Outcome of contemporary surgery for chronic subdural haematoma: evidence based review

R Weigel, P Schmiedek, J K Krauss

Objective: To evaluate the results of surgical treatment options for chronic subdural haematoma in contemporary neurosurgery according to evidence based criteria.

Methods: A review based on a Medline search from 1981 to October 2001 using the phrases “subdural haematoma” and “subdural haematoma AND chronic”. Articles selected for evaluation had at least 10 patients and less than 10% of patients were lost to follow up. The articles were classified by three classes of evidence according to the American Academy of Neurology. Strength of recommendation for different treatment options was derived from the resulting degrees of certainty.

Results: A total of 973 publications was reviewed. Six articles met criteria for class II evidence and the remainder provided class III evidence. Evaluation of the results showed that twist drill and burr hole craniostomy are safer than craniotomy; burr hole craniotomy and craniostomy are the most effective procedures; and burr hole craniostomy has the best cure to complication ratio (type C recommendation). Irrigation lowers the risk of recurrence in twist drill craniostomy and does not increase the risk of infection (type C recommendation). Drainage reduces the risk of recurrence in burr hole craniostomy, and a frontal position of the drain reduces the risk of recurrence (type B recommendation). Drainage reduces the risk of recurrence in twist drill craniostomy, and the use of a drain does not increase the risk of infection (type C recommendation). Burr hole craniostomy appears to be more effective in treating recurrent haematomas than twist drill craniostomy, and craniotomy should be considered the treatment of last choice for recurrences (type C recommendation).

Conclusions: The three principal techniques—twist drill craniostomy, burr hole craniostomy, and craniotomy—used in contemporary neurosurgery for chronic subdural haematoma have different profiles for morbidity, mortality, recurrence rate, and cure rate. Twist drill and burr hole craniostomy can be considered first tier treatment, while craniotomy may be used as second tier treatment. A cumulative summary of data shows that, overall, the postoperative outcome of chronic subdural haematoma has not improved substantially over the past 20 years.

Chronic subdural haematoma of the elderly is nowadays often considered to be a rather benign entity, ignoring its relatively high mortality and morbidity. When Virchow first described “pachymeningitis haemorrhagica interna,” however, it was considered a fatal disorder. Over the past 150 years, a dramatic improvement in outcome was achieved following better understanding of the pathophysiology, the introduction of modern imaging methods, and refinement of operative techniques. However, mortality of up to 13% is still reported in contemporary literature, which may reflect the fact that up to four deaths a year are related to this condition in a typical neurosurgical department. Although this is one of the most frequent problems encountered in neurosurgery, there has been relatively little progress in its treatment during the past 20 years. This is in marked contrast to the development of sophisticated concepts and surgical techniques in other subspecialties of neurosurgery, such as functional, spinal, or vascular neurosurgery.

The principal techniques used in the treatment of chronic subdural haematoma are presently twist drill craniostomy, burr hole craniostomy, and craniotomy. Other procedures are undertaken much more rarely. Additional procedures include intraoperative irrigation of the subdural space and drainage of the haematoma. The number of treatment options reflects the dilemma of the search for the optimum procedure.

In this paper, we provide the first evidence based review of the contemporary surgical treatment of chronic subdural haematoma.

METHODS
A systematic review was undertaken by conducting a Medline search from January 1981 to October 2001. The key words “subdural haematoma” and “subdural haematoma AND chronic” yielded a total of 973 publications. Additionally, reference lists of recent publications cited another 198 papers on the topic. In order to reduce possible publication bias and enhance the quality of the analysis, certain inclusion criteria were set arbitrarily, in agreement with similar analyses on other topics. To exclude inherent positive bias from case reports and small series, only articles reporting on 10 patients or more were selected for analysis. Paediatric series or mixed series without separate statistical analysis for subgroups were not evaluated. As mortality and morbidity rates might be derived from the resulting degrees of certainty (table 1).

In this paper, we provide the first evidence based review of the contemporary surgical treatment of chronic subdural haematoma.
Bender articles, reviewed met the criteria for class I evidence. Six
value of < 0.05 was considered significant.
that were suitable for evaluation.
RESULTS
after surgery (grade 0 or grade 1 in the Markwalder
cated the percentage of patients who reached full autonomy
be a measure of the safety of a procedure. The cure rate indi-
mation on morbidity and mortality, or provided the raw data
bidity and mortality were determined at the time of discharge
defined, in general, by clinical and radiological findings. Mor-
bidity and mortality were determined at the time of discharge
and at the time of last follow up. For comparison (figs 1–3),
were made.
Statistics
For statistical analysis we used Sigma Stat, version 2.03 (SPSS Inc). Patient data of corresponding treatment groups from
different publications were summarised and statistically com-
pared using the \(\chi^2 \) test. In all circumstances a probability (p)
value of < 0.05 was considered significant.

RESULTS
Medline search and review of reference lists yielded 48 articles
that were suitable for evaluation. None of the articles
reviewed met the criteria for class 1 evidence. Six articles, of which four were concerned with the question of whether drainage systems should be used, met
criteria for class II evidence. The majority of publications met
criteria for class III evidence. On the basis of this classification
and weighting according to evidence based criteria, the
following summarising statements concerning surgical ap-
proach, irrigation, drainage, and treatment of recurrences
were made.

Evidential summary of results
Surgical approach
Surgical approaches are restricted to the three principal
techniques with very few exceptions: twist drill cranios-
tomy; \(^6\) \(^7\) Burr hole craniostomy; \(^4\) \(^5\) \(^6\) \(^11\); and craniotomy.
Combining each approach with the use of intraoperative
irrigation or the use of drainage provides a variety of
treatment options (table 2). Few other technical variants were
described. Aoki reported filling the subdural space with 100%
oxygen after haematoma evacuation,\(^6\) while Kitakami and
colleagues used carbon dioxide.\(^6\) Recurrent chronic subdural
haematoma was successfully treated endoscopically through a
small burr hole by Hellwig \(^et al.\)\(^15\) A different approach was
presented by Probst, who demonstrated the benefit of
subduro-peritoneal shunting of chronic subdural haemat-
omas in the elderly.\(^6\)
Overall, there was no significant difference in mortality
between the three techniques. Figure 1 summarises mortality,
morbidity, and cure and recurrence rates for the three principal
techniques. Morbidity was significantly higher in the
craniotomy series (12.3%) than with twist drill cranios-
tomy (3%) or burr hole craniostomy (3.8%). Differences in cure rates
did not reach statistical significance. Both burr hole craniost-
tomy and craniotomy had lower recurrence rates than twist
drill cranioistomy (\(p < 0.001\)).

Table 1 Overview of evidence based criteria

<table>
<thead>
<tr>
<th>Classes of evidence</th>
<th>Strength of recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class I: Evidence provided by one or more well designed randomised controlled clinical studies.</td>
<td>Type A: Strong recommendation, based on class I evidence or overwhelming class II evidence when circumstances preclude randomised clinical trials.</td>
</tr>
<tr>
<td>Class II: Evidence provided by one or more well designed clinical studies such as prospective open, case-control studies, etc.</td>
<td>Type B: Recommendation based on class II evidence.</td>
</tr>
<tr>
<td>Class III: Evidence provided by expert opinion, non-randomised historical controls, or case reports of one or more patients.</td>
<td>Type C: Recommendation based on strong consensus of class III evidence.</td>
</tr>
</tbody>
</table>

Classes of evidences and strength of recommendations adopted from the guidelines of the American Academy of Neurology.\(^7\)

Table 2 Overview of contemporary neurosurgical treatment options for chronic subdural haematoma of the elderly

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Supplementary procedures</th>
<th>No of studies (refs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Craniotomy</td>
<td>Irrigation</td>
<td>Drainage</td>
</tr>
<tr>
<td>Craniotomy</td>
<td>No irrigation</td>
<td>No drainage</td>
</tr>
<tr>
<td>Burr hole</td>
<td>No irrigation</td>
<td>No drainage</td>
</tr>
<tr>
<td>Burr hole</td>
<td>Irrigation</td>
<td>No drainage</td>
</tr>
<tr>
<td>Burr hole</td>
<td>No irrigation</td>
<td>Drainage</td>
</tr>
<tr>
<td>Burr hole</td>
<td>Irrigation</td>
<td>Drainage</td>
</tr>
<tr>
<td>Burr hole</td>
<td>Drainage, continuous inflow and outflow irrigation</td>
<td>2 (24, 40)</td>
</tr>
<tr>
<td>Twist drill</td>
<td>No irrigation</td>
<td>No drainage</td>
</tr>
<tr>
<td>Twist drill</td>
<td>No irrigation</td>
<td>Drainage</td>
</tr>
<tr>
<td>Burr hole + CO(_2)</td>
<td></td>
<td>1 (26)</td>
</tr>
<tr>
<td>Twist drill + O(_2)</td>
<td></td>
<td>1 (13)</td>
</tr>
<tr>
<td>Endoscopy</td>
<td></td>
<td>1 (23)</td>
</tr>
<tr>
<td>Subduro-peritoneal shunt</td>
<td></td>
<td>1 (59)</td>
</tr>
</tbody>
</table>
Twenty publications contained detailed data on the treatment of recurrences after burr hole craniostomy in 229 patients. Four papers on the use of drainage met the criteria of class II evidence. Markwalder and Seller compared a prospective study on burr hole craniostomy without closed system drainage: the results did not show significant differences in final outcome compared with Markwalder’s previous study using a drain, but patients without drainage fared worse early after surgery. Wakai et al. had significantly fewer recurrences with drainage (5% vs 33%). In another study, the influence of the catheter position on the recurrence rate after burr hole craniostomy was analysed. Results were better when the tip of the drain was in a frontal position (5% recurrences) than in a temporal (33% recurrences), occipital (36% recurrences), or parietal position (38% recurrences). Recently, Kwon et al. correlated postoperative drainage volume with the recurrence rate. When the total drainage volume was below 200 ml, the recurrence rate increased from 0% to 6.4%. This difference was highly significant. The use of a drain did not alter morbidity, mortality, or the cure rate in any of the publications reviewed.

We did not find any study comparing twist drill craniostomy with and without drainage. Figure 2 summarises the accumulated data from six publications that provided complete statistical data on 451 patients treated by twist drill craniostomy.

Figure 1 Comparison between the three principal surgical techniques for treatment of chronic subdural haematoma. Mortality, morbidity, cure rate, and recurrence rate are compared for twist drill craniostomy (TDC), burr hole craniostomy (BHC), and craniotomy. The grey columns show the relative percentage of summarised data on the corresponding treatment groups from different publications. The legends in the columns show absolute numbers, the range of relative values, and the number of studies which provided statistical data, with their classes of evidence.

Two of nine class III evidence publications on craniostomy reported comparison with another principal technique. Schulz and colleagues evaluated the results of burr hole craniostomy (n = 30) vs craniotomy (n = 35). They found markedly fewer complications in the burr hole craniostomy group (3%) than in the craniotomy group (34%), while mortality and recurrence rates did not differ significantly. Hamilton and colleagues compared four different treatment options within the framework of a retrospective analysis. The four groups included burr hole craniostomy with drainage (n = 14) and without drainage (n = 29), and craniotomy with drainage (n = 29) and without drainage (n = 20). Results were comparable for all four groups.

Only one of seven publications compared twist drill craniostomy with another principal technique. Smely et al. compared a prospective series of chronic subdural haematoma patients (n = 33) undergoing twist drill craniostomy with a historical control series of burr hole craniotomies (n = 33). Twist drill craniostomy significantly surpassed the results of the burr hole technique in lowering morbidity (0% vs 18%), recurrence rate (18% vs 39%), and duration of hospital stay (4.9 vs 9.6 days). The recurrence rate of 39% in the burr hole group, however, is the highest in all published reports. The recurrence rate of 18% in the twist drill group is also above average for burr hole craniostomy series (12.1%) or craniotomy series (10.8%).

Irrigation

Three class III evidence publications provide data allowing direct comparison of burr hole craniostomy with and without intraoperative irrigation. Morbidity, mortality, and cure rates were similar between groups in each publication. Suzuki and associates reported a recurrence rate of 3.4% for the group without irrigation, and 3% for the group with irrigation. The difference did not reach significance. In the series by Matsumoto et al. eight of 121 patients had no intraoperative irrigation. There were no significant differences in the recurrence rates. In Kuroki’s series, the recurrence rate was 3.6% without irrigation and 13.3% with irrigation. This difference did not, however, reach significance.

Two publications report on the use of continuous inflow and outflow irrigation after surgical decompression of chronic subdural haematomas. Ram et al. found fewer recurrences in their postoperative irrigation group than in their control group (1/19 vs 4/18) (class II evidence). Owing to the small number of recurrences, however, the difference did not reach significance. Similar results were reported by Hennig and Kloster, who retrospectively compared four different variables (class III evidence): burr hole craniostomy with continuous inflow and outflow drainage (group 1); burr hole craniostomy with intraoperative irrigation and postoperative closed system drainage (group 2); burr hole craniostomy with intraoperative irrigation only (group 3); and craniotomy (group 4). The recurrence rate of 2.6% in group 1 was significantly lower than those in the other groups: 29.4% in group 2, 39.5% in group 3, and 44.4% in group 4. Continuous irrigation did not result in additional complications.

Few studies have considered the use of intraoperative irrigation in twist drill craniostomy. Aoki found a significant reduction in the recurrence rate (from 29.2% to 6.7%) using intraoperative irrigation in twist drill craniostomy (class III evidence). The use of irrigation had no impact on morbidity or mortality.

Drainage

Four papers on the use of drainage met the criteria of class II evidence. Markwalder and Seller discontinued a prospective study on burr hole craniostomy without closed system drainage: the results did not show significant differences in final outcome compared with Markwalder’s previous study using a drain, but patients without drainage fared worse early after surgery. Wakai et al. had significantly fewer recurrences with drainage (5% vs 33%). In another study, the influence of the catheter position on the recurrence rate after burr hole craniostomy was analysed. Results were better when the tip of the drain was in a frontal position (5% recurrences) than in a temporal (33% recurrences), occipital (36% recurrences), or parietal position (38% recurrences). Recently, Kwon et al. correlated postoperative drainage volume with the recurrence rate. When the total drainage volume was below 200 ml, the recurrence rate increased from 0% to 6.4%. This difference was highly significant. The use of a drain did not alter morbidity, mortality, or the cure rate in any of the publications reviewed.

We did not find any study comparing twist drill craniostomy with and without drainage. Figure 2 summarises the accumulated data from six publications that provided complete statistical data on 451 patients treated by twist drill craniostomy.

Treatment of recurrences

The recurrence rate of 18% in the twist drill group is also above average for burr hole craniostomy series (12.1%) or craniotomy series (10.8%).

Irrigation

Three class III evidence publications provide data allowing direct comparison of burr hole craniostomy with and without intraoperative irrigation. Morbidity, mortality, and cure rates were similar between groups in each publication. Suzuki and associates reported a recurrence rate of 3.4% for the group without irrigation, and 3% for the group with irrigation. The difference did not reach significance. In the series by Matsumoto et al. eight of 121 patients had no intraoperative irrigation. There were no significant differences in the recurrence rates. In Kuroki’s series, the recurrence rate was 3.6% without irrigation and 13.3% with irrigation. This difference did not, however, reach significance.

Two publications report on the use of continuous inflow and outflow irrigation after surgical decompression of chronic subdural haematomas. Ram et al. found fewer recurrences in their postoperative irrigation group than in their control group (1/19 vs 4/18) (class II evidence). Owing to the small number of recurrences, however, the difference did not reach significance. Similar results were reported by Hennig and Kloster, who retrospectively compared four different variables (class III evidence): burr hole craniostomy with continuous inflow and outflow drainage (group 1); burr hole craniostomy with intraoperative irrigation and postoperative closed system drainage (group 2); burr hole craniostomy with intraoperative irrigation only (group 3); and craniotomy (group 4). The recurrence rate of 2.6% in group 1 was significantly lower than those in the other groups: 29.4% in group 2, 39.5% in group 3, and 44.4% in group 4. Continuous irrigation did not result in additional complications.

Few studies have considered the use of intraoperative irrigation in twist drill craniostomy. Aoki found a significant reduction in the recurrence rate (from 29.2% to 6.7%) using intraoperative irrigation in twist drill craniostomy (class III evidence). The use of irrigation had no impact on morbidity or mortality.

The recurrence rate of 18% in the twist drill group is also above average for burr hole craniostomy series (12.1%) or craniotomy series (10.8%).
same procedure as previously, 32 (14%) underwent craniotomy, and three (1%) died.

Data on 151 patients who suffered recurrences after twist drill craniostomy were available from seven publications.

One hundred and six patients (70%) were successfully treated by the same approach in a second or third operation, while in 35 patients (24%), burr hole craniostomy was considered more adequate for reoperation, and in 10 (6%) craniotomy was thought to be the most useful procedure.

No data were available on treatment of recurrences after craniotomy.

Odds ratios of the summary data
Analysis of the odds ratios and 95% confidence intervals of the summary data presented in fig 1 and 2 is shown in table 3. The results of this analysis specify the relative risks of the different therapeutic techniques and options.

Evidentiary evaluation of results
Surgical approach
Type A or B recommendations: evaluation of the data does not allow any type A or B recommendations.

Type C recommendations
• Twist drill craniostomy and burr hole craniostomy are the safest procedures.
• Burr hole craniostomy and craniotomy are the most effective procedures.
• Burr hole craniostomy has the best cure to complication ratio.

Irrigation
Type A or B recommendations
Evaluation of data does not allow any type A or B recommendations.

Type C recommendations
• Irrigation lowers the risk of recurrence in twist drill craniostomy.
• Irrigation does not increase the risk of infection.

Drainage
Type A recommendations
Evaluation of data does not allow any type A recommendations.

Type B recommendations
• Drainage reduces the risk of recurrence in burr hole craniostomy.
• Frontal position of the drain reduces the risk of recurrence.

Type C recommendations
• Drainage reduces the risk of recurrence in twist drill craniostomy.
• The use of a drain does not increase the risk of infection.

Treatment of recurrences
Type A or B recommendations
Evaluation of data does not allow any type A or B recommendations.

Type C recommendations
• Burr hole craniostomy is more effective in treating recurrent haematoma than twist drill craniostomy.
• Craniotomy should be considered as the treatment of last choice.

DISCUSSION
The conclusions of our analysis differ from those of Markwalder’s comprehensive review published in 1981 in several ways. At that time, neurosurgical opinion on the treatment of chronic subdural haematoma was still influenced by the previous concept that this was a possibly lethal disorder. A large craniotomy with capsulectomy was a common operation. Markwalder’s review on chronic subdural haematoma was an important step in minimising the invasiveness of the surgical treatment. The publications cited in our present review give clear evidence of this development. Nevertheless, the extent of surgery necessary for adequate treatment of chronic subdural haematoma is still a matter of debate. Up to now there have been no prospective randomised studies to determine which surgical approach is most appropriate. As has been shown,

<table>
<thead>
<tr>
<th>Table 3</th>
<th>Odds ratios and 95% confidence intervals of summary data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mortality</td>
</tr>
<tr>
<td>TDC v BHC</td>
<td>1.0</td>
</tr>
<tr>
<td>Craniotomy v BHC</td>
<td>1.7</td>
</tr>
<tr>
<td>Craniotomy v TDC</td>
<td>1.6</td>
</tr>
<tr>
<td>TDC+drain v TDC</td>
<td>1.9</td>
</tr>
</tbody>
</table>

Summary data are presented in detail in figs 1 and 2.
contemporary treatment options range from simple twist drill craniostomy without drainage to large craniotomies with marsupialisation of haematoma membranes.

Burr hole craniostomy, which had been occupied by the haematoma. Nakaguchi and colleagues thought that the lower risk of recurrence when placing the tip of a drain in the frontal convexity was due to the absence of any studies providing class I evidence and the paucity of data.

When we consider recurrence rate as a measure of the efficacy of treatment for the underlying process, a large decompensation with its low recurrence rate appears to be the most rational approach. The recurrence rate of burr hole craniostomy, however, comes close to that of craniotomy. Whereas it is the goal of craniotomy, in general, to remove the haematoma and its membranes, burr hole craniostomy merely aims to release the haematoma fluid. In other words, removal of the haematoma membranes does not necessarily decrease the risk of recurrence. Therefore, it may be speculated that the haematoma itself is the promoter for its chronicity, and removal of the haematoma fluid should suffice as the primary goal of surgery. This hypothesis is supported by recent laboratory studies showing that the haematoma fluid contains large concentrations of vasoactive cytokines.

The intention of irrigation is to remove the haematoma completely or at least to dilute its contents. Clinical data support the beneficial effect of intraoperative irrigation when used in conjunction with twist drill craniostomy. As summarised above, the evidence for the benefit of irrigation in burr hole craniostomy is less strong. Continuous postoperative irrigation may be useful to reduce recurrences. The available data do not support the assumption that the use of irrigation increases the risk of infection.

Reurrences may be treated by repeated twist drill craniostomy or by burr hole craniostomy. Here again, burr hole craniostomy appears to be superior to twist drill craniostomy, considering that about one third of recurrent haematomas were thought not to be suited for repeat twist drill craniostomy, while only one seventh of recurrent haematomas in patients who underwent burr hole craniostomy needed more invasive surgery.

The most convincing data on the treatment of chronic subdural haematoma refer to the use of a drain in burr hole craniostomy. The four class II evidence publications highlight different aspects of drainage systems. Notably, these data allow the only type B recommendations for chronic subdural haematoma surgery. One of the most remarkable findings is that low drainage volumes increase the risk of recurrence of the haematoma. Drainage appears also to reduce the risk of recurrence in conjunction with twist drill craniostomy.

Chronic subdural haematoma develops over a period of more than two weeks. During this period, about 90 ml of haematoma fluid on average have to be buffered by the cranial reserve capacity without a detrimental rise in intracranial pressure. Postoperative drainage for several days might be useful to support re-expansion of the brain into the space which had been occupied by the haematoma. Nakaguchi and colleagues thought that the lower risk of recurrence when placing the tip of a drain in the frontal convexity was due to the removal of subdural air. Subdural air had earlier been identified as a risk factor of postoperative recurrence. It remains unclear, however, whether subdural air is the cause of postoperative recurrence or whether it is a sign indicating inadequate expansion of the brain.

We think that our analysis presents a representative review of the contemporary standards of treatment of chronic subdural haematoma. As with other analyses on topics such as unruptured aneurysms or Parkinson’s disease, however, there are several methodological problems inherent in such types of systematic review. Publication bias is related to the arbitrary selection of language and by primarily selecting manuscripts from a database such as Medline, yielding papers that are more likely to report on positive results. Furthermore, the lack of any studies providing class I evidence and the paucity of studies providing class II evidence produces lower quality data and precludes the application of statistical procedures for meta-analysis.

The presently available data do not allow us to recommend “standard treatments” or “guidelines” for chronic subdural haematoma surgery. Furthermore, there is no information so far on whether one approach is superior to another with regard to the stage of chronicity of the haematoma. It is obvious that the least invasive treatment option—that is, twist drill craniostomy without irrigation or postoperative drainage—can provide a cure in certain patients, while others

Figure 3 Cumulative summary of data on treatment of chronic subdural haematoma within epochs of five years. The analysis shows stable rates for mortality, morbidity, and cure rate as expressed by summarised mean values from papers published between 1981 and 2001.
need a more invasive approach such as craniotomy. It will be a task for the future to identify predictive factors that will enable one to tailor the surgical approach for the individual patient. Finally, a cumulative summary of data on the treatment of chronic subdural haematoma published within epochs of five years suggests that variations in the principal surgical techniques have not substantially improved the outcome over the past 20 years (fig 3). There is a need for properly conducted prospective trials on surgery for chronic subdural haematoma. It might also be worthwhile seeking alternative strategies in the treatment of this condition.

Conclusions
This evidence based review of contemporary surgical techniques for the treatment of chronic subdural haematoma identified twist drill craniotomy and burr hole craniostomy as the safest methods. Burr hole craniostomy has the best cure to complication ratio and is superior to twist drill craniotomy in the treatment of recurrences. Craniotomy and burr hole craniostomy have the lowest recurrence rates. The use of closed system drainage reduces the risk of recurrence without additional risk of complications.

Authors' affiliations
R Weigel, P Schmiedek, J K Krauss, Department of Neurosurgery, University Hospital, Klinikum Mannheim, Mannheim, Germany

Competing interests: none declared

REFERENCES

We are delighted to announce this forthcoming conference in Auckland, New Zealand.

3rd Asia Pacific Forum on Quality Improvement in Health Care

3-5 September 2003, Auckland, New Zealand

The themes of the 3rd Asia Pacific Forum on Quality Improvement in Health Care are:

- Agenda for quality: Improving equity in health care delivery
- Improving safety
- Leadership for improvement
- Measuring quality and benchmarking for change
- Evidence based knowledge and education for quality improvement
- Improving health systems
- Patient/consumer centred quality improvement

Presented to you by the BMJ Publishing Group (London, UK) and Institute for Healthcare Improvement (Boston, USA), supported by the New Zealand Ministry of Health, ACC, and Standards New Zealand.

For more information about the Forum or to register contact: quality@bma.org.uk or go to: www.quality.bmjpg.com