MRI lesion volume heterogeneity in primary progressive MS in relation with axonal damage and brain atrophy

D Pelletier, S J Nelson, J Oh, J P Antel, M Kita, S S Zamvil, D E Goodkin

Methods: 34 PP MS patients were divided into two categories: low (<3 cm³, n = 18) or high (≥3 cm³, n = 16) lesion volume (T2LL). An Index of Brain Atrophy (IBA) was calculated and HMRS metabolite ratios were derived from a central brain area centred at the corpus callosum.

Results: Patient groups did not differ with regard to clinical characteristics and showed lower mean IBA and mean N-acetylaspartate:creatinine (NAA:Cr) ratios compared to healthy controls.

Conclusion: PP patients with low and high brain T2LL have detectable brain atrophy and NAA:Cr reduction compared to healthy controls. In PP MS, T2 lesions alone are insufficient to explain the presence of brain atrophy and decrease in NAA:Cr.

Primary progressive (PP) multiple sclerosis (MS) accounts for about 10% of patients with MS. They experience a progressive worsening from onset, fewer brain magnetic resonance imaging (MRI) lesions on conventional imaging, and a lesser degree of inflammation found on histopathological reports compared to relapsing remitting (RR) and secondary progressive (SP) MS. Recent immunology studies in PP have found a positive correlation between brain T2 weighted lesion volume (T2LL), lymphocyte migration, and number of interferon γ secreting cells using ex vivo peripheral blood T lymphocytes. Whether those two brain lesions have a significant impact on brain atrophy and axonal brain injury in PP remains to be defined. Histopathological studies have reported axonal injury within and distant from MS lesions, referred to as normal appearing white matter (NAWM). New MRI metrics could improve the lack of specificity—that is, oedema, inflammation, demyelination, gliosis, and axonal loss, and poor correlation of T2 weighted lesions and disability offered by conventional imaging. Proton magnetic resonance spectroscopy (HMRS) imaging reveals the extent of axonal involvement through N-acetylaspartate (NAA), an amino acid found mainly within mature neurones and axons. Using single voxel HMRS, decreases in NAA and NAA:Cr have been reported in the NAWM of PP patients, but the relation to T2LL was not addressed. Several groups have proposed brain atrophy as an MRI marker for destructive tissue changes taking place in MS. As no reports have focused exclusively on brain atrophy and HMRS imaging in PP MS, we are investigating whether axonal injury is a function of T2LL.

METHODS

Subjects
Baseline assessments of 34 untreated PP patients were derived from a larger ongoing multicentre PP phase II placebo controlled clinical trial using intravenous mitoxantrone. Only randomised patients at the UCSF MS Center were included. All PP patients met the following criteria: (1) abnormal cerebrospinal fluid (CSF) findings as defined by increased IgG index and/or presence of two or more oligoclonal bands not present in the serum; (2) a progressive course from onset for more than 12 months without acute exacerbation; and (3) no disease modifying or immunosuppressive therapies three months prior to the baseline scan. The Expanded Disability Status Score (EDSS) was performed the day of the MRI. Twenty five healthy age matched subjects were imaged. Informed consent was obtained for all subjects in accordance with the UCSF Ethics Committee.

MRI acquisition and lesion load post-processing
A 1.5T GE scanner was used to obtain proton density (PD)/T2 weighted (T2) images. Contiguous 3 mm axial PD/T2 slices were acquired using TR/TE1/TE2 = 2500/20/80 ms with matrix size of 192×256×64 (FOV 180×240×144 mm³). T1 weighted images (spoiled gradient echo) were acquired (TR/TE = 27/6 ms, flip angle = 40°) as high resolution 1.5 mm contiguous axial slices with matrix size of 192×256×124 (FOV×240×186 mm³). Lesions on PD images were drawn based on a semiautomated threshold method using software that allows simultaneous access to PD/T2/T1 images. PP patients were divided into two groups based only on their volumetric quantification of T2LL: high (>3 cm³) or low lesion volume (<3 cm³). This cut off was chosen in concordance with our previous work looking at heterogeneity of T lymphocyte functions in PP MS.

Brain atrophy measurement
An index of brain atrophy (IBA) was measured using in-house software based on a similar technique previously reported. Supratentorial brain and CSF masks are created to remove skin, skull, and subcutaneous lipids. Both masks are used to calculate IBA as the ratio of (supratentorial brain parenchyma/supratentorial parenchyma + CSF) × 100. Reproducibility was determined by calculating the IBA of 10 healthy controls during two or three separate MRI sessions <15 days apart. Scan-rescan coefficients of variation (COV) (100% × standard deviation/mean) were calculated between repeated measurements. Mean COV was 1.0%, representing about 99% reproducibility.

HMRS imaging
Brain HMRS imaging was obtained immediately following T1/T2 weighted images. Twenty eight subjects (18 PP patients, 10 healthy age matched controls) were acquired using TR/TE1/TE2 = 2500/20/80 ms with matrix size of 192×256×64 (FOV 180×240×144 mm³). T1 weighted images (spoiled gradient echo) were acquired (TR/TE = 27/6 ms, flip angle = 40°) as high resolution 1.5 mm contiguous axial slices with matrix size of 192×256×124 (FOV×240×186 mm³). Lesions on PD images were drawn based on a semiautomated threshold method using software that allows simultaneous access to PD/T2/T1 images. PP patients were divided into two groups based only on their volumetric quantification of T2LL: high (>3 cm³) or low lesion volume (<3 cm³). This cut off was chosen in concordance with our previous work looking at heterogeneity of T lymphocyte functions in PP MS.

Abbreviations: CB, central brain; COV, coefficient of variation; Cr, creatinine; CSG, cerebrospinal fluid; EDSS, Expanded Disability Status Score; HMRS, proton magnetic resonance spectroscopy; IBA, Index of Brain Atrophy; LL, lesion load; MRI, magnetic resonance imaging; MS, multiple sclerosis; NAA, N-acetylaspartate; NAWM, normal appearing white matter; PD, proton density; PP, primary progressive; ROI, region of interest; RR, relapsing remitting; SP, secondary progressive
10 healthy controls) underwent a three dimensional echo planar spectroscopic imaging (3D-EPSI) sequence recently described, operating at TE = 144 ms, TR = 2000, FOV of 24×24×16 cm covering the entire supratentorial brain. From this large area a smaller central brain (CB) region of interest (ROI) measuring 9×9×2 cm (160 cm³) centred at the middle of the corpus callosum was delimited. Fifteen subjects (six PP patients, nine healthy controls) underwent a two dimensional chemical shifting imaging (2D-CSI) GE sequence operating at TR/TE = 1000/144 ms (same TE as 3D-EPSI), 24×24×1 phase encoding matrix (FOV of 24×24×1.5 cm) and a press box positioned at CB, covering a slab of approximately 160 cm³ centred also at the middle of the corpus callosum. NAA:Cr ratios were estimated from voxels within the CB ROI using a linear regression analysis between height intensity of NAA over Cr (NAA:Cr).

Statistical analysis

Group comparisons were assessed using the Wilcoxon test to compare age, EDSS, disease duration, NAA:Cr, and IBA. Spearman’s correlation analysis was performed to compare age, EDSS, disease duration, NAA:Cr, and IBA. Group comparisons were assessed using the Wilcoxon test to compare T2LL, IBA, and NAA:Cr. In this study, a value of p < 0.05 is regarded as significant.

RESULTS

Table 1 presents clinical and MRI characteristics of all PP patients and controls. Female: male gender ratios for all PP patients (19/15) and controls (14/11) were similar: 1.267 and 1.272 respectively. Clinical characteristics between high and low LL patient groups, the NAA:Cr metric did not reach statistical significance (p = 0.1) but the brain atrophy did (p = 0.03).

Finally, Spearman’s correlation coefficients for all PP patients were found to be weak and statistically non-significant between T2LL and NAA:Cr (r = −0.35, p = 0.1), T2LL and IBA (r = −0.36, p = 0.1), and NAA:Cr and IBA (r = 0.36, p = 0.1).

DISCUSSION

We have used a highly reproducible automated global brain atrophy measurement in conjunction with NAA:Cr metabolite ratios from CB to evaluate PP patients. Patients were divided into two separate groups based on their T2LL. Both patient groups had significant reduction of NAA:Cr and brain atrophy compared to controls. We also found no significant correlations between IBA and T2LL and between NAA:Cr and T2LL. The presence of brain MR visible T2 changes seems insufficient to explain the overall pathological process leading to brain atrophy and axonal injury. We speculate that PP MS may represent a more diffuse and global axonopathy. The formation and presence of focal MS lesions encompassing...
transected axons seem to have only an added effect to this axonal pathological process. This does not diminish the importance of such lesions, but their contribution to the development of more extensive brain tissue injury is perhaps marginal.

NAA:Cr ratio in CB has been proposed as an index of axonal damage and/or dysfunction for more than a decade as creatine concentration was found to be relatively constant in both lesions and NAWM of MS patients, although others have detected increased creatine. Several studies have found reduced NAA:Cr and concentration of NAA in MS lesions, deteceted increased creatine.

few investigators evaluated PP specifically.

D Pelletier, M Kita, S S Zamvil, D E Goodkin, S J Nelson, J Oh, Department of Radiology, University of California at San Francisco

Competing interests: DE Goodkin was an employee of Immunex Corporation at the time of submission of this manuscript

Received 15 May 2002

In revised form 12 November 2002

Accepted 13 December 2002

REFERENCES


