Increased serum concentrations of tissue plasminogen activator correlate with an adverse clinical outcome in patients with bacterial meningitis

Bacterial meningitis is the most common serious infection of the central nervous system. It is still characterised by high mortality and morbidity in adults. In this disease extensive perpetuated inflammation with leucocyte invasion into the central nervous system (CNS) results in breakdown of the blood–brain barrier and promotes neuronal damage.

Tissue type plasminogen activator (tPA) has been shown to have various biological effects that could have an impact on the pathophysiological changes observed in bacterial meningitis. In the CNS, endothelial cells, microglial astrocytes, and neutrons can produce the 70 kDa protein tPA, which normally does not cross the blood–brain barrier.1 Raised tPA levels in the cerebrospinal fluid (CSF) have previously been reported for certain CNS diseases such as multiple sclerosis, leukemia, and encephalitis,2,3 and raised serum tPA levels for patients with sepsis.1,4,5 tPA converts plasminogen into plasmin, a rate limiting step in the proteolysis of fibrin, but also in the degradation of extracellular matrix, matrix metalloproteinase activation, and the processing of growth factors and cytokines.6 Further, tPA has been shown to increase neuronal cell death during excitotoxicity and cerebral ischaemia.7 Thus tPA may promote blood–brain barrier disruption, promote inflammatory signalling, and neuronal damage, and so be involved in the pathophysiology of bacterial meningitis.

We studied the expression of tPA in the CSF and serum of 12 patients with bacterial meningitis (causative pathogens: S. pneumoniae (8); S. aureus (3); H. influenzae (1)) who had been admitted to our hospital (median age 63 years; range 29 to 78). Clinical outcome was measured according to the Glasgow outcome scale (GOS; 1, death; 2, persistent vegetative state; 3, severe disability; 4, moderate disability; 5, good recovery). Ten patients with non-inflammatory neurological diseases (median age 37 years; range 23 to 81) and 10 patients with Guillain-Barré syndrome, an inflammatory demyelinating polyradiculoneuropathy in which blood–CSF barrier breakdown occurs without CSF pleocytosis, served as controls (median age 59 years; range 34 to 84).

A lumbar puncture was done and venous blood collected for diagnostic purposes after the patient’s informed consent had been obtained. CF and serum concentrations of tPA were measured by a specific enzyme linked immunosorbent assay (TintElize®, Biopool International, Ventura, California, USA; detection limit 1.9 ng/ml). Immunoreactive tPA concentrations are expressed as ng/ml of biological fluid.

Blood and CSF variables for the three patient groups were compared using the Mann–Whitney U test with α adjustment; a corrected p value of < 0.025 was considered significant. Bivariate correlations between clinical variables and tPA concentrations were analysed according to Spearman ρ (GOS) or Pearson (CSF leucocyte count, CSF/albumin ratio). In all patients with bacterial meningitis, the CSF leucocyte count was markedly increased (median 1728 cells/μl; range 143 to 23 296). The CSF to serum albumin ratio (1000 × CSF albumin/serum albumin; normal < 7.4), the index used to quantify blood–CSF barrier breakdown, was significantly increased in all patients with bacterial meningitis (median 60.3; range 156 to 1400) and, to a lesser extent, in nine of the 10 patients with Guillain-Barré syndrome (median 12.8; range 4.7 to 39.0).

The tPA protein concentrations in the CSF and serum of patients with bacterial meningitis were increased compared with those of control patients and patients with Guillain-Barré syndrome; in both of the latter groups, tPA concentrations in the CSF were not detectable in nine of 10 patients (fig 1). The serum concentrations of tPA (mean (SD)) in patients with bacterial meningitis were about ninefold higher than the CSF concentrations (22.5 (13.8) × 2.4 (1.6) ng/ml, p < 0.005). CSF and serum concentrations in individual patients were positively correlated (p = 0.733, p < 0.01). Remarkably, high serum tPA concentrations in bacterial meningitis correlated with both an increased CSF to serum albumin ratio (r = 0.818, p < 0.01) and an unfavourable outcome according to the GOS (r = 0.72, p < 0.01). The CSF to serum albumin ratio also showed a high correlation with CSF tPA concentrations (r = 0.942, p < 0.001). For patients with bacterial meningitis no correlations were found between serum tPA and CSF leucocyte count (r = 0.319, p = 0.311), between CSF tPA and CSF leucocyte count (r = 0.070, p = 0.828), or between CSF tPA and the clinical outcome (r = 0.201, p = 0.530).

On the basis of these findings, we hypothesise that increased serum tPA contributes to breaching of the blood–brain/CSF barrier in bacterial meningitis. In turn, the breaching of the blood–CSF barrier normally keeps separate from the CNS, to enter the CSF.

Our study shows for the first time that both CSF and serum tPA are increased in bacterial meningitis. Furthermore, upregulation of serum tPA correlated positively with breakdown of the blood–CSF barrier and an adverse clinical outcome of this disease. These findings are of particular importance to the light of earlier studies in rodent models, in which systemic infusion of tPA or plasmin resulted in blood–brain barrier disturbances in healthy control animals or in cerebral ischaemia.8 Disruption of the blood–brain barrier is an important pathophysiological alteration in bacterial meningitis, which contributes to CNS complications such as cerebral oedema and increased intracranial pressure. This may explain the additional correlation we found between high serum tPA levels and an adverse clinical outcome. A similar correlation was seen in patients with severe sepsis, a disease closely associated with increased vascular permeability, in which serum tPA activity increased and was associated with mortality.4

Acknowledgement

This study was supported by grants from the Förderprogramm Forschung und Lehre of the Ludwig-Maximilians University Munich (to FW) and from the Wilhelm Sander-Stiftung (to HWP). We thank Ms S Walter and B Angele for technical assistance and Ms J Bienson for copy editing the manuscript.

F Winkler, S Kastenbauer, U Koedel,
H W Pfister
Department of Neurology, Klinikum Grosshadern, Ludwig-Maximilians University, Marchioninistr 15, D-81377 Munich, Germany

Competing interests: none declared.

Correspondence to: Dr HW Pfister; pfister@hefo.med.uni-muenchen.de

References


www.jnnp.com

Figure 1

A Concentrations of tissue type plasminogen activator (tPA) in the cerebrospinal fluid (CSF) of control patients (controls, mean (SD)); 1.54 (0.15) ng/ml, patients with bacterial meningitis (2.42 (1.59) ng/ml), and patients with Guillain-Barré syndrome (GBS, 150 (0.02) ng/ml). (B) Concentrations of tPA in the serum of controls (9.71 (6.92) ng/ml), patients with bacterial meningitis (22.51 (13.84) ng/ml), and patients with GBS (13.28 (8.74) ng/ml).

*p < 0.025 v control patients, tP < 0.025 v patients with GBS. Dotted line: detection limit of the assay.
Amelioration of spinal myoclonus with levetiracetam

Spinal myoclonus has been associated with various spinal cord insults, including mass lesions, ischaemia, infection, and as part of a polyneuropathy. It has been postulated that it occurs as a result of deficient inhibitory glycineergic transmission in the spinal cord and subsequent “release” of synchronous motor neurone oscillations within segments. Levetiracetam (UCB Pharma, Smyrna, Georgia, USA) is a new antiepileptic drug that has been shown recently to reduce the effect of glycineergic inhibitors. We describe three patients whose spinal myoclonus was markedly ameliorated by levetiracetam.

Case reports

Patient 1: spinal epidural compression

A 62 year old man with known diffuse large cell lymphoma presented to her oncologist with progressive back pain accompanied by a band-like sensation around her waist. In the preceding four weeks, she had also been experiencing involuntory involuntary and conscious contractions, and in the preceding two weeks these were accompanied by involuntary jerks of her legs. The patient could not suppress these spontaneous movements; moreover, if voluntary leg movement was precipitated, she was unable to walk safely because of numerous falls. She denied any limb weakness and bladder or bowel incontinence.

On examination, she had mild spastic paraparesis with 4+/5 MRC grade power in all limbs. A vascular leg movement was often precipitated, and she was unable to walk safely because of numerous falls. Magnetic resonance imaging (MRI) of the cervical spine revealed malignant infiltration of the posterior spinal cord with evidence of cord compression at T11. An EEG was normal.

She was treated with a maximum tolerated dose of clonazepam (1 g/day) with minimal improvement. She was then started on levetiracetam 250 mg twice daily, and within three days the resting and action myoclonus subsided markedly, such that she was able to walk without assistance. On examination, the myoclonic jerk frequency in her lower extremities had decreased to 5–10/min, and the jerk amplitude was markedly diminished.

Patient 2: zoster myelitis

An 83 year old woman presented with a three month history of involuntary trunk movements. The movements consisted of sudden extensor jerks of her back. They were spontaneous, occurring several times a day with no obvious provoking factors. One month before the onset of the movements, she had been diagnosed as having thoracic herpes zoster (T8) and had undergone post-herpetic neuralgia. The back movements began as the pain was subsiding. The movements were not painful, but were distressing to the patient as they were socially embarrassing. She was unable to suppress the movements voluntarily. She had been seen by another neurologist who had treated the movements with sodium valproate. She unfortunately received no benefit from this, and the maximum tolerated dose of 2000 mg/day. Past medical history was notable for cardiac arrhythmia and pace-maker placement.

On examination, she had mild, irregular, extensor movements of her thoracic spine, occurring every 5–10 seconds. An EEG was normal. MRI of the thoracic spine was precluded because of her pacemaker. The patient was started on gabapentin at a dose of 1250 mg twice a day. Within 24 hours of starting this treatment, the myoclonic movements completely ceased. Two months later, she began to cluster of repetitive movements once to twice daily for periods of 20–60 minutes. Her dose of levetiracetam was increased to 500 mg twice a day. The movements again ceased, but because of sedation and dizziness at this higher dose, the dosage was reduced to 250 mg daily. At this dose, well tolerated dose, she has been having brief clusters of myoclonic movements two or three times a week.

Patient 3: transverse myelitis

A 12 year old boy presented with a three month history of rhymical spasms of his right thigh. One month before this symptom, he had had onset of bilateral leg weakness and paraesthesiae and was diagnosed as having acute transverse myelitis. The paraparesis largely resolved within two weeks of onset, but one month later he began having constant, rhythmic but not clonic movements in his right quadriceps and hamstrings. These jerks could not be suppressed voluntarily and made walking difficult. Cerebrospinal fluid analysis and an MRI of the spinal cord were normal. An EEG did not show any epileptic activity. Sodium valproate (1000 mg/d), phenytoin (300 mg/d), and intravenous lorazepam (as often as 2 mg every 4 hours) failed to relieve the constant myoclonus. A dose of 250 mg twice a day of levetiracetam did not suppress the myoclonus.

On examination, he had constant, semi-rhythmic myoclonus of his right quadriceps at 120–150 beats/min with his knee extended, and of his right hamstrings with his knee flexed. The myoclonus was not suppressed by patellar fixation, but did improve slightly with concentration on mental tasks. On power testing, there was 4+/5 MRC grade power in the right quadriceps and right hamstrings. A repeat EEG was again unremarkable. He was started on levetiracetam at 250 mg daily and the dose increased over a four week period to 1250 mg/d. No clinical change was noted until the preceding four weeks, she had also been treated with levetiracetam. MRI of the spine revealed malignant infiltration of the posterior spinal cord and subsequent “release” of synchronous motor neurone oscillations within segments. Levetiracetam has been shown to reduce these effects of spinal myoclonus by augmenting glycineergic transmission in the spinal cord and thus dampening down myoclonic focis.

In a recent open labelled trial of levetiracetam in eight patients with chronic myoclonus, three of five patients with chronic myoclonus experienced reduction in their myoclonus severity, as assessed by the unified myoclonus rating scale. The one patient in this study with spinal myoclonus showed no improvement with levetiracetam. However, the average duration of symptoms in these patients was 7.6 years, ranging from one to 17 years, in contrast to our three patients whose symptoms were one to three months in duration before levetiracetam. It is therefore possible that the differential responsiveness to levetiracetam was because the aforementioned non-responder had a chronic fixed condition whereas our responders had subacute evolving spinal cord injuries.

In a recently published study, levetiracetam was used successfully to treat three patients with posthypoxic and postencephalitic myoclonus, two of whom had failed to respond to conventional medical treatment.

References


Hyperthyroidism with increased factor VIII procoagulant protein as a predisposing factor for cerebral venous thrombosis

Cerebral venous thrombosis (CVT) is a rare disorder, with an incidence of approximately 4/1,000,000 per year, occurring more frequently in women than in men (ratio of 1.29:1). CVT is a multifactorial condition, known predisposing factors include venous stasis, hypercoagulability, vasculitis, systemic lupus erythematosus, and trauma. Maleity after CVT ranges from 5% to 30%. The optimal treatment consists of anticoagulation for six months and should only be maintained beyond this time if known risk factors for CVT persist. Treatment should not be discontinued in case of an asymptomatic haemorrhagic transformation of the associated venous infarct.

In recent years, a few thyrotoxic patients with CVT have been reported. An association between hyperthyroidism and increase of FVIII has also been described, and recent data suggest an increased incidence of venous thrombosis in patients with hyperthyroidism and high FVIII levels. Here we report a patient with increased FVIII levels and an autoimmune hyperthyroidism, who developed a CVT complicated by venous infarction.

Case report

A 39 year old woman was admitted to the emergency room after a brief episode of convulsions, preceded by a short period of perseveration, verbal aggressiveness, and disorientation. Four days before admission, she had developed a sudden, pulsatile left sided headache, which was unresponsive to paracetamol and ibuprofen. Personal and family medical histories were unremarkable. She had been taking oral contraceptive medication for several years and smoked two cigarettes a day. Neurological examination was normal, except for a temporary confusional state that lasted less than 24 hours. Electronencephalography demonstrated a slow rhythm in the left temporal region, without epileptic activity. Brain computed tomography revealed a left temporal hypodense lesion, without midline shift and no leptomeningeal enhancement. The patient was treated with thiamazol (3x10 mg/day), followed by the administration of radioactive iodine (9 mcI). One month after discontinuation of oral contraceptives, thyroid tests remained increased. FVIII procoagulant protein exhibited a marked increase: 1680 IU/l (normal: 500–1500 IU/l) and remained slightly raised five weeks later. Meanwhile the patient developed a hypothyroidism, necessitating a substitution treatment with LT4. After a further six months both thyroid tests and FVIII levels normalised and anticoagulants were stopped.

Discussion

Increase of clotting FVIII occurs in several conditions such as strenuous exercise, fever, pregnancy, renal failure, adrenaline (epinephrine) infusion, prednisone treatment, and intravascular haemolysis. Hyperthyroidism, whatever its origin, also induces a significant increase in FVIII levels, with a comparatively short activated partial thromboplastin time, while other clotting factors remain within normal limits. Moreover, correction of thyroid function results in a normalisation of FVIII levels. In patients with recurrent hyperthyroidism, levels of FVIII are known to fluctuate with thyroid function. The physiopathological mechanism involved remains unclear. Excessive adrenergic activity occurring in hyperthyroid patients could have a direct effect on the production of FVIII. The fact that administration of propranolol inhibits the increase of FVIII in patients with hyperthyroidism supports this theory.

Coma with focal neurological signs caused by Datura stramonium intoxication in a young man

Intoxication with Datura stramonium, which contains a variety of tropine alkaloids, produces atropine-like effects. The seeds of D stramonium (semen stramonii) in particular contain hyoscyamine, scopolamine, and atropine. Symptoms include agitation, disorientation, hallucination, flushed skin, dilatation of pupils, and vomiting.

References

pupils, urine retention, seizures, and respiratory depression. D stramonium is voluntarily used for its hallucinogenic properties. Its anticholinergic compounds are likely to produce delirium and stupor but rarely cause deep coma.

The most common diagnostic error is to mistake coma resulting from brainstem infarction, supratentorial mass lesions, metabolic disorders, or hypoxia for coma resulting from poisoning. The initial distinction of these conditions may be difficult. We report an unusual case of D stramonium intoxication in a patient who initially presented with deep coma, focal neurological signs, and decorticate posture.

The patient was referred to an emergency unit for acute loss of consciousness. The accompanying person reported that the patient had had a few beers and then suddenly fell on his back. He was unconscious and awoke for a few seconds but shortly afterward lost consciousness again and remained in a stiff position and unconscious until admission.

The first neurological examination was performed one and a half hours after the sudden onset of symptoms. There was no evidence of trauma. Vital signs, such as cardiodiaphragmatic function, body temperature, and blood oxygenation, were normal. Initial laboratory testing for electrolyte disorders, renal or hepatic failure, and hypoglycaemia or hyperglycaemia found no major pathology. Blood alcohol concentration was 1.17%. Further examination was presented in a decorticate posture. The upper limbs were in a paratonic flexor position with increase of flexion tonus to noxious stimuli, which was more pronounced on the right side. The lower extremities did not respond to noxious stimuli and remained in an extensor position, which was also slightly more pronounced on the right side. Both the upper and the lower extremities greatly resisted passive motion. The corneal responses were absent. The eyes could not be opened with verbal or painful stimuli. Both pupils were completely dilated and not reactive to light. The eyeballs were divergent. Corneal responses were bilaterally absent.

The horizontal oculocephalic response, however, was intact, while the vertical response was minimal. Swallowing reflex was minimal but also intact. Respiratory patterns were regular. Deep tendon reflexes could not be evaluated because of the massive increased muscle tone. Plantar response was extensor, bilaterally, more prominent on the right side. Tachycardia and retention of urine were also present. Initially the patient scored four on the Glasgow coma scale.

Magnetic resonance imaging of the brain was performed to detect brainstem infarction or supratentorial mass lesions. There were no pathological findings. Common metabolic disorders were ruled out and no evidence of ethanol, hypoglycaemia, hepatic or renal failure, electrolyte disorders, disorders of systemic acid-base balance, and hyperthyroidism were excluded by laboratory examinations. Urine samples for drugs of abuse and morphines were negative. Analysis of cerebrospinal fluid to exclude subarachnoidal haemorrhage or infectious disease showed normal cell count, protein concentration, and cytology. Possible status epilepticus was also considered. However, administration of 10 mg diazepam had no effect.

The next neurological examination was performed five hours later. Vital signs were stable. The upper limbs were still in a flexor position and the lower limbs were still extensor; however, the increased muscle tone began to decrease and was less resistant to passive motion. He withdrew abnormally from painful stimuli. Plantar response was extensor on the right side. The pupils were still dilated and not reactive to light but both corneal reflexes were intact. No verbal responses could be obtained. He now typed six on the Glasgow coma scale. Seven hours later he was sitting in his bed in a state of confusion. Over the next hours, the patient's neurological signs subsided gradually. Finally, we were informed about the intake of D stramonium seeds. Analysis of blood samples found increased concentrations of alkaloids. Treatment during the clinical course was supportive with cardiopulmonary monitoring. Thirty-six hours after admission the patient was discharged in good clinical condition, without neurological deficits except amnesia regarding the acute toxic episode.

D stramonium intoxication is an unusual presentation of D stramonium poisoning. The diagnosis of D stramonium intoxication is an important clinical consideration, not only because of the variety of clinical symptoms but also because of incomplete medical histories and misguided efforts by families and friends to conceal facts. Even if a particular toxic agent is suspected, results of a chemical analysis may arrive too late. Therefore, an accurate and immediate diagnosis depends mostly on the clinical findings. Our patient presented with coma in a decorticate posture. Initially a severe multifocal brainstem infarction or supratentorial mass lesions were suggested. However, the discrepancies of deep coma, absent brainstem reflexes such as corneal reflexes and non-reactive dilated pupils, and, on the other hand, the intact oculocephalic and swallowing reflex, and especially the regular respiratory pattern made the findings inconclusive and a toxicological cause probable. Moreover, vital signs were stable and magnetic resonance imaging of the brain, cerebrospinal fluid, and laboratory examinations showed no major pathological findings.

D stramonium is misused for its hallucinogenic effects. It can be obtained as a herb, as a powder, and as seeds. The typical anticholinergic effects of D stramonium are well known. Coma with focal neurological signs and decorticate posture is an unusual presentation of D stramonium intoxication. However, the presence of coma in our patient was linked to the atropine response, described as the central anticholinergic syndrome, which has been reported in the literature.

Physostigmine, which may reverse anticholinergic toxicity, was not administered because it can produce severe complications such as seizures and cardiac arrhythmia. Moreover, the patient's neurological symptoms subsided gradually.

Regarding this uncommon clinical presentation, the pharmacological interaction between ethanol and D stramonium must also be taken into account. However, as far as we are aware, no clinical or pharmacological interactions between ethanol and D stramonium in humans have been described in the literature. D stramonium intoxication with the clinical picture of coma, decorticate posture, and focal neurological signs is an important clinical observation, which must be taken into account in other comatose states.

S Oberndorfer, W Grisold
Department Neurology and LBI for Neurooncology, Kaiser Franz Josef Hospital, Klinikstrasse 3, 1100 Vienna, Austria

G Hinterholzer, M Rosner
Intensive Care Unit, Kaiser Franz Josef Hospital, Klinikstrasse 3, 1100 Vienna, Austria

Competing interests: none declared

Correspondence to: Dr S Oberndorfer; stefan.oberndorfer@kfj.mgwien.gv.at

References