII has also been described, and recent data suggest an increased incidence of venous thrombosis in patients with hyperthyroidism and high FVIII levels. Here we report a patient with increased FVIII levels and an autoimmune hyperthyroidism, who developed a CVT complicated by venous infarction.

Case report
A 39 year old woman was admitted to the emergency room after a brief episode of convulsions, preceded by a short period of perseveration, verbal aggressiveness, and disorientation. Four days before admission, she had developed a sudden, pulsatile left sided headache, which was unresponsive to paracetamol and ibuprofen. Personal and family medical histories were unremarkable. She had been taking oral contraceptive medication for several years and smoked two cigarettes a day. Neurological examination was normal, except for a temporary confusion, which lasted less than 24 hours. Electroencephalography demonstrated a slow arrhythmia in the left temporal region, without epileptic activity. Brain computed tomography revealed a left temporal hypodense lesion, with moderate contrast enhancement. Magnetic resonance imaging of the brain performed 24 hours later, showed a non-specific hypodense lesion in the T1 weighted images. The magnetic resonance venography (fig 1) revealed an extensive thrombosis of the left lateral sinus with involvement of the distal part of the jugular vein. The diagnosis of a temporal venous infarct was made. Treatment with unfractionated heparin was started promptly and maintained for one week, followed by oral anticoagulation with an INR between 2 and 3. Oral contraceptive treatment was discontinued and the patient was advised to stop smoking. Extensive screening for coagulopathies including antiphospholipid syndrome, dysfibrinogenemia, deficiency of antithrombin, protein C and S, hyperhomocysteaemia, and activated protein C resistance revealed no abnormalities. The G20210A prothrombin gene mutation was absent. Autoimmune tests including ANF, ANCA, complement and rheumatoid factors were negative. Further analysis revealed a state of hyperthyroidism with a TSH value below 0.015 mIU/l (normal: 0.27–4.2), free triiodothyronin of 12.1 ng/l (normal: 9.3–18.0 ng/l), and an increased free thyroxin of 28.8 ng/l (normal: 9.3–18.0 ng/l). Anti-TSH receptor antibodies were found consistent with Graves-Basedow’s disease. The patient was treated with thiamazone (3×10 mg/day), followed by the administration of radioactive iodine (9 mCi). One month after discontinuation of oral contraceptives, thyroid tests remained increased. FVIII procoagulant protein showed a marked increase: 1680 IU/l (normal levels: 500–1500 IU/l) and remained slightly raised five weeks later. Meanwhile the patient developed a hypothyroidism, necessitating treatment with L-thyroxine. After a further six months both thyroid tests and FVIII levels normalised and anticoagulants were stopped.

Discussion
Increase of clotting FVIII occurs in several conditions such as strenuous exercise, fever, pregnancy, renal failure, adrenaline (epinephrine) infusion, prednisone treatment, and intravascular haemolysis. Hyperthyroidism, whatever its origin, also induces a significant increase in FVIII levels, with a comparatively short activated partial thromboplastin time, while other clotting factors remain within normal limits. Moreover, correction of thyroid function results in a normalisation of FVIII levels. In patients with recurrent hyperthyroidism, levels of FVIII are known to fluctuate with thyroid function. The physiopathological mechanism involved remains unclear. Excessive adrenergic activity occurring in hyperthyroid patients could have a direct effect on the production of FVIII. The fact that administration of propanolol inhibits the increase of FVIII in patients with hyperthyroidism supports this theory.

In 1995 a large study was performed on 301 case-control pairs, younger than 70 with a first episode of deep vein thrombosis. Patients with malignant disorders were excluded. The authors showed that high levels of FVIII contribute to the development of venous thrombosis in a dose dependent manner. In a multivariate analysis FVIII concentrations above 1500 IU/l result in a 4.8-fold higher risk of developing venous thrombosis. It was also shown that this is not an acute phase reaction, and that high levels of FVIII persist for months after the thrombotic event. Recently, it was calculated that the reported incidence of CVT and hyperthyroidism is significantly higher than expected by chance alone. Further analysis revealed a concomitant occurrence of thyrotoxicosis and CVT. To our knowledge, this is the first reported case of CVT from the left lateral sinus associated with clinically silent hyperthyroidism and increased FVIII levels. Correction of thyroid function resulted in normalisation of FVIII levels. This report emphasises the need for thyroid evaluation in every patient with CVT and other venous thrombotic events, even in the absence of clinical signs of hyperthyroidism. Every patient with hyperthyroidism, especially if immobilised, has a significantly higher risk of developing venous thromboembolism and should benefit from maximal preventive measures.

References

Image 1: Magnetic resonance venography confirms complete occlusion of the left lateral sinus.
D stramonium is misused for its hallucinogenic effects. It can be obtained as a herb, as a powder, and as seeds. The typical anticholinergic effects of D stramonium are well known. Coma with focal neurological signs and decorticate posture is an unusual presentation of D stramonium intoxication. However, the presence of coma in our patient was linked to the atropine effect, described as the central anticholinergic syndrome, which has been reported in the literature. Physostigmine, which may reverse anticholinergic toxicity, was not administered because it can produce severe complications such as seizures and cardiac arrhythmia. Moreover, the patient's neurological symptoms subsided gradually. Regarding this uncommon clinical presentation, the pharmacological interaction between ethanol and D stramonium must also be taken into account. However, as far as we are aware, no clinical or pharmacological interactions between ethanol and D stramonium in humans have been described in the literature. D stramonium intoxication with the clinical picture of coma, decorticate posture, and focal neurological signs is an important clinical observation, which must be taken into account in other comatose states.

S Oberndorfer, W Grisold
Department Neurology and LBI for Neurooncology, Kaiser Franz Josef Hospital, Kundratistraße 3, 1100 Vienna, Austria
G Hinterholzer, M Rosner
Intensive Care Unit, Kaiser Franz Josef Hospital, Kundratistraße 3, 1100 Vienna, Austria
Competing interests: none declared
Correspondence to: Dr S Oberndorfer; stefan.oberndorfer@kfj.mawien.gv.at

References