Neuropsychological and psychiatric complications in endoscopic third ventriculostomy

We read with interest the recent paper by Benabarre et al. of the first reported case of endoscopic third ventriculostomy followed by severe psychiatric complications.

In our department, we also had a patient who developed severe psychiatric symptoms after an endoscopic third ventriculostomy (ETV). A 45 year old woman with an aqueductal stenosis underwent an ETV because of progressive gait and visual disturbances. In November 1997 she underwent an ETV through a right side precoronal burr hole using a rigid neuroendoscope. The third ventricular floor was perforated with a 4 French Fogarty catheter, the perforation being enlarged with the inflatable balloon. No problems were encountered during the procedure, although we noted an incomplete septum pellucidum. After ETV her gait and visual disturbances gradually resolved. However, after the procedure the patient was nervous and agitated, and she complained of a crepitating sound in her head and behaved aggressively towards her spouse. Because her complaint and behaviour worsened a psychiatric evaluation was performed. Psychotic depression was diagnosed and three weeks after the ETV she was admitted to the department of psychiatry. For several months she was treated with antidepressive and antipsychotic drugs and her psychotic depression partially resolved. She is still being treated for mild depression. Postoperative magnetic resonance imaging six months confirmed the clinical hypothesis. In our discussion we postulated that a frontal lobe lesion may explain some of the symptoms presented such as the uncontrolled impulses, the aggressive behaviour, and even the binge eating. However, a longitudinal neuropsychological evaluation showed a severe deficit in immediate memory and difficulties in planning and consolidation of newly learned information, which may be best related to damage in the frontal-based structures of the brain: the fornix and its connection to the hippocampus and the mammillary bodies. Postoperative magnetic resonance imaging confirmed the clinical hypothesis.

We do not totally agree with the diagnosis postulated by Aalst et al. Is true that signs and symptoms were abrupt and probably organic because of the apparently strong relation between the procedure and the start of the psychotic depressive episode. Previously, the patient had no psychiatric complaints and had undergone other invasive procedures under general anaesthesia and admittance to the hospital. It is not clear how this psychotic depression after ETV can be explained. Sometimes when ETV is performed, injury of the fornix is seen. The fornix constitutes the sole efferent system from the hippocampus and both are involved in the limbic system. The limbic system has an important role in mood and emotional behaviour. We hypothesize that in this patient a combination of incomplete septum pellucidum and an injury of the fornix may have caused an organic personality syndrome after ETV. We agree with Benabarre et al. that clinicians should be aware of and take into account this potential serious complication of ETV in this so called minimally invasive procedure.

G J Luijckx
Department of Neurology, University Hospital Groningen, Hanzeplein 1, PO Box 30001, 9700 RB Groningen, The Netherlands

J van Aalst, EAM Beuls
Department of Neurosurgery, University Hospital Maastricht, P Debyestraat 25, Postbus 8800, 6202 AZ Maastricht, The Netherlands

Authors’ reply
We are satisfied with the clinical interest generated by our case report where we explained the first case of endoscopic third ventriculostomy followed by severe psychiatric complications.

Van Aalst et al. have reported a patient who developed severe psychiatric symptoms after an endoscopic third ventriculostomy. Their patient underwent an endoscopic third ventriculostomy through a right sided precoronal burr hole using a rigid neuroendoscope. In our case the patient underwent surgery under general anaesthesia and a 6.5 mm rigid neuroendoscope (Gaab Endoscope, Storz, Tutlingen, Germany) was inserted through a right sided precoronal burr hole. In the frontal horn of the right lateral ventricle, following the technique described by Vries and Viñas et al., fenestration of the floor of the third ventricle to the basal eisterns was performed with bipolar coagulation and enlarged with a 3 French Fogarty catheter. The surgical technique was similar in both cases.

Both patients behaved aggressively but ours developed a severe complication consisting of an organic personality disorder characterised by impulsiveness, physical hyperaggressiveness, binge eating, hypersonnia, and impaired memory and frontal executive functions. In our discussion we postulated that a frontal lobe lesion may explain some of the symptoms presented such as the uncontrolled impulses, the aggressive behaviour, and even the binge eating. However, a longitudinal neuropsychological evaluation showed a severe deficit in immediate memory and difficulties in planning and consolidation of newly learned information, which may be best related to damage in the frontal-based structures of the brain: the fornix and its connection to the hippocampus and the mammillary bodies. Postoperative magnetic resonance imaging confirmed the clinical hypothesis.

We do not totally agree with the diagnosis postulated by Aalst et al. Is true that signs and symptoms were abrupt and probably organic because of the apparently strong relation between the procedure and the start of the psychotic depressive episode. Previously, the patient had no psychiatric disorders and had undergone other invasive procedures under general anaesthesia and admittance to the hospital. It is not clear how this psychotic depression after ETV can be explained. Sometimes when ETV is performed, injury of the fornix is seen. The fornix constitutes the sole efferent system from the hippocampus and both are involved in the limbic system. The limbic system has an important role in mood and emotional behaviour. We hypothesize that in this patient a combination of incomplete septum pellucidum and an injury of the fornix may have caused an organic personality syndrome after ETV. We agree with Benabarre et al. that clinicians should be aware of and take into account this potential serious complication of ETV in this so called minimally invasive procedure.

J van Aalst, EAM Beuls
Department of Neurosurgery, University Hospital Maastricht, P Debyestraat 25, Postbus 8800, 6202 AZ Maastricht, The Netherlands

Reference

Authors’ reply
We are satisfied with the clinical interest generated by our case report where we explained the first case of endoscopic third ventriculostomy followed by severe psychiatric complications.

Van Aalst et al. have reported a patient who developed severe psychiatric symptoms after an endoscopic third ventriculostomy. Their patient underwent an endoscopic third ventriculostomy through a right sided precoronal burr hole using a rigid neuroendoscope. In our case the patient underwent surgery under general anaesthesia and a 6.5 mm rigid neuroendoscope (Gaab Endoscope, Storz, Tutlingen, Germany) was inserted through a right sided precoronal burr hole. In the frontal horn of the right lateral ventricle, following the technique described by Vries and Viñas et al., fenestration of the floor of the third ventricle to the basal eisterns was performed with bipolar coagulation and enlarged with a 3 French Fogarty catheter. The surgical technique was similar in both cases.

Both patients behaved aggressively but ours developed a severe complication consisting of an organic personality disorder characterised by impulsiveness, physical hyperaggressiveness, binge eating, hypersonnia, and impaired memory and frontal executive functions. In our discussion we postulated that a frontal lobe lesion may explain some of the symptoms presented such as the uncontrolled impulses, the aggressive behaviour, and even the binge eating. However, a longitudinal neuropsychological evaluation showed a severe deficit in immediate memory and difficulties in planning and consolidation of newly learned information, which may be best related to damage in the frontal-based structures of the brain: the fornix and its connection to the hippocampus and the mammillary bodies. Postoperative magnetic resonance imaging confirmed the clinical hypothesis.

We do not totally agree with the diagnosis postulated by Aalst et al. Is true that signs and symptoms were abrupt and probably organic because of the apparently strong relation between the procedure and the start of the psychotic depressive episode. Previously, the patient had no psychiatric disorders and had undergone other invasive procedures under general anaesthesia and admittance to the hospital. It is not clear how this psychotic depression after ETV can be explained. Sometimes when ETV is performed, injury of the fornix is seen. The fornix constitutes the sole efferent system from the hippocampus and both are involved in the limbic system. The limbic system has an important role in mood and emotional behaviour. We hypothesize that in this patient a combination of incomplete septum pellucidum and an injury of the fornix may have caused an organic personality syndrome after ETV. We agree with Benabarre et al. that clinicians should be aware of and take into account this potential serious complication of ETV in this so called minimally invasive procedure.

J van Aalst, EAM Beuls
Department of Neurosurgery, University Hospital Maastricht, P Debyestraat 25, Postbus 8800, 6202 AZ Maastricht, The Netherlands

Reference

Authors’ reply
We are satisfied with the clinical interest generated by our case report where we explained the first case of endoscopic third ventriculostomy followed by severe psychiatric complications.

Van Aalst et al. have reported a patient who developed severe psychiatric symptoms after an endoscopic third ventriculostomy. Their patient underwent an endoscopic third ventriculostomy through a right sided precoronal burr hole using a rigid neuroendoscope. In our case the patient underwent surgery under general anaesthesia and a 6.5 mm rigid neuroendoscope (Gaab Endoscope, Storz, Tutlingen, Germany) was inserted through a right sided precoronal burr hole. In the frontal horn of the right lateral ventricle, following the technique described by Vries and Viñas et al., fenestration of the floor of the third ventricle to the basal eisterns was performed with bipolar coagulation and enlarged with a 3 French Fogarty catheter. The surgical technique was similar in both cases.

Both patients behaved aggressively but ours developed a severe complication consisting of an organic personality disorder characterised by impulsiveness, physical hyperaggressiveness, binge eating, hypersonnia, and impaired memory and frontal executive functions. In our discussion we postulated that a frontal lobe lesion may explain some of the symptoms presented such as the uncontrolled impulses, the aggressive behaviour, and even the binge eating. However, a longitudinal neuropsychological evaluation showed a severe deficit in immediate memory and difficulties in planning and consolidation of newly learned information, which may be best related to damage in the frontal-based structures of the brain: the fornix and its connection to the hippocampus and the mammillary bodies. Postoperative magnetic resonance imaging confirmed the clinical hypothesis.

We do not totally agree with the diagnosis postulated by Aalst et al. Is true that signs and symptoms were abrupt and probably organic because of the apparently strong relation between the procedure and the start of the psychotic depressive episode. Previously, the patient had no psychiatric disorders and had undergone other invasive procedures under general anaesthesia and admittance to the hospital. It is not clear how this psychotic depression after ETV can be explained. Sometimes when ETV is performed, injury of the fornix is seen. The fornix constitutes the sole efferent system from the hippocampus and both are involved in the limbic system. The limbic system has an important role in mood and emotional behaviour. We hypothesize that in this patient a combination of incomplete septum pellucidum and an injury of the fornix may have caused an organic personality syndrome after ETV. We agree with Benabarre et al. that clinicians should be aware of and take into account this potential serious complication of ETV in this so called minimally invasive procedure.

J van Aalst, EAM Beuls
Department of Neurosurgery, University Hospital Maastricht, P Debyestraat 25, Postbus 8800, 6202 AZ Maastricht, The Netherlands

Reference
pontine involvement, corresponding to MSA-P grade II.1,2 Case 18 with five years' duration of illness and craniovascular peak dose dystonia, showed similar mild degeneration of the dorsolateral putamen and SNc (grade III), in cases 2 and 16 (disease duration four and five years, respectively) with generalised peak dose dystonia, histopathologically revealed subtotal neuronal loss and gliosis in the dorsolateral and, much less, in the ventromedial putamen and caudate nucleus associated with mild gliosis in the globus palidus and degeneration of the SNc, more severe in the dorsolateral middle and caudal than in the ventromedial and rostral parts, corresponding to MSA-P grade III.1 A review of necropsy cases of MSA with dystonia in the literature and eight personal cases gave the following results: six of eight patients with anterocollis, five were MSA-P, and three MSA-C, all of the former with severe degeneration of the putamen, more severe in dorsolateral than ventral parts, and the SNc were all grade III. Among 28 cases with spastic and generalised dystonia, 21 were MSA-P and eight MSA-C. Twenty six brains revealed severe degeneration of the putamen, 12 of the caudate nucleus and seven of the globus pallidus, and all except for one had severe, rather diffuse involvement of the SNc. Only in single cases, the thalamus, corpus subthalamicum and other brain stem nuclei, for example, locus coeruleus, reticular SN, arcuate nucleus, etc. were involved. These data indicate that dystonia is more frequent in MSA-P than in MSA-C, in most but not all cases related to severe degeneration of the dorsolateral putamen and SNc with less involvement of the ventral putamen. While in MSA with spastic dystonia both the putamen and SNc appear equally involved, in MSA with dystonic contractions, the putamen appears more often affected than the SNc, whereas other subcortical and brain stem nuclei and the pontocerebellar system are only affected in single cases. This confirms previous studies on focal dystonia emphasising the role of the putamen as a major site of dysfunction13 with impairment of the basal ganglia circuitry. However, there is an important problem related to the variability of the intensity and distribution of the neuropathological lesions in MSA with dystonia, further studies are needed for the elucidation of their pathophysiological basis.

K A Jellinger Institute of Clinical Neurobiology, 7 Kenyavogasse, 1070 Vienna, Austria Correspondence to: Dr K Jellinger; jellinger@univie.ac.at

References

Social phobia in spasmatic torticollis: some conceptual issues

Gundel et al.5 tackle an important issue of social phobia (SP) in patients with spasmatic torticollis. This is because social avoidance itself contributes to a significant degree of distress and dysfunction in patients with chronic medical conditions.2 Also, potentially beneficial pharmacological and psychosocial treatments remain undervalued because of under recognition of this problem. Keeping these aspects in mind, we would like to highlight certain conceptual and methodological issues.

Firstly, the sample was restricted to patients with ST who required treatment with botulinum toxin. Also, the severity (Tsui) score for the sample has not been mentioned. Hence the sample may not be representative of all patients with ST.

Secondly, life events were assessed for the one year period before the initial manifestation of ST. As per the authors the mean (SD) duration of illness at the time of assessment was 11.9 (11.3) years. Although life events were reported in 50% of patients, yet caution should be exercised in relation to this result as elicitation of life events is associated with problems in recall, especially in illnesses of long duration.

Thirdly, 80% of patients with SP were classified as reactive. Though the authors mention that social anxiety had occurred after onset of ST, they do not provide data on the duration of SP, and hence fail to demonstrate a temporal relation between onset of symptoms of SP and ST. Related to this is the issue of primary/secondary/tertiary psychiatric comorbidity. Comorbidity as a concept has different dimensions.1 As this classification is not followed in DSM-IV, it would be helpful if the authors provide essential details for a better understanding of the same. The authors postulate a subgroup of patients with SP who have symptoms of social anxiety secondary to ST—that is, presence of a probable cause-effect relation. But, this brief report fails to mention as to how this subgroup was identified. Indeed, as is known, to be classified as “organic psychiatric disorders”, certain criteria do not preclude against the diagnosis of SP in patients with physical conditions. It seems that ICD-10 is more broad based and less conservative than DSM-IV in terms of the SCID interview. Hence, it may be even more severe. Cultural and other biases could also play a part. The mean Tsui Score of our sample was 7.58, SD 3.77, range 2–36.

Fourthly, the authors make an important issue of social anxiety second- ary to ST—that is, presence of a probable cause-effect relation. But, this brief report fails to mention as to how this subgroup was identified. Indeed, as is known, to be classified as “organic psychiatric disorders”, certain criteria do not preclude against the diagnosis of SP in patients with physical conditions. It seems that ICD-10 is more broad based and less conservative than DSM-IV in terms of the SCID interview. Hence, it may be even more severe. Cultural and other biases could also play a part. The mean Tsui Score of our sample was 7.58, SD 3.77, range 2–36.

Authors’ reply

(1) We agree with Sharma and Gupta in that our results are based on spasmatic torticollis (ST) patients treated with botulinum toxin, although untreated patients social phobia may be even more severe. Cultural and other biases could also play a part. The mean Tsui Score of our sample was 7.58, SD 3.77, range 2–36.

(2) There is no perfect method for retrospectively measuring stressful life events. Data should therefore be interpreted with the appropriate caution. Because of the relatively small point prevalence rating of 5.4 per 100,000 in cervical dystonia,1 it would be methodologically virtually impossible to investigate this issue in a longitudinal study.

(3) We used the questions F41–F50 for the diagnosis of social phobia when conducting the SCID interview.1 If criteria A-G or A-H were met by a participant, she/he was additionally asked if these symptoms had initially occurred before or after the manifestation of ST and what had been the main reason for developing social phobia from the patients’ view. Based on the patient's answer and the clinical judgment of the interviewer, social phobia was classified as reactive or not reactive to ST.

We did include the data about the duration of social phobia in our data file when social phobia was diagnosed as the clinically most important psychiatric diagnosis. Of these n=48 patients (41.3%), the mean duration of

www.jnnp.com

J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.73.4.463-b on 1 October 2002. Downloaded from http://jnnp.bmj.com/ on September 25, 2023 by guest. Protected by copyright.
Executive dysfunction and depressive symptoms in cerebrovascular disease

The article by Kramer et al. (1997) suggests that subcortical frontal vascular disease is associated with subtle declines in executive function and visual memory, even in non-demented patients. The authors compared 27 control subjects and 12 non-demented patients, who were selected after exclusion of major depression, bipolar affective disorder, and other DSM-IV Axis I disorders. They wished to contribute with personal data to this topic suggesting that, even in absence of a clinical diagnosis of depression, depressive symptoms may modulate executive dysfunctions in non-demented subjects with cerebrovascular disease.

We examined 34 consecutive patients with cognitive impairment-no dementia (CI-ND) (mean (SD), age: 78.1 (6.3), range 65–90; years of education: 4.9 (1.7), range 3–10; Mini Mental State Examination score: 24.0 (2.4), range 18–27). The diagnosis of CI-ND was made on the basis of a standardised and reliable test, including history, clinical examination, detailed neuropsychological testing, and computed tomography. The presence and severity of cortical, white matter, and deep subcortical lesions and of leukoaraiosis were assessed on computed tomographic film with a standardised visual rating scale. With this method, the patients were quantitatively divided in two groups (50th centile) according to the severity of cerebrovascular disease: 17 patients had none or mild, and 17 had moderate or severe cerebrovascular disease. The two groups had similar age (mean (SD), age: 78.1 (6.5) vs. 78.9 (6.0) vs. 75.3 (5.5) vs. 76.9 (6.0) vs. p=0.31, t-test), educational level (mean (SD), years of schooling: 4.7 (1.5) vs. 5.3 (1.9) vs. p=0.27, t-test), cognitive impairment (mean (SD), Mini Mental State Examination score: 24.2 (2.7) vs. 23.8 (2.0)) vs. p=0.63, t-test), functional status (mean (SD), Barthel Index: 85.3 (18.9) vs. 80.8 (21.4)) vs. p=0.57, t-test), and comorbidity (mean (SD), Charlson Index: 2.1 (2.2) vs. 2.2 (1.6)) vs. p=0.95, t-test). Comparing the neuropsychological tests, we found that the patients in the group with none or mild cerebrovascular disease performed better on Babcock (mean (SD), score: 11.3 (2.3) vs. 8.6 (3.0) vs. p=0.01, t-test), on digit symbol (mean (SD), associations in 90 seconds: 14.3 (6.8) vs. 11.7 (4.9) vs. p=0.24, t-test), on trail making A (mean (SD), seconds: 143.0 (82.6) vs. 228.2 (157.7) vs. p=0.05, t-test), but were significantly less depressed (mean (SD) number of symptoms on Center for Epidemiological Studies depression scale: CES-D: 10.8 (7.2) vs. 18.8 (6.6) vs. p=0.002, t-test). However, when the effect of cerebrovascular severity on all significant variables was weighted in a multi-variate linear regression model, only depressive symptoms remained in the model predicting performance. Furthermore, the relation between cerebrovascular disease and depression has recently been established. In their study, Kramer and colleagues performed an extensive neuropsychological evaluation, but failed to take into consideration that depressive symptoms may be detected in elderly population even after exclusion of major depression. On the contrary, we suggest that depressive symptoms need to be considered in the interpretation of even subtle executive dysfunctions in cerebrovascular disease patients.

References

Author’s reply

We completely agree with Dr Bellesi and his colleagues about the importance of concerning depressive symptoms when evaluating executive and other cognitive abilities in subjects with cerebrovascular disease. It is increasingly clear that subcortical-frontal ischaemic vascular disease, symptoms of depression, and executive impairment are related, although the nature of these relations is complex and not yet fully understood. Their data on patients with mild cognitive impairment amply illustrate the need to consider depression and other moderators when evaluating cognitive dysfunction.

We would like to emphasise two points. Firstly, data on depression related symptoms (for example, depressed mood, anhedonia, guilt feelings, etc) were collected on all but two cases in our sample. Although we did not report these data in our paper, we were aware that our data did not suggest any significant differences in depression measures and depressive symptoms. In addition, when we used linear regression to simultaneously consider depression and subcortical lacunes, only the presence of subcortical lacunes predicted executive functioning.

Our second point is to emphasise that while linear regression is a powerful technique for considering multivariate models, researchers must not confuse correlation with causation. For example, in the analyses by Belllesi et al, depression but not cerebrovascular severity remained in the model predicting performance on executive tasks. This cannot be interpreted to imply that the influence of the disease in cerebrovascular patients is caused by their depression and not by their cerebrovascular disease. Cerebrovascular disease might cause both depression and executive impairment. Because cerebrovascular disease is associated with depression, and executive impairment are all related, however, it would not be unusual for one of these variables to be excluded from a regression model.

A causal relation between subcortical-frontal neuropathology and deficits on frontally mediated executive tasks makes sense neuroanatomically. Elucidation of the underlying mechanisms (for example, white matter...
Clinical trials in neurology

This much needed book is a gem. If you are involved in a clinical trial make sure you and all your collaborators have read it, before the trial commences. The application of the methodology of the randomised clinical trial has become the absolute test of all new medicines, not only in neurology but also generally in medicine and surgery. Once one is involved in a trial, however, it is difficult to keep a sense of independence. Therefore, it is important that the trial should have a positive outcome—that, after all, is one of the several major reasons for using randomisation and double blinding. This book provides the information the clinician needs, is well organised, and has clear and concise advice on how to manage the subject. The book is organised in two parts. In the first part, general issues relating to ethics, regulatory matters, assessment, measurement, sample size, and statistical analysis are considered, and important specific issues, such as the use of intention to treat analysis, handling drop outs in repeated measures analysis, and survival analysis, are presented. Well chosen examples enliven the text and tables. The role of the Cochrane Collaboration and of meta-analyses is considered in separate chapters. The second part of the book is concerned with the application of these general principles to neurological diseases. This section consists of groups of chapters related to ethical issues, trial design, measurement, sample size, data analysis, and critical discussion of the results of major trials in the present edition. The consistent high quality of these chapters is remarkable in a multiauthored text and a tribute to the hard work and dedication of the editors. The book concludes with a review by Michael Brooke that should be required reading for every neurologist. This book not only fills a gap on the neurologist’s bookshelf but will also be opened again and again.

Michael Swash

Differential diagnosis in neuro-oncology

This book is written by two very experienced, eminent, and respected European neuro-oncologists. The book, as described in the introduction, is assisting in the correct diagnosis and therapeutic management of patients with neurological syndromes due to neoplastic conditions. The neurological syndromes in cancer patients cover the spectrum of neuro-oncological sites and each chapter is broken down into subheadings of introduction, clinical presentation, main aetiologies, differential diagnosis, investigation, treatment, and appropriate references. The neurological syndromes covered are altered consciousness, cognitive and behavioural disorders, epileptic seizures, cerebellar dysfunction, visual alterations, cranial nerve and brain stem lesions, spinal cord lesions, diffuse lesions of the peripheral nervous system, focal lesions of the peripheral nervous system, muscle disorders and fatigue, endocrine disorders, and treatment of the main neurological malignant diseases.

Overall this gives a very compact and user friendly description of the major clinical features and disorders encountered in the practice of clinical neuro-oncology. The strength of the book lies clearly in the widespread experience of the two authors. They have been able to include common and rare neurological syndromes into an easily digestible and coherent clinical classification. In particular for neurosurgeons this book will offer a great deal since it offers insights into non-surgical courses of neurological syndromes seen in patients with cancer. This applies particularly to problems related to chemotherapy and radiotherapy, as well as paraneoplastic syndromes, which are well covered.

While the book will be a useful reference tool for the surgeon, it is rather weak on neurosurgical aspects in neuro-oncology. For example, under neurosurgical therapy of glioma (p. 227) it is stated that “optimal resection (of gliomas) should achieve tumour removal without morbidity.” This is despite morbidities of 10–24% being described in most current series in the literature. There were also allusions to the use of neuronavigation tools in neurosurgery, which will make tumour removal “easier and more complete.” However, at this stage there is no evidence for this. There is also an imbalance in the role of resection versus biopsy in gliomas. A recent Cochrane review found that there is no evidence in the literature to show that resection outcomes are better in patients who have resection rather than biopsy for malignant glioma. On page 223 it is also suggested that histologically glioblastomas are homogeneous—it is clearly not the case since they are very heterogeneous.

There are also minor points in terms of preparation of the book, such as reference 38 in the treatment of gliomas—this is dated 1977 rather than 1997. In a section on labelled incorrectly and the subheading in the myopathy section is under cognitive and behavioural disabilities. These are, however, minor quibbles. The depth of coverage of medical and radiation neuro-oncology is excellent—there is a superbly written extensive “aim” section, and numerous useful illustrations and algorithms make this a “must have” book. Do not be put off by the atrocious book cover—what on earth is it?!

Ian Whittle

Interventional and endovascular therapy of the nervous system. A practical guide
By Pearse Morris (Pp 318, £94.00). Published by Springer-Verlag, New York, 2002. ISBN 0-387-95193-8

As its title implies, this is a practical guide to interventional and endovascular neuro-oncology. All the conditions encountered by the interventionalist are covered in the 15 well chosen chapters. The book is remarkably up to date, given the rapidity of technical change in the specialty. This is a tribute to the authors and to Springer, who have produced a high quality, superbly illustrated book of the type for which the publishers are renowned.

The book is written primarily for neurointerventionists, both those in training and...
those who are “trained” (if there is such a state). There is also something in the book for clinicians—neurosurgeons, neurologists, and, one must not forget, anaesthetists and intensivists, all of whom may be involved in the management of these patients. The sections on pharmacology and haemostasis are particularly useful and it is worth noting that treatment methods in neurointervention are similar worldwide. Some minor differences exist, imposed by the various national regulatory bodies concerned with drugs and devices. The book can nevertheless be studied profitably by an international readership.

It would have been valuable to include something on the natural history of intracranial aneurysms, particularly the rather vexed question of what is to be done with the unruptured group of aneurysms. No more than a passing reference is made to Onyx, the non-adhesive liquid embolic agent, which is regularly used in the United Kingdom for cerebral arteriovenous malformations and less commonly for especially challenging aneurysms. This is a very recent development and should not detract from this being an excellent, up to date book, full of practical advice. I look forward to future editions. This book has already been discovered by our trainees. It is strongly recommended for their personal library and for inclusion in the neuroscience departmental library.

Paul Butler

Principles of neuroepidemiology

Edited by Tracy Batchelor and Merit E Cudkowicz (Pp 374, £65.00). Published by Butterworth Heinemann, Boston, 2001. ISBN 0750670428

This useful book gives an overview of the epidemiology of neurological disease. It is not fully comprehensive but this is to be expected in a relatively short book of just over 300 pages. It begins with four useful chapters on epidemiological methods, statistical principles, clinical trials, and measurement scales. These are fairly sketchy in parts but provide a worthwhile summary of the general principles.

The coverage of the epidemiology of neurological disease is good, with individual chapters on the 12 most common neurological syndromes and diseases, including back pain, headache, head injury, and sleep disorders, each of which is sometimes ignored in books of this kind. However, there are no chapters on muscle disease or peripheral neuropathy.

The book is rather US oriented. The editors admit in the preface that their “focus was limited to adult neurological diseases occurring in the US.” However, in these days of international research collaboration and electronic communication, it is somewhat disappointing to find that only 2 of the 31 authors were from outside North America. The authorship was also dominated by Boston based clinicians and academics, who accounted for over 60% of the authors. Harvard certainly has a strong tradition of high quality epidemiology but a more varied authorship might have provided a broader perspective. There is also a tendency in several of the chapters for the research that is discussed and referenced to be US based.

Nevertheless, the book does provide a useful overview of the epidemiology of most of the neurological diseases that are common in the developed world. It would therefore be of use to the general neurologist or to the non-clinical neuroscientist with an interest in the clinical burden of neurological disease.

Peter Rothwell