LETTERS

Effect of deprivation on time to hospital in acute stroke

Acute stroke is the leading neurological cause of death and disability. After years of therapeutic nihilism there is now some optimism that effective treatments might become more widely available. It appears likely that very early thrombolyis is of benefit, and there is good evidence for the use of aspirin. As well as gains from the early initiation of these “disease modifying” treatments, it is likely that early admission to a safe clinical environment, with attention to simple physiological variables such as temperature and blood glucose, will improve outcome. For these reasons, it seems probable that the time taken for patients to reach hospital following stroke onset will have a significant effect on outcome.

We have shown higher rates of intensive care admission for epilepsy, stroke, or head injury among individuals from affluent areas. The impact of social deprivation on disease management might result from biases within health care systems, or from differences in how individuals perceive disease and access health care systems, and in particular how quickly they access care.

As acute stroke services are developed to meet the challenges ahead, any impact of deprivation on the delay to treatment should be identified. We have examined time to hospital admission for epilepsy, stroke, or head injury among individuals from affluent areas. Efforts to reduce time to hospital admission may be greater in those living in affluent areas. Efforts to reduce time to hospital admission for epilepsy, stroke, or head injury among individuals from affluent areas. Efforts to reduce time to hospital admission may be greater in those living in affluent areas.

Table 1 Patients reaching hospital within three hours of symptom onset

<table>
<thead>
<tr>
<th>Quartiles of deprivation</th>
<th>DepCat 1 and 2</th>
<th>DepCat 3</th>
<th>DepCat 4</th>
<th>DepCat 5–7</th>
<th>DepCat unknown</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>%</td>
<td>n</td>
<td>%</td>
<td>n</td>
<td>%</td>
<td>n</td>
</tr>
<tr>
<td>Number reaching hospital within 3 hours</td>
<td>105/407</td>
<td>25.8</td>
<td>58/310</td>
<td>18.7</td>
<td>87/380</td>
<td>22.9</td>
</tr>
<tr>
<td>By CT findings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal or infarct</td>
<td>78/313</td>
<td>24.9</td>
<td>47/255</td>
<td>18.4</td>
<td>71/309</td>
<td>23.0</td>
</tr>
<tr>
<td>Haemorrhage</td>
<td>15/55</td>
<td>27.3</td>
<td>6/33</td>
<td>17.1</td>
<td>10/47</td>
<td>21.3</td>
</tr>
<tr>
<td>Not done/not known</td>
<td>12/39</td>
<td>5.2</td>
<td>5/20</td>
<td>1.6</td>
<td>6/24</td>
<td>2.1</td>
</tr>
<tr>
<td>By symptom onset</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Present on waking</td>
<td>29/114</td>
<td>25.4</td>
<td>14/91</td>
<td>15.4</td>
<td>15/109</td>
<td>13.8</td>
</tr>
<tr>
<td>While awake</td>
<td>70/277</td>
<td>25.3</td>
<td>41/210</td>
<td>19.5</td>
<td>69/262</td>
<td>26.3</td>
</tr>
<tr>
<td>Not known</td>
<td>6/16</td>
<td>3.9</td>
<td>3/9</td>
<td>1.6</td>
<td>1/8</td>
<td>0.5</td>
</tr>
<tr>
<td>Missing time to hospital data</td>
<td>127/534</td>
<td>23.8</td>
<td>96/406</td>
<td>23.6</td>
<td>124/504</td>
<td>24.6</td>
</tr>
<tr>
<td>Other factors</td>
<td>Mean</td>
<td>Mean</td>
<td>Mean</td>
<td>Mean</td>
<td>Mean</td>
<td></td>
</tr>
<tr>
<td>GP list size</td>
<td>1722</td>
<td>1618</td>
<td>1550</td>
<td>1595</td>
<td>1603</td>
<td></td>
</tr>
<tr>
<td>Distance to hospital (km)</td>
<td>9.61</td>
<td>7.57</td>
<td>10.51</td>
<td>11.56</td>
<td>9.95</td>
<td></td>
</tr>
<tr>
<td>Ambulance response times (min)</td>
<td>9.28</td>
<td>8.56</td>
<td>8.79</td>
<td>8.87</td>
<td>8.77</td>
<td></td>
</tr>
<tr>
<td>Stroke admissions/1000 population</td>
<td>13.57</td>
<td>15.41</td>
<td>19.31</td>
<td>22.17</td>
<td>17.74</td>
<td></td>
</tr>
<tr>
<td>Stroke deaths/1000 population</td>
<td>2.91</td>
<td>3.05</td>
<td>3.93</td>
<td>3.95</td>
<td>3.49</td>
<td></td>
</tr>
</tbody>
</table>

Of 1927 patients, data on time to hospital and home postcode were available for 1416; patients with incomplete data were evenly distributed between deprivation quartiles (table 1). The number of patients reaching hospital within three hours fell from 105/407 (25.8%) in the most affluent quartile to 57/317 (17.9%) in the most deprived quartile (p = 0.037, χ² on ranks, table 1), most of the observed difference lying between the most affluent quartile and the rest. Among 1316 patients with CT data available, 164 (12.5%) had haemorrhagic strokes, but there was no difference in the proportion reaching hospital within three hours. Of 1374 patients with data available, 428 (31.1%) had their symptoms present on waking, and fewer of these reached hospital within three hours (16.4% vs 23.7%, p = 0.002, χ²; 10.5% of such patients from the most deprived quartile arrived at hospital within three hours, compared with 25.4% of those from the most affluent quartile (p = 0.002, χ² on ranks).

There were no significant differences between deprivation quartiles for GP list size, distance to hospital, or ambulance response times (table 1). There were higher rates of hospital admission in patients from more deprived areas, and this reflected higher rates of death from stroke in persons resident in such areas (table 1).

Comment

Patients from affluent areas get to hospital sooner following stroke. This does not reflect differences in the distance to hospital, ambulance response times, or GP list size. Public recognition of stroke symptoms and understanding of the importance of early hospital admission may be greater in those living in affluent areas. Efforts to reduce time to hospital following stroke should include specific attention to public education targeted at those living in deprived areas.
Arginine (R) substitution at codon 192 causes

effects on enzyme activity, because of linkage disequilibrium with a single

catalytic efficiency of substrate hydrolysis by the enzyme, but the PON1 55M allele is correlated with decreased arylesterase activity, accounting for about 22% of the total variance, followed by the polymorphisms at positions 192, 55, and -162, which account for about 5.7%, 4.1%, and 1.1% of the total variance in arylesterase activity, respectively. Cell culture studies indicate an approximately twofold change in PON1 gene transcription attributable to the -108C/T and -162G/A SNPs, with the -108C and -162A providing more efficient transcription. A significant association of the 192R allele with PD was found in a population of patients of Japanese ethnicity with comparatively low mean age of onset. In contrast, no difference in genotypes was found between PD cases and controls for the PON1 Q192R polymorphism in an Australian study in another study on subjects of Russian ethnicity. In a more recent study by Akhmedova et al. on the same Russian population, the M55 allele was found to be associated with PD. No associations for the amino acid codon 55 and 192 polymorphisms were found in a study from China.

In this study, we examined associations of two promoter (−162A and C−108T) and two coding region (−55L and Q192R) polymorphisms in PON1 with PD. Newly diagnosed idiopathic PD patients (n = 150; 91 men and 59 women), aged 37 to 88 years, were identified by neurology and general medical practice clinics of the group health cooperative (GHC) from the Puget Sound area in western Washington State. Inclusion criteria for the cases were the presence of at least two of the four cardinal signs of PD: bradykinesia, resting tremor, cogwheel rigidity, and postural reflex impairment. Exclusion criteria included the use of certain drugs during the 12 months preceding symptom onset, history of multiple cerebrovascular events, or another explanation for parkinsonism symptoms.

Controls (n = 244; 158 men and 86 women), aged 44 to 84 years, were identified from GHC enrollees without past histories of PD or other neurodegenerative disorders. Controls were matched to cases by birth decade, sex, and year of enrollment in GHC. All subjects were of non-Hispanic white ethnicity. Study subjects were volunteers who were informed of the purpose of the study. Study forms and procedures were approved by the Institutional Review Board committees on Human Subjects Research at the University of Washington and GHC Center for Health Studies.

A PCR/dye terminator cycle sequencing based assay was used to detect the −162 GA and −108 CT genetic variants within the paraoxonase 1 (PON1) gene. TaqMan Detection System based assays were developed to identify the PON1 55 T/A and PON1 192 A/G variants. Odds ratios and χ² tests were calculated using SPSS software for Windows; α = 0.05 was taken as the level of significance. Logistic regression models were used to calculate adjusted odds ratios and to test for statistical significance of interactions. Haplotypes were inferred using EH software. Among controls, we observed the following allelic frequencies: −162 A = 0.23, G = 0.77; −108 T = 0.46, C = 0.54; 55M = 0.35, L = 0.65; 192R = 0.30, Q = 0.70. As shown in Table 1, there were no significant differences in the genotype distributions of cases and controls for any of the four PON1 polymorphisms. The distribution of three marker haplotypes was not significantly different between cases and controls (χ² = 4.78, p = 0.09). There also was no difference in the distribution of four marker (including −162) haplotypes between cases and controls (χ² = 9.98, p = 0.82).

We also tested for interactions between PON1 genotypes and age (<60, ≥60), sex, and smoking. No conclusive evidence of interaction between any PON1 genotype and either smoking or sex was found. However, we did detect an interaction between PON1 192Q genotype and age. Interestingly, among cases, PON1 192Q genotype frequency increased with age (χ² = 4.78, p = 0.09). There also was no difference in the distribution of four marker (including −162) haplotypes between cases and controls (χ² = 9.98, p = 0.82).

In contrast with the results of Kondo and Yamamoto and Akhmedova et al., our results do not indicate that PD is associated with specific PON1 genotypes. In addition to the

Table 1 PON1 −162, −108, 55, and 192 genotype frequencies in cases and controls

<table>
<thead>
<tr>
<th>SNP</th>
<th>Genotype</th>
<th>χ² Genotype distribution</th>
<th>OR* (95% CI)</th>
<th>OR* (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>−162</td>
<td>−162</td>
<td>GA (57.2)</td>
<td>2.68</td>
<td>1.28 (0.82 to 1.98)</td>
</tr>
<tr>
<td>Cases (%)</td>
<td>Controls (%)</td>
<td>(60.2)</td>
<td>56 (37.3)</td>
<td>15 (10)</td>
</tr>
<tr>
<td>1.26</td>
<td>1.62</td>
<td>2.38</td>
<td>1.34</td>
<td>(0.67 to 1.78)</td>
</tr>
<tr>
<td>−108</td>
<td>−108</td>
<td>CT (43.1)</td>
<td>1.09</td>
<td>1.19 (0.77 to 1.86)</td>
</tr>
<tr>
<td>Cases (%)</td>
<td>Controls (%)</td>
<td>(43.1)</td>
<td>47.9 (39.3)</td>
<td>16 (9.1)</td>
</tr>
<tr>
<td>55</td>
<td>55</td>
<td>LL (60.0)</td>
<td>0.57</td>
<td>0.76 (0.58 to 1.37)</td>
</tr>
<tr>
<td>Cases (%)</td>
<td>Controls (%)</td>
<td>(43.2)</td>
<td>104 (42.8)</td>
<td>34 (14.4)</td>
</tr>
<tr>
<td>192</td>
<td>192</td>
<td>QQ (81.5)</td>
<td>0.76</td>
<td>0.68 (0.58 to 1.37)</td>
</tr>
<tr>
<td>Cases (%)</td>
<td>Controls (%)</td>
<td>(50.0)</td>
<td>97 (40.1)</td>
<td>24 (9.9)</td>
</tr>
</tbody>
</table>
coding region polymorphisms investigated previously; we assessed the role of two promoter mutations but found no evidence of association. These findings suggest that PON1 genotypes may not be predictive of PD, although there remains the possibility of interactions with pesticide exposures. Considerably larger studies will be required to investigate such interactions.

Acknowledgements

The authors would like to thank the PD patients and control subjects that participated in this study, Mrs. Janet Petersen for administering the questionnaire to study subjects, and the neurologists of GHC and UW for referral of PD cases, in particular Drs. Robert Goshall, Ann Hunt, Erik Kraus, Richard Meshkin, Steve Pugh, Bruce R Ransom, Ali Samii, Timothy Searc, Kurt Seiffert, Ken Uchino, Thurman Wheeler.

Funding: This research was supported by National Institute for Environmental Health Sciences Grants ES-04868, ES-10759, 07013, 09601, 07012 and Environmental Protection Agency Grant 826868-02.

Competing interests: none declared.

6 Department of Environmental Health, University of Washington, Seattle, USA
7 H Checkoway, W T Longstreth Jr
8 Department of Epidemiology, University of Washington
9 C E Furlong, G P Jarvik
10 Department of Genome Sciences, University of Washington
11 C E Furlong, G P Jarvik
12 Department of Medicine, Division of Medical Genetics, University of Washington
13 W T Longstreth Jr, P D Swanson
14 Department of Neurology, University of Washington
15 L G Costa
16 Department of Pharmacology and Physiology, University of Roma La Sapienza, Rome, Italy
17 Correspondence to: Dr. L G Costa, Department of Environmental Health, University of Washington, 4225 Roosevelt Way, NE, Suite 100, Seattle, WA 98195-6099, USA, lgcosto@u.washington.edu

References


Multifocal myoclonus secondary to tranexamic acid

Myoclonus is characterised by sudden and brief involuntary movements. We describe a patient who developed myoclonus and altered mental status following tranexamic acid overdose. The patient was a 61 year old man on chronic ambulatory peritoneal dialysis for adult polycystic kidney disease and had been prescribed lisinopril and metoprolol for longstanding hypertension. He presented to hospital because of blood effluent from his peritoneal catheter. Examination did not reveal any neurological abnormalities. Haemoglobin level was 6.2 g/dl, calcium 2.28 mmol/L, urea 20.2 mmol/L, and creatinine 1110 mmol/L, which was similar to the values taken one month before in the outpatient clinic (urea 20.2 mmol/L and creatinine 1112 mmol/L). Blood and peritoneal fluid were taken for microbiological analyses and were unremarkable.

He was transfused two units of packed cells and started on oral tranexamic acid 500 mg four times daily in order to reduce the bleeding. Six days later he became dull and developed spontaneous, arrhythmic, and multifocal myoclonus. On repeat renal function testing, the urea and creatinine levels were 20.6 mmol/L and 1190 mmol/L, respectively. An ECG and urgent brain computed tomography were unremarkable but an electroencephalogram (EEG) showed intermittent spike waves over both parietal regions. No other cause of epilepsy was found.

Anticonvulsants were not started as it was felt that the involuntary movements were not disabling and likely to be a transient adverse drug effect. Four days after tranexamic acid had been stopped, the patient had regained his premorbid mental state and the myoclonus had ceased. Normal posterior dominant alpha activity was recorded on a repeat EEG, without further epileptiform discharges.

Six months after this event the patient remains free from seizures.

Comment

Drug induced myoclonus usually occurs with encephalopathy and is often a diagnosis of exclusion. In addition, other neurological signs such as ataxia, coma, generalised seizures, and headache may be present with certain agents. Implicated drugs include antibiotics, anaesthetics, calcium channel blocking drugs, antidepressants, and antiepileptic drugs. Tranexamic acid (TAMCA; 4-[(aminomethyl)cyclohexanecarboxylic acid) is commonly used in the treatment of disorders that predispose to bleeding. It is a synthetic lysine analogue that has strong antifibrinolytic activity. Plasma in fibrin to form plasmin, which in turn degrades fibrin into fibrin degradation products. TAMCA blocks the lysine binding site on plasminogen and prevents interaction with fibrin. Clinical trials have shown that TAMCA reduces blood loss in patients with primary menorrhagia, and in those undergoing cardiopulmonary bypass, prostatectomy, hip replacement, and liver transplantation.

TAMCA is generally well tolerated. Side effects are mainly gastrointestinal, such as nausea, vomiting, diarrhoea, and abdominal pain. There are, however, experimental studies of neurotoxicity.4 Direct application of TAMCA to the grey matter of cats produces spike-wave bursts on EEG similar in appearance to that found in feline generalised epilepsy.4 The ability to elicit epileptic activity depended on the concentration of the drug and the area of cortex exposed. Intravenous injection causes intracranial and systemic hypertension as well as epileptiform discharges on the EEG.3 Drugs may induce seizures by modulating neurotransmission, as application of excitatory transmitters such as kainic acid and inhibitory receptor blockers such as penicillin have been shown to evoke seizures. By applying TAMCA to the spinal cord of rats, Furuttmuller was able to demonstrate a dose dependent hyperexcitability.3 This is blocked by the addition of muscimol, a y-amino-butyric acid (GABA) receptor agonist, which indicates that tranexamic acid induces convulsions by blocking inhibitory GABAergic neurotransmission.

Clinically, an increase in cerebral ischaemia has resulted when TAMCA has been given for the treatment of subarachnoid haemorrhage.3 TAMCA induced seizures have been reported in a man who was inadvertently given a 50 mg intrathecal dose during spinal anaesthesia and developed status epilepticus.3 The patient required thiopentone infusion as the seizures were not controlled with phenytoin and midazolam; the clinical course was complicated by multiorgan dysfunction and critical illness polyneuropathy. Our patient with end stage renal failure was given an accidental overdose of oral TAMCA which resulted in myoclonus that resolved after the drug was stopped. As exclusion of this drug depends on renal function, dosage adjustment is required in patients with renal failure; the efficacy of haemodialysis in removing the drug has not been studied. This case suggests that TAMCA overdose should be considered as a cause of drug induced myoclonus.

A C F Hui, T Y H Wong, K M Chow, C Szeto

Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China

Correspondence to: Dr Andrew Hui; cfhui@cuhk.edu.hk

References


Immunohistochemical study of caveolin-3 in idiopathic hyperCKaemia

With the increasing concern about malignant hyperthermia and with the inclusion of creatine kinase determination in the automated blood chemistry profile, performed as part of health screening, the number of cases of raised serum creatine kinase (hyperCKaemia) without clinical signs of neuromuscular disease is continuously increasing. In 1980 Rowland et al coined the term “idiopathic hyperCKaemia” to describe patients with
consistently increased serum creatine kinase who may complain of myalgia or tiredness but do not have weakness or other abnormalities on neurological examination, electromyography, and muscle biopsy. Extensive ancillary investigations may lead to the diagnosis of a subclinical neuromuscular disorder in a variable percentage of subjects but in others hyperCKaemia remains unexplained even after complete studies.

Merlino et al reported on an 18 year old man and his 49 year old mother with persistent hyperCKaemia, no muscle symptoms and signs, muscle caveolin-3 deficiency, and a novel mutation (P288L) in the caveolin-3 (CAV3) gene. Recently two unrelated asymptomatic children (4 and 6 years old) with hyperCKaemia, reduced expression of caveolin-3 in muscle fibres and the same de novo CAV3 mutation (R26Q) have been also described. Although the absolute number of reported subjects was small caveolin-3 deficiency has been indicated as a cause of sporadic and familial “isolated” hyperCKaemia without any signs or symptoms of myopathy.

To investigate the relative frequency of caveolin-3 deficiency in hyperCKaemia we reviewed the clinical records and muscle biopsy specimens of 36 consecutive subjects with persistent hyperCKaemia (more than twice the normal value) and normal neurological examination referred to our centre for neuromuscular diseases. Extensive investigations showed that subclinical neuromuscular disorders (dystrophinopathy and carrier state of dystrophinopathy, adult maltase acid deficiency, inflammatory myopathy, mitochondrial myopathy, motor neuron disease, hypothyroidism, hyperparathyroidism) accounted for 20 cases, not included in the study. In the remainder 36 subjects (34 male), with CK increased from 2 to 18 times, muscle biopsy was completely normal (15 cases) or showed only minimal and non-specific alterations such as mild increase variability of fibre size or increased percentage of internal nuclei. Mean age was 27 years (range 2–62). Three patients were younger than 15 years. Nine subjects belonged to nine different families with autosomal dominant hyperCKaemia without clinical signs reported in at least two subjects of two generations. Ten subjects complained of mild myalgias or feeling fatigued. EMG was normal in 35 of 35 tested subjects. Histochemistry for myofibrofilase and myoadenilase deaminase, immunohistochemistry for dystrophin, sarcoglycans, laminins, desmin, and biochemical investigations for glycogen and lipid metabolism enzymes were all normal. In these 36 subjects, we labelled as idiopathic hyperCKaemia, we also performed immunofluorescence on frozen muscle sections using monoclonal antibody against caveolin-3 (BD Transduction laboratories). Biopsy specimens from normal subjects and patients with known diseases were used as controls. All 36 subjects showed a uniform sarcolemmal staining for caveolin-3, not different from controls. No staining was found inside muscle fibres in both groups. CAV3 gene mutations have been associated with an autosomal dominant form of limb-girdle muscular dystrophy (LGMD-1C),
rippling muscle disease (RMD),
distal myopathy,
and isolated hyperCKaemia. Different phenotypes may share the same mutation. For example, the P104L mutation may lead to LGMD-1C or RMD phenotype and the R26Q mutation, found in the two children with isolated hyperCKaemia, also causes RMD. This implies that other genes or regulating factors may be involved in determining the clinical phenotype and that, especially in paediatric cases, isolated hyperCKaemia may be a presymptomatic stage of other caveolinopathies.

All the muscle caveolinopathies described up to now showed a reduced intensity of sarcolemmal staining, with sometimes abnormal punctuated cytosolic staining. Therefore immunohistochemistry, by itself, should be a reliable enough technique to exclude in our series caveolin-3 deficiency.

In conclusion, our study on a large consecutive series of patients with idiopathic hyperCKaemia suggests that caveolin-3 deficiency is not a common cause of sporadic and familial hyperCKaemia without muscular signs. The other possible causes of this intriguing phenomenon remain to be unveiled.

M Capasso, S Lupo, A Di Muzio, A Uncini Centre for Neuromuscular Diseases, University “G d’Annunzio”, Chieti, Italy
S Servidei Neurological Institute, Catholic University, UILDM, Rome, Italy

Correspondence to: Professor A Uncini, Clinica Neurologica, Ospedale Clinizzato “SS Annunziata”, Via dei Vestini 166013 Chieti, Italy; uncini@unicht.it

References