Visual disturbances representing occipital lobe epilepsy in patients with cerebral calcifications and coeliac disease: a case series

M Pfaender, W J D’Souza, N Trost, L Litewka, M Paine, M Cook

METHODS
We describe three patients who presented to an Australian neurology outpatient clinic with seizures characterised by visual disturbances. All were of Anglo Celtic ancestry (second or third generation offspring of immigrants from the British Isles). The diagnosis of CD was based on villous atrophy on duodenal biopsy and raised anti-gliadin and/or anti-endomysial IgA and IgG antibodies.

CASE REPORT

Case 1
A 41 year old woman presented with a history of visual disturbances, consisting of blurring of vision and seeing coloured dots. These phenomena were intermittent, lasting from minutes to one hour, and were occasionally accompanied by a headache. The patient felt she was fully aware during these episodes. On occasion, the visual disturbances would be immediately followed by generalised convulsions. The seizures started at age 2 and continued until age 12. Initially treated with phenobarbital, she was seizure free for many years. She also described mild gastrointestinal complaints of recurrent epigastric pain and intermittent diarrhea. A detailed neurological and ophthalmological examination was unremarkable. Computed tomography (CT) of her brain revealed serpentine calcification of the parietal-occipital regions bilaterally (fig 1). Magnetic resonance imaging (MRI) showed no additional abnormalities. Routine electroencephalography (EEG) was normal. Blood test screening for CD showed positive anti-endomysial IgA antibodies. The diagnosis of CD was confirmed by partial villous atrophy on small bowel biopsy. The patient was started on valproate and a gluten free diet. Three months later she continued to have seizures, although the overall seizure frequency had improved.

Case 2
This 43 year old man presented with a history of seizures since age 5. Seizures started with blurred vision, a hot feeling, and a visual hallucination, which consisted of a complex scene. He had the sensation that his eyes and head would flick to the right, accompanied by repetitive movements of one hand or foot. His father confirmed that awareness was briefly lost during these episodes. Headache was a prominent complaint of recurrent epigastric pain and intermittent diarrhea. Numerous anticonvulsants were tried without much effect. By the age of 20, the seizures had largely abated. About five years ago the patient was diagnosed with CD on clinical, biochemical, and histological findings and was started on a gluten free diet.

Abbreviations: CD, coeliac disease; CT, computed tomography; EEG, electroencephalography; MRI, magnetic resonance imaging.
blobs described by one patient, and ictal blurred vision
tion of elementary hallucinations, such as coloured dots or
elementary and complex visual hallucinations. The correla-
hood and adolescence manifested by visual symptoms and
CD.36 Our patients developed seizures in their early child-
occipital lobe may be characteristic of the epilepsy related to
epileptic patients has been found.12 13 ''Episodes of blindness''
explained attacks of unconsciousness'' in five patients with
unfamiliar people. Sleep deprivation appeared to trigger these
episodes. She also had several generalised tonic clonic
seizures from sleep. Neurological examination was unremark-\nsymptoms related to her CD apart from the inability to gain
weight. The visual disturbances started at the age of 23 and
consisted of loss of focus, obscured vision for a few seconds,
followed by visual hallucinations, which consisted of seeing
unfamiliar people. Sleep deprivation appeared to trigger these
episodes. She also had several generalised tonic clonic
seizures from sleep. Neurological examination was unremark-
able. CT scan showed occipital calcifications bilaterally. EEG
was normal. She was on phenytoin for many years but stopped
the medication after being free of the major seizures for some
time. However, when anticonvulsants were ceased the visual
disturbances became more frequent. She was started on
valproate and continued with her gluten free diet. Since then,
the visual disturbances have greatly decreased.

DISCUSSION

An association between epilepsy and CD has been recognised
since the 1960s, when Cooke and Smith described “un-
explained attacks of unconsciousness” in five patients with
CD.10 Since then, a higher prevalence of epilepsy among
patients with CD11 and an increased frequency of CD in
epileptic patients has been found.4–6 “Episodes of blindness”
were reported by Banerji and Hurwitz4 in a study of
neurological manifestations in adults with CD. Subsequent-
ly, others have proposed that paroxysmal visual
manifestation and ictal EEG discharges arising from the
occipital lobe may be characteristic of the epilepsy related to
CD.3 6 Our patients developed seizures in their early child-
hood and adolescence manifested by visual symptoms and
elementary and complex visual hallucinations. The correla-
tion of elementary hallucinations, such as coloured dots or
blobs described by one patient, and ictal blurred vision
reported by all patients with occipital seizure onset, has been
described.1 5 Although ictal EEG recordings were not made,
the visual disturbances closely preceded loss of awareness or
convulsions, and appear to be the initiating symptom of
seizure propagation, providing strong supporting evidence
that the seizures were arising from the occipital lobes.

All our patients had bilateral occipital calcifications,
epilepsy, and biopsy confirmed CD, similar to those described
in the young Mediterranean population series.1 3 4 6–8 17 The calcifications seen in these cases are typically bilateral,
corticosubcortical, and flocculonodular, without cerebral
atrophy. The calcifications resemble those found in Sturge-
Weber syndrome and in the past have led to a diagnosis of
Sturge-Weber syndrome without naevoid flammeus.10–15 Some
of these reported cases might be undiagnosed cases of CD. A high prevalence of CD was found in patients with epilepsy
and bilateral occipital calcifications. In two Italian studies of
epilepsy and cerebral calcifications of unknown origin, eight
of 16 and 24 of 31 patients had biopsy confirmed CD.5 7 14 In
contrast, the prevalence of bilateral occipital calcifications in
patients with epilepsy and CD is relatively low, ranging
between none of 16 and five of 12 in an Irish and Italian
study, respectively.5 11 Our case series, encountered outside
the Mediterranean population, further emphasises this
interesting syndromic association, and suggests that it may
not be an ethnically or geographically restricted finding.

A genetic predisposition has been suggested to play a role
in the pathogenesis.12 20 Nearly all patients with CD carry the
HLA-DQ2 (95%) or HLA-DQ8 (5%) haplotypes.19 Data from
Mantovani indicate that the HLA genotype and phenotype
predisposing to CD are the same as those predisposing to
epilepsy and bilateral occipital calcifications.20 It is conceiv-
able that in individuals with the same immunogenetic
background, additional genetic and environmental factors
are specifically related to the onset of CD induced dysfunction
of the occipital lobe. It has been proposed that calcifications
might be related to reduced central nervous folate concen-
trations, secondary to malabsorption and impairment of folic
acid transport across the blood–brain barrier.5 14 21 However,
the actual pathophysiology has not yet been determined. In
addition, folic acid deficiency is not always demonstrable in
subjects affected by epilepsy, cerebral calcifications, and
CD.12 24 The lack of a high prevalence of bilateral occipital
calcifications in patients with CD, even in those with a long
exposure to gluten, also seems to be contrary to the
hypothesis of a nutritional deficiency as a cause of the
calcifications. Another possibility is that the cerebral calcifi-
cations are caused by an autoimmune or immune complex
related endothelial inflammation.5 14 24 Further studies need to
be undertaken to clarify the pathophysiology of occipital
calcifications and epileptogenicity of the surrounding cortex.
The epilepsy associated with bilateral occipital calcification
can be difficult to treat.7 Some of these patients develop drug
resistant seizures.14 There is no correlation between the
severity of epilepsy and the age of seizure onset or extent of
cerebral calcifications.7 As noted in our patients, seizure
control was improved in some cases after the institution of a
 gluten free diet with folic acid supplements5 6; however,
others reported no effect.1 Several cases after the institution of
a gluten free diet he has approximately one simple–partial
seizure each month.

Case 3

This 57 year old woman with known CD since childhood
complained of episodes of visual disturbances. CD was
diagnosed on the basis of raised anti-gliadin antibodies and
villous atrophy on duodenal biopsy, but only recently had she
modified her diet. She currently denies the presence of
symptoms related to her CD apart from the inability to gain
weight. The visual disturbances started at the age of 23 and
consisted of loss of focus, obscured vision for a few seconds,
followed by visual hallucinations, which consisted of seeing
unfamiliar people. Sleep deprivation appeared to trigger these
episodes. She also had several generalised tonic clonic
seizures from sleep. Neurological examination was unremark-
able. CT scan showed occipital calcifications bilaterally. EEG
was normal. She was on phenytoin for many years but stopped
the medication after being free of the major seizures for some
time. However, when anticonvulsants were ceased the visual
disturbances became more frequent. She was started on
valproate and continued with her gluten free diet. Since then,
the visual disturbances have greatly decreased.

Figure 1 Computed tomography in case 1 revealing serpentine calcification of the parietal-occipital regions bilaterally.

Figure 1. Computed tomography in case 1 revealing serpentine calcification of the parietal-occipital regions bilaterally.
In summary, we described three adult patients with visual disturbances, bilateral occipital-parietal calcifications, and CD, who presented to an Australian neurology outpatient clinic, illustrating this described association outside the typical young Mediterranean population. Visual symptoms representing occipital lobe epilepsy and cerebral calcifications may be the first clue to the presence of otherwise asymptomatic CD. We conclude that patients with epilepsy who have seizures suggestive of occipital semiology and cerebral calcifications of unexplained aetiology should be carefully investigated for CD, even in the absence of gastrointestinal symptoms.

References