Increased serum concentrations of tissue plasminogen activator correlate with an adverse clinical outcome in patients with bacterial meningitis

Bacterial meningitis is the most common serious infection of the central nervous system. It is still characterised by high mortality and morbidity in adults. In this disease extensive perpetuated inflammation with leucocyte invasion into the central nervous system (CNS) results in breakdown of the blood–brain barrier and promotes neuronal damage.

Tissue type plasminogen activator (tPA) has been shown to have various biological effects that could have an impact on the pathophysiological changes observed in bacterial meningitis. In the CNS, endothelial cells, microglia, astrocytes, and neurons can produce the 70 kDa protein tPA, which normally does not cross the blood–brain barrier. Raised tPA levels have been previously been reported for certain CNS diseases such as multiple sclerosis, leukaemia, and encephalitis, and raised serum tPA levels for patients with sepsis.

Tissue plasminogen activator into plasmin, a rate limiting step in the proteolysis of fibrin, but also in the degradation of extracellular matrix, matrix metalloproteinase activation, and the processing of growth factors and cytokines. Further, tPA has been shown to increase neuronal cell death during excitotoxicity and cerebral ischaemia. Thus tPA may promote blood–brain barrier disruption, promote proinflammatory signalling, and neuronal damage, and so be involved in the pathophysiology of bacterial meningitis.

We studied the expression of tPA in the CSF and serum of 12 patients with bacterial meningitis (causative pathogens: S. pneumoniae (8); S. aureus (3); H. influenzae (1)) who had been admitted to our hospital (median age 63 years; range 29 to 78). Clinical outcome was measured according to the Glasgow outcome scale (GOS; 1, death; 2, persistent vegetative state; 3, severe disability; 4, moderate disability; 5, good recovery). Ten patients with non-inflammatory neurological diseases (median age 37 years; range 23 to 81) and 10 patients with Guillain–Barré syndrome, an inflammatory demyelinating polyradiculoneuropathy in which blood–CSF barrier breakdown occurs without CSF pleocytosis, served as controls (median age 59 years; range 34 to 84).

A lumbar puncture was done and venous blood collected for diagnostic purposes after the patient’s informed consent had been obtained. CSF and serum concentrations of tPA were measured by a specific enzyme linked immunosorbent assay (TintElize®, Biopool International, Ventura, California, USA; detection limit 1.9 ng/ml). Immunoreactive tPA concentrations are expressed as ng/ml of biological fluid.

Blood and CSF variables for the three patient groups were compared using the Mann–Whitney U test with α adjustment; a corrected p value of ≤0.025 was considered significant. Bivariate correlations between clinical variables and tPA concentrations were analysed according to Pearson ρ (GOS) or Pearson (CSF leucocyte count, CSF/albumin ratio).

In all patients with bacterial meningitis, the CSF leucocyte count was markedly increased (median 1728 cells/µl; range 143 to 23,296). The CSF to serum albumin ratio (1000 × CSF albumin/serum albumin; normal < 7.4), the index used to quantify blood–CSF barrier breakdown, was significantly increased in all patients with bacterial meningitis (median 60.3; range 156 to 1400) and, to a lesser extent, in nine of the 10 patients with Guillain–Barré syndrome (median 12.8; range 4.7 to 39.0).

The tPA protein concentrations in the CSF and serum of patients with bacterial meningitis were increased compared with those of control patients and patients with Guillain–Barré syndrome; in both of the latter groups, tPA concentrations in the CSF were not detectable in nine of 10 patients (fig 1). The serum concentrations of tPA (mean (SD)) in patients with bacterial meningitis were about ninefold higher than the CSF concentrations (22.5 (13.8) vs 2.4 (1.6) ng/ml, p < 0.005). CSF and serum concentrations in individual patients were positively correlated (r = 0.733, p < 0.001). Remarkably, high serum tPA concentrations in bacterial meningitis correlated with both an increased CSF to serum albumin ratio (r = 0.818, p < 0.001) and an unfavourable outcome according to the GOS (r = 0.72, p < 0.01). The CSF to serum albumin ratio also showed a high correlation with CSF tPA concentrations (r = 0.942, p < 0.001). For patients with bacterial meningitis no correlations were found between serum tPA and CSF leucocyte count (r = −0.319, p = 0.311), between CSF tPA and CSF leucocyte count (r = 0.070, p = 0.828), or between CSF tPA and the clinical outcome (r = −0.201, p = 0.370).

On the basis of these findings, we hypothesise that increased serum tPA contributes to breaking of the blood–brain/CSF barrier in bacterial meningitis. In this patient population serum tPA activity allows the serum tPA, which an intact blood–CSF barrier normally keeps separate from the CNS, to enter the CSF.

Our study shows for the first time that both CSF and serum tPA are increased in bacterial meningitis. Furthermore, upregulation of serum tPA correlated positively with breakdown of the blood–CSF barrier and an adverse clinical outcome of this disease. These findings are of particular importance in the light of earlier studies in rodent models, in which systemic infusion of tPA or plasmin resulted in blood–brain barrier disturbances in healthy control animals or in cerebral ischaemia.

Increased serum tPA contributes to propagation of the blood–brain barrier disturbance and so is an important pathophysiological alteration in bacterial meningitis, which contributes to CNS complications such as cerebral oedema and increased intracranial pressure. This may explain the additional correlation we found between high serum tPA levels and an adverse clinical outcome. A similar correlation was seen in patients with severe sepsis, a disease regularly associated with increased vascular permeability, in which serum tPA activity increased and was associated with mortality.

Acknowledgement

This study was supported by grants from the Förderprogramm Forschung und Lehre der Ludwig-Maximilians University Munch (to FW) and from the Wilhelm Sander-Stiftung (to HWP). We thank Ms S Walter and B Angele for technical assistance and Ms J Bienen for copy editing the manuscript.

F Winkler, S Kastenbauer, U Koedel, H W Pfister Department of Neurology, Klinikum Grosshadern, Ludwig-Maximilians University Munich, Marchionistr 15, D-81377 Munich, Germany

Competing interests: none declared.

Correspondence to: Dr HW Pfister; pfister@helio.med.uni-muenchen.de

References


Figure 1 [A] Concentrations of tissue type plasminogen activator (tPA) in the cerebrospinal fluid (CSF) of control patients (controls, mean (SD)): 1.54 (0.15) ng/ml, patients with bacterial meningitis (2.42 (1.59) ng/ml), and patients with Guillain–Barré syndrome (GBS, 1.50 (0.02) ng/ml). [B] Concentrations of tPA in the serum of controls (9.71 (6.92) ng/ml), patients with bacterial meningitis (22.51 (13.84) ng/ml), and patients with GBS (13.28 (8.74) ng/ml).

*p < 0.025 v control patients; tp < 0.025 v patients with GBS. Dotted line: detection limit of the assay.
Amelioration of spinal myoclonus with levetiracetam

Spinal myoclonus has been associated with various spinal cord insults, including mass lesions, ischaemia, infection, and as part of a pattern of the syndrome. It has been postulated that it occurs as a result of deficient inhibitory glycinergic transmission in the spinal cord and subsequent "release" of synchronous motor neurone oscillations within segmental motor neurone circuitry. Levetiracetam (UCB Pharma, Smyrna, Georgia, USA) is a new antiepileptic drug that has been shown recently to reduce the effect of glycinergic inhibitors. We describe three patients whose spinal myoclonus was markedly ameliorated by levetiracetam.

Case reports

Patient 1: spinal epidural compression

An 82 year old woman, with known diffuse large cell lymphoma presented to her oncologist with progressive back pain accompanied by a band-like sensation around her waist. In the preceding four weeks, she had also been treated with continuous intravenous antineoplastic and analgesic infusions, and in the preceding two weeks she was accompanied by involuntary jerks of her legs. The patient could not suppress these spontaneous movements; neither could voluntary leg movements (when they were precipitated) cease. She was unable to walk safely because of numerous falls. She denied any limb weakness and bladder or bowel incontinence.

On examination, she had a mild spastic paraparesis with 4+/5 MRC grade power in the lower extremities (quadriceps, hamstrings, and tibialis anterior), 3+ knee and ankle jerks, and extensor plantar responses bilaterally. There were frequent resting myoclonic jerks of her lower extremities, involving both proximal and distal musculature, occurring at a rate of 130–230 per minute. There were also occasional, infrequent resting myoclonic jerks affecting the trunk. The myoclonic jerks were exacerbated in amplitude during attempts to perform purposeful movements, suggesting the phenomenonology of action myoclonus. The abnormal movements, rather than weakness, made it impossible for her to stand or walk unassisted. Magnetic resonance imaging (MRI) of the spine and of her right leg showed evidence of spinal cord compression (T11). An EEG was normal.

She was treated with a maximum tolerated dose of clonazepam (1 g/day) with minimal improvement. She was then started on levetiracetam 250 mg twice daily, and within 24 hours of starting this treatment, the myoclonic movements completely ceased. Two months later, she began to have clusters of repetitive movements once to twice daily for periods of 20–60 minutes. Her dose of levetiracetam was increased to 500 mg twice a day. The movements again ceased, but because of sedation and dizziness at this higher dose, the dosage was lowered to 250 mg/day. At this well tolerated dose, she has been having brief clusters of myoclonic movements two or three times a week.

Patient 2: zoster myelitis

An 83 year old woman presented with a three month history of involuntary trunk movements. The movements consisted of sudden extensor jerks of her back. They were spontaneous, occurring several times a day with no obvious provoking factors. Of note, two and a half months before the onset of the movements, she had been diagnosed as having thoracic herpes zoster (T8) and had subsequent post-herpetic neuralgia. The back movements began as the pain was subsiding. The movements were not painful, but were distressing to the patient as they were socially embarrassing. She was unable to suppress the movements voluntarily. She had been seen by another neurologist who had treated the movements with sodium valproate. She unfortunately received no benefit from this despite a maximum tolerated dose of 2000 mg/day. Past medical history was notable for cardiac arrhythmia and pace-maker placement.

On examination, she had brief, irregular, extensor movements of her thoracic spine, occurring every 10–30 seconds. An EEG was normal. MRI of the thoracic spine was precluded because of her pacemaker. The patient was not able to walk at a dose of 250 mg twice a day. Within 24 hours of starting this treatment, the myoclonic movements completely ceased. Two months later, she began to have clusters of repetitive movements once to twice daily for periods of 20–60 minutes. Her dose of levetiracetam was increased to 500 mg twice a day. The movements again ceased, but because of sedation and dizziness at this higher dose, the dosage was lowered to 250 mg/day. At this well tolerated dose, she has been having brief clusters of myoclonic movements two or three times a week.

Patient 3: transverse myelitis

A 12 year old boy presented with a three month history of rhythmic spasms of his right thigh. One month before this symptom, he had had onset of bilateral leg weakness and sensory paraesthesia and was diagnosed as having acute transverse myelitis. The paraparesis largely resolved within two weeks of onset, but one month later he began having constant, rhythmic spasms of his right quadriceps and hamstrings. These jerks could not be suppressed voluntarily and made walking difficult. Cerebrospinal fluid analysis and an MRI of the spinal cord were normal. An EEG did not show any epileptiform activity. Sodium valproate (1000 mg/d), phenytoin (300 mg/d), and intravenous lorazepam (as often as 2 mg every 4 hours) failed to relieve the constant myoclonus. A trial of oral diazepam and intravenous lorazepam injections into the right quadriceps did not ameliorate the movements.

On examination, he had constant, semi- rhythmic myoclonus of his right quadriceps at 120–150 beats per minute and of his right hamstrings with his knee extended, and of his right hamstrings with his knee flexed. The myoclonus was not suppressed by patchellar fixation, but did improve slightly with concentration on mental tasks. On power testing, there was 4+/5 MRC grade power in the right quadriceps and right hamstrings. A repeat EEG was again unremarkable. He was started on levetiracetam at 250 mg daily and the dose increased over a four week period to 1250 mg/d. No clinical change was noted until the dose increased to 500 mg twice a day. The patient was given levetiracetam at a dose of 1250 mg/d. No clinical change was noted until the dose increased over a four week period to 2500 mg/d. At this dose, he was unable to stand or walk safely because of numerous falls. He denied any limb weakness and bladder or bowel incontinence.

The latter study showed that severe action myoclonus was suppressed by levetiracetam in three patients, of whom two had Unverricht–Lundborg disease and one had postanoxic myoclonus.4 In our cases, as well as the aforementioned reports of suppression of post-hypoxic and postanoxic myoclonus with levetiracetam, suggest that this agent is promising for the treatment of both non-cortical and cortical myoclonus. These observations need to be confirmed in additional patients. Furthermore, the proportion of responders needs to be determined in a larger group of patients, ideally in the setting of a randomised, double blind, placebo controlled trial.

References

Hyperthyroidism with increased factor VIII procoagulant protein as a predisposing factor for cerebral venous thrombosis

Cerebral venous thrombosis (CVT) is a rare disorder, with an incidence of approximately 4,000 cases per year, occurring more frequently in women than in men (ratio of 1.29:1). CVT is a multifactorial condition, known predisposing factors include venous stasis, hypercoagulability, vasculitis, systemic lupus erythematosus, and trauma. Morality after CVT ranges from 5% to 30%. The optimal treatment consists of anticoagulation for six months and should only be maintained beyond this time if known risk factors for CVT persist. Treatment should not be discontinued in case of an asymptomatic haemorrhagic transformation of the associated venous infarct.

In recent years, a few thyrotoxic patients with CVT have been reported. An association between hyperthyroidism and increase of FVIII has also been described, and recent data suggest an increase incidence of venous thrombosis in patients with hyperthyroidism and high FVIII levels. Here we report a patient with increased FVIII levels and an autoimmune hyperthyroidism, who developed a CVT complicated by venous infarction.

Case report
A 39 year old woman was admitted to the emergency room after a brief episode of convulsions, preceded by a short period of perseveration, verbal aggressiveness, and disorientation. Four days before admission, she had developed a sudden, pulsatile left sided headache, which was unresponsive to paracetamol and ibuprofen. Personal and family medical histories were unremarkable. She had been taking oral contraceptive medication for several years and smoked two cigarettes a day. Neurological examination was normal, except for a temporary confusional state that lasted less than 24 hours. Magnetic resonance imaging of the brain performed 24 hours later, showed a non-specific hyperintense lesion on the T1 weighted images. The magnetic resonance venography (fig 1) revealed an extensive thrombosis of the left lateral sinus with involvement of the distal part of the jugular vein. The diagnosis of a temporal venous infarct was made. Treatment with unfractionated heparin was started promptly and maintained for one week, followed by oral anticoagulation with an INR between 2 and 3. Oral contraceptive treatment was discontinued and the patient was advised to stop smoking. Extensive screening for coagulopathies including antiphospholipid syndrome, dysfibrinogenemia, deficiencies in antithrombin, protein C and S, hyperhomocysteinaemia, and activated protein C resistance revealed no abnormalities. The G20210A prothrombin gene mutation was absent. Autoimmune tests including ANF, ANCA, complement and rheumatoid factors were negative.

Further analysis revealed a state of hyperthyroidism with a TSH value below 0.015 mIU/l (normal range: 0.27–4.2), free triiodothyronine of 12.1 ng/l (normal: 9.3–18.0 ng/l), and an increased free thyroxin of 28.8 ng/l (normal: 9.3–18.0 ng/l). Anti-TSH receptor antibodies were found consistent with Graves-Basedow’s disease. The patient was treated with thiamazole (3×10 mg/day), followed by the administration of radioactive iodine (9 mCi). One month after discontinuation of oral contraceptives, thyroid tests remained increased. FVIII procoagulant protein showed a marked increase: 1680 IU/l (normal levels: 500–1500 IU/l) and remained slightly raised five weeks later. Meanwhile the patient developed a hyperthyroidism, necessitating a substitution treatment with L-thyroxine (150 μg/day).

After a further six months both thyroid tests and FVIII levels normalised and anticoagulants were stopped.

Discussion
Increase of clotting FVIII occurs in several conditions such as strenuous exercise, fever, pregnancy, renal failure, adrenaline (epinephrine) infusion, prednisone treatment, and intravascular haemolysis. Hyperthyroidism, whatever its origin, also induces a significant increase in FVIII levels, with a comparatively short activated partial thromboplastin time, while other clotting factors remain within normal limits. Moreover, correction of thyroid function results in a normalisation of FVIII levels. In patients with recurrent hyperthyroidism, levels of FVIII are known to fluctuate with thyroid function. The physiopathological mechanism involved remains unclear. Excessive adrenergic activity occurring in hyperthyroid patients could have a direct effect on the production of FVIII. The fact that the administration of propranolol inhibits the increase of FVIII in patients with hyperthyroidism supports this theory.
pupils, urine retention, seizures, and respiratory depression. D stramonium is voluntarily used for its hallucinogenic properties. Its anticholinergic compounds are likely to produce delirium and stupor but rarely cause deep coma.

The most common diagnostic error is to mistake coma resulting from brainstem infarction, supratentorial mass lesions, metabolic disorders, or hypoxia for coma resulting from poisoning. The initial distinction of these conditions may be difficult. We report an unusual case of D stramonium intoxication in a patient who initially presented with deep coma, focal neurological signs, and decorticate posture.

The patient was 30 years old and admitted to an emergency unit for acute loss of consciousness. The accompanying person reported that the patient had had a few beers and then suddenly fell on his back. He was unconscious and awoke for a few seconds but shortly afterward lost consciousness again and remained in a stiff position and unconscious until admission.

The first neurological examination was performed one and a half hours after the sudden onset of symptoms. There was no evidence of trauma. Vital signs, such as cardiopulmonary function, body temperature, and blood oxygenation, were normal. Initial laboratory testing for electrolyte disorders, renal or hepatic failure, and hypoglycaemia or hyperglycaemia found no major pathology. Blood alcohol concentration was 1.17%.

The patient was presented in a decorticate posture. The upper limbs were in a patellar flexor position with increase of flexion tonus to noxious stimuli, which was more pronounced on the right side. The lower extremities did not respond to noxious stimuli and remained in an extensor position, which was also slightly more pronounced on the right side. Both the upper and the lower extremities greatly resisted passive motion. The pupils were intact, while the vertical reactions between ethanol and D stramonium seeds. Analysis of blood samples found increased concentrations of alkaloids. Treatment during the clinical course was supportive with corticosteroids. Physostigmine, which may reverse anticholinergic toxicity, was not administered because it can produce severe complications such as seizures and cardiac arrhythmia. Moreover, the patient's neurological symptoms subsided gradually.

Regarding this uncommon clinical presentation, the pharmacological interaction between ethanol and D stramonium must also be taken into account. However, as far as we are aware, no clinical or pharmacological interactions between ethanol and D stramonium in humans have been described in the literature.

D stramonium intoxication with the clinical picture of coma, decorticate posture, and focal neurological signs is an important clinical observation, which must be taken into account in other comatose states.

S Oberndorfer, W Grisold
Department of Neurology and LBI for Neurooncology, Kaiser Franz Josef Hospital, Kundratistraße 3, 1100 Vienna, Austria

G Hinterholzer, M Rosner
Intensive Care Unit, Kaiser Franz Josef Hospital, Kundratistraße 3, 1100 Vienna, Austria

Competing interests: none declared

Correspondence to: Dr S Oberndorfer; stefan.oberndorfer@kfj.wien.gv.at

References