Delayed early morning turn “ON” in response to a single dose of levodopa in advanced Parkinson’s disease: pharmacokinetics should be considered

The pathophysiology underlying the fluctuations in response following oral levodopa therapy is complex and includes peripheral and central factors. The short half-life of levodopa, erratic gastrointestinal absorption, and competitive transport across the blood–brain barrier have been regarded as factors responsible for the fluctuating plasma and striatal concentrations of levodopa. Indeed, failure of an oral dose to produce an effect or delay in the onset of action have been associated with problems in absorption.

We studied the pharmacokinetics of levodopa in 19 patients with advanced Parkinson’s disease (12 men, seven women; period of evolution of illness more than 10 years) with and without a delayed response to the first drug dose in the morning (delayed early morning turn “ON”). The patients were selected according to the UK Brain Bank criteria; those who could not tolerate an assessment after 12 hours without taking their anti-parkinsonian medication were excluded. All patients signed an informed consent form before being included in the study.

Medication and food were withheld after midnight the night before the study day. All patients’ regular therapeutic first (morning) levodopa/carbidopa dose was between 125 mg and 250 mg. Therefore all patients received a single oral dose of levodopa/carbidopa (250/25 mg) at 9:00 am, to ensure that all had a response. A low protein breakfast was served three hours after drug administration.

Blood samples were collected every 20–30 min for six hours following drug administration. Plasma levodopa concentration was determined using high performance liquid chromatography (HPLC) with electrochemical detection as previously described. Peak plasma concentration (Cmax), the time elapsed to reach the Cmax area under the curve, half-life, clearance, and slope in the absorption phase (Kao) were determined using PK Solutions version 2 software (Summit, USA http://www.summitrk.com/).

Motor performance was evaluated using a tapping test on the more affected side. In this test, patients are requested to alternately tap two points separated by a distance of 30 cm with the fingers of the hand (of the most affected side) for one minute. In the present study, total tapping—that is, the number of times the patient is able to carry out the task, was recorded every 20 minutes during the first two hours and then every 30 minutes until the completion of the test. The Unified Parkinson’s Disease Rating Scale for motor examination (UPDRS-III) was applied prior to (baseline) and at the time of the “best on” after levodopa administration. Delayed early morning turn “ON” was defined as the condition in which the effect of levodopa in the tapping test (a 50% basal score improvement; maximal levodopa effect = 100%) appeared more than 40 minutes after the administration of the drug.

For all patients, the results are given as mean (SD) and Student’s t test (p<0.05) was used to determine the significance between the differences.

The UPDRS-III and tapping tests were used to verify the occurrence of the drug effect, thus allowing patients with and without delayed early morning turn “ON”, the latter were considered as those in whom a standard levodopa dose took more than 40 minutes to become effective. These patients showed a trend to have worse baseline and best ON scores than the patients without delayed early morning turn “ON”, although this trend was not statistically significant.

As shown in fig 1, a significant difference was found between the Cmax values of patients without delayed early morning turn “ON” (mean 3552 (SD 1208) ng/ml) and those of patients with delayed response (1146 (289) ng/ml). None of the other pharmacokinetic parameters showed statistically significant differences.

To obtain an adequate response in Parkinson’s disease the appropriate oral dose of levodopa is usually determined bearing in mind that worse symptoms may be treated with higher drug dosages or more frequent doses as long as side effects do not appear. This simplistic approach does not take into account the evolution of the disease, in which not only do the symptoms become more evident but also the treatment progressively loses its effectiveness. Indeed, patients with Parkinson’s disease, whose illness has evolved over several years and evidence motor fluctuations tend to show a delayed response to the first oral levodopa dose compared with patients with non-fluctuating motor symptoms. The mechanism of this phenomenon is still poorly understood.

While the present study, patients with delayed early morning turn “ON” had significantly lowered Cmax values. Even though we are unable to give a direct explanation for the molecular events underlying this finding, it is clear from our data that the pharmacokinetics of levodopa play an important role in the occurrence of delayed early morning turn “ON”.

Since all other pharmacokinetic parameters (including Kao), of the patients with and without delayed response showed no differences, one might consider that the rate of absorption is basically the same in both groups. In addition, it has been found that both subcutaneous administration of apomorphine and pyloric bypass with duodenal infusion of levodopa are useful because they reduce plasmatic variability and improving clinical response in patients with delayed early morning turn “ON” by increasing functional “ON” time with less dyskinesia and fluctuation. Therefore, we propose that altered gastric emptying but not the intestinal absorption rate might be linked to the delay in the clinical response observed. However, further studies are necessary to address this issue.

Slower progression of the neurodegenerative process and the loss of levodopa effect are usually associated with the degeneration of dopaminergic nerve terminals in the central nervous system (pharmacodynamic factor). The data presented here highlight the need to also consider pharmacokinetic factors when analysing the delayed early morning turn “ON”. Indeed, patients with Parkinson’s disease, whose illness has evolved over several years and evidence motor fluctuations tend to show a delayed response to the first oral levodopa dose compared with patients with non-fluctuating motor symptoms. The mechanism of this phenomenon is still poorly understood. In the present study, patients with delayed early morning turn “ON” had significantly lowered Cmax values. Even though we are unable to give a direct explanation for the molecular events underlying this finding, it is clear from our data that the pharmacokinetics of levodopa play an important role in the occurrence of delayed early morning turn “ON”.

Since all other pharmacokinetic parameters (including Kao), of the patients with and without delayed response showed no differences, one might consider that the rate of absorption is basically the same in both groups. In addition, it has been found that both subcutaneous administration of apomorphine and pyloric bypass with duodenal infusion of levodopa are useful because they reduce plasmatic variability and improving clinical response in patients with delayed early morning turn “ON” by increasing functional “ON” time with less dyskinesia and fluctuation. Therefore, we propose that altered gastric emptying but not the intestinal absorption rate might be linked to the delay in the clinical response observed. However, further studies are necessary to address this issue.

Slower progression of the neurodegenerative process and the loss of levodopa effect are usually associated with the degeneration of dopaminergic nerve terminals in the central nervous system (pharmacodynamic factor). The data presented here highlight the need to also consider pharmacokinetic factors when analysing the delayed early morning turn “ON”.

Figure 1 Pharmacokinetic curve after a single dose of levodopa. Data are shown as mean (SEM): filled circles, 12 patients with delayed early morning turn “ON”; open circles, seven patients without delayed early morning turn “ON”. *p<0.05.
morning turn “ON” condition and considering the best doses and regimen of drug administration in patients with advanced Parkinson’s disease.

Acknowledgement
The authors greatly appreciate the excellent technical assistance provided by Angélica Fierro.

P Chaná, C Kunzmann
Movement Disorders Unit, Service of Neurology and Neurosurgery, DIPRECA Hospital, Universidad de Santiago de Chile, Chile

M Reyes-Parada, P Sáez-Briones
Neurosciences Unit, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Chile

Correspondence to: Dr P Chaná, Universidad de Santiago de Chile, Bellasario Prats 1597B, Santiago, Chile; pedrochana@mi.cl
doi: 10.1136/jnnp.2003.034553

This study was financially supported by an educational grant from Laboratorio Chile to the Universidad de Santiago de Chile.

Competing interests: none declared

References

Lethal encephalopathy in a patient with isolated nervous system vasculitis
Vasculitic neuropathy can occur in patients with connective tissue diseases. On the other hand, non-systemic vasculitic neuropathy has been established as an independent clinical entity, and the risks for systemic spread and death are small.[1] In patients with this disorder, vasculitis is limited to the peripheral nervous system (PNS), and histological evaluation is essential for the definitive diagnosis. We encountered a patient with isolated nervous system vasculitis who developed lethal encephalopathy. He had a persistently high titre of anti-GM1 IgG antibody, which is occasionally detected in patients with chronic inflammatory demyelinating polyneuropathy (CIDP).

Case report
A 67 year old man had been under treatment for type 2 diabetes for 10 years. In September 1998, he was referred to our hospital because of weight loss and numbness of the lower limbs. He was mentally alert and had exophthalmos. Muscle weakness was prominent in the distal muscles of all four limbs. Sensation was disturbed with a “stocking and glove” distribution. Deep tendon reflexes were diminished in all four extremities.

Results of laboratory examination indicated diabetes mellitus and hyperthyroidism (haemoglobin A1c 6.8% (normal range 4.3–5.8); thyroid stimulating hormone <0.03 μIU/ml (normal range 0.2–3.2); free triiodothyronine 13.2 pg/ml (normal range 2.9–6.0); free thyroxine 7.65 ng/dl (normal range 0.78–2.10); antithyroglobulin antibody 3200 (normal <100); antithyroid microsomal antibody 26 000 (normal <100); antithyrotropin receptor antibody 16.1% (normal

Figure 1 (A–C) Brain MRI T2-weighted images. (A) On 11 May 2000 small high intensity signals in frontal white matter (arrow) were seen. (B) On 1 June 2000, a high intensity signal appeared in the right temporal cortex. (C) On 12 July 2000, the high intensity areas were increased in number and enlarged in the cerebral cortex and white matter. (D) Coronal section of autopsied brain showed multiple plaques in white matter and multiple haemorrhagic transformations in the cortex. (E) 1—Demyelination and axonal loss in cerebral white matter (Klüver–Barrera stain); 2—haemorrhagic transformation in the temporal cortex (H&E stain); 3—vasculitic occlusion of small epineural (arrow) and endoneurial vessel (arrowhead) in a peripheral nerve root (H&E stain); and 4—demyelination and axonal degeneration in a peripheral nerve root (toluidine blue stain). (F) Immunohistochemical staining for IgG, C3, and C4 in the temporal cortex and in a peripheral nerve root showed intense signals in the lumens of vessels. Bar, 100 μm.

www.jnnp.com
revealed intense signals for IgG, C3, and C4 (fig 1E(4)). Immunohistochemical study with inflammatory cell infiltration (fig 1E(3)) of small epineurial and endoneurial vessels lumbar plexus exhibited vasculitic occlusion. Peripheral nerve roots obtained from the (fig 1E(2)) and cerebellar hemisphere.

White matter (fig 1C). Despite repeated weighted image. In July 2000, the lesions were enhanced with Gd-DTPA on a T1-weighted sequence. In June 2000 showed large high intensity signals in the right frontal cortex and MRI in June 2000 showed large high intensity signals in the right frontal cortex and delayed MCVs. Brain magnetic resonance imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white matter on imaging (MRI) demonstrated slightly high intensity signals in frontal white mater...
onconeuronal antibodies. Serological testing for anti-ganglioside antibodies (Gangliocombi test; Buhlmann Laboratories) showed elevated titres for asialo-GM1 (4283 Buhlmann titre units (BTU); normal <1700), GM1 (2855 BTU; normal <1700) and GQ1b (4117 BTU; normal <1700). Magnetic resonance imaging (MRI) of the spinal cord depicted an extensive cervicothoracic myelopathy (fig 1A–D). On MR images of the brain, multiple dot-like cortical and subcortical lesions were delineated, predominantly located in the frontoparietal gray and white matter (fig 1E–G). Electrodiagnostic studies indicated a severe symmetrical demyelinating neuropathy with reduced motor conduction velocities (right peroneal nerve 12.8 m/s, right tibial nerve 16.0 m/s, and right median 44 m/s), prolonged distal latencies (right peroneal nerve 17.1 ms, right tibial nerve 14.5 ms, and right median 5.3 ms), and prolonged or absent F waves, with MUAP displaying temporal dispersion and diminished amplitudes, and with electromyographic signs of acute denervation. The sensory action potentials and conduction velocities were normal.

A whole body computed tomography scan, a salivary gland scintigraphy scan, and a lip biopsy were completely unremarkable. The patient was given 30 g of intravenous immunoglobulin for 5 consecutive days (total 150 g). By day 10 after the start of the immunoglobulin treatment, the patient could stand upright for several seconds with support. As there was no further improvement during the following 2 weeks, the therapy was increased and the patient was treated with a total of six plasma exchanges on alternate days. Five days after the final plasma exchange, the patient could make her first steps with a walker. Six weeks after the final plasma exchange, MRI of the brain and spinal cord showed dramatic regression of the T2 hyperintensities. On follow-up 1 month later, the patient could walk 250 metres with a walker. On examination, no gaze evoked nystagmus was detected. Arm strength was normal. Internal rotation of the hips, hip and knee flexors, and knee extensors were 4/5 on the right and 5/5 on the left; ankle flexors and extensors and toe dorsiflexors were 4/5 bilaterally. The knee reflexes were sluggish and the ankle reflexes absent. Six months later the patient was able to walk 1000 metres without walking aids. The neurological examination revealed brisk knee and ankle reflexes. The 1 year follow-up showed a patient with normal leg strength and mild ataxia on heel to toe gait.

The electrophysiological studies showed improvement of motor conduction velocities (right peroneal nerve 24.1 m/s, right tibial nerve 33.1 m/s, and right median 46.6 m/s) and distal latencies (right peroneal nerve 10.4 ms, right tibial nerve 9.5 ms, and right median 3.4 ms).

Discussion

Our patient presented an acute demyelinating disorder affecting the central and peripheral nervous system simultaneously. After exclusion of other causes, the central nervous system involvement resembled the clinical and radiological characteristics of ADEM with long segmental spinal cord lesion. The peripheral nervous system involvement displayed the clinical, electrodiagnostic, CSF,
Miller Fisher syndrome associated with Pasteurella multocida infection

Miller Fisher syndrome is characterised by ataxia, areflexia, and ophthalmoplegia and was first described by Charles Miller Fisher in 1956 as an unusual variant of acute idiopathic polyradiculoneuropathy. It may be associated with an antecedent illness and the syndrome is associated with a high titre of anti-GQ1b antibodies in approximately 90% of cases. Pasteurella multocida is a Gram negative bacterium, commonly found in the saliva of animals, particularly cats.

We present the case of a 70 year old lady who developed Miller Fisher syndrome with positive anti-GQ1b antibodies 11 days after P. multocida was cultured from a blood sample. Miller Fisher syndrome associated with P. multocida infection has not, to our knowledge, been described previously.

Case report
A 70 year old lady presented with a one day history of a painful left hip, fever, sweats, and lethargy following a bite from her pet cat on her left leg on the preceding day. She reported no other recent illnesses. She had had a total left hip replacement four years previously. On examination she was hypertensive and pyrexial with local tenderness of her left hip and decreased range of movement. She had puncture marks on her left shin from the cat bite with surrounding erythema tracking proximally to the groin. Initial blood cultures revealed heavy growth of P. multocida sensitive to penicillin. Intravenous benzylpenicillin (1.2 g four times daily) was administered.

The patient had a complete internal and external ophthalmoplegia. A titre of 1:1600 using enzyme-linked immunosorbent assay (ELISA). The testing laboratory considered a titre of 4 as significant with currently no cut-off titre for anti-GQ1b antibodies.

A sample of blood taken seven days after the onset of neurological symptoms was positive for GQ1b receptor antibodies were negative. A sample of sputum taken seven days after the onset of symptoms was positive for P. multocida. The testing laboratory considered a titre of 4 as significant with currently no cut-off titre for anti-GQ1b antibodies.

Blood, urine, stool, and cerebrospinal fluid cultures were negative.

Further clinical improvement was achieved with subsequent plasma exchange. Our finding supports the concept of immunomodulation using immunoglobulin and plasma exchange in steroid resistant combined central and peripheral inflammatory myelopathy.

Acute demyelinating diseases are often preceded by an infection or vaccination and considered to be immune mediated. This case of a severe unrestricted demyelinating syndrome encourages the concept that an immunological attack can be directed against central and peripheral myelin in susceptible individuals.

Discussion
This patient developed the typical neurological symptoms of Miller Fisher syndrome with positive anti-GQ1b antibodies 11 days after P. multocida was cultured from a blood sample. To our knowledge this is the first reported case of any form of Guillain–Barré syndrome associated with P. multocida infection. P. multocida is a small Gram negative cocccobacillus and is an important animal and human opportunistic pathogen. In humans it can cause soft tissue, respiratory, urinary tract, and meningal infections. The mechanisms by which P. multocida might cause Miller Fisher syndrome (we are assuming causation and accept we have only demonstrated temporal association) are unknown but molecular mimicry is a possibility. There is considerable evidence supporting the theory of molecular mimicry between lipopolysaccharide (LPS) from Campylobacter jejuni and the GQ1b ganglioside. P. multocida is Gram negative, its capsule similarly has LPS. However, we were unable to find any research specifically suggesting a similarity between the P. multocida LPS and the GQ1b ganglioside. P. multocida has previously been reported in association with acute disseminated encephalomyelitis but not, to our knowledge, with any other diseases with a presumed autoimmune basis.

Although an antecedent illness has frequently been noted before Miller Fisher syndrome the causative agents are not as well described as in Guillain–Barré syndrome. While C. jejuni has been implicated in the pathogenesis of Miller Fisher syndrome following enteritis, a recent study of 50 patients with the syndrome found that 76% had respiratory symptoms in the month preceding onset of the syndrome compared with only 4% with respiratory symptoms. Haemophilus influenza, Staphylococcus aureus, Mycoplasma pneumoniae, Coxiella burnetii, cytomegalovirus, Epstein–Barr virus, varicella zoster, and mumps virus have also been reported as antecedent agents in Miller Fisher syndrome. However, a statistical analysis of 1157 cases with Miller Fisher syndrome has only been shown for M. pneumoniae—serological evidence of recent infection was found in 7% of Miller Fisher patients compared with 8% of patients with Guillain–Barré syndrome.

From the above discussion it is clear that the antecedent illness in Miller Fisher syndrome commonly takes the form of a respiratory infection of unknown aetiology. P. multocida can cause respiratory infection and is often difficult to isolate this organism from sputum samples and it has been reported as causing indolent and asymptomatic pulmonary infection, including asymptomatic lung abscesses. For these reasons P. multocida infection is possibly underdiagnosed. Therefore, while we believe this is the first reported case of an association between Miller Fisher syndrome and P. multocida we believe it highly unlikely to be unique.
Coagulopathy and NICE recommendations for patients with mild head injury

Management of patients with mild head injury (MHI) is open to debate. In the last few years, there has been a trend towards earlier diagnosis, implying an extensive use of computed tomography (CT), rather than admission and observation. The National Institute for Clinical Excellence (NICE) has recently proposed new evidence-based recommendations on all steps of the management of patients with MHI.1 In the diagnostic algorithm, coagulopathy (history of bleeding, clotting disorder, or current treatment with warfarin) is not considered a predictor variable necessitating early CT in subjects without loss of consciousness (LOC) or amnesia since injury. This statement conflicts with previous guidelines, where history of coagulopathy, independently of symptoms, indicated CT.4 Since 1999, all cases with MHI attending the Emergency Department of our district hospital had been treated and registered in a comprehensive database according to predefined procedures.5 Our criteria for CT and/or hospital admission are wider than the NICE criteria; in particular, there is routine detailing of NICE variables, but in addition, all subjects with coagulopathy have an early CT, independently of symptoms and signs after head injury. This provides the opportunity to determine the risk related to coagulopathy and the accuracy of the NICE recommendations.

We analysed the data of 7955 consecutive patients within 24 hours from trauma, who had been triaged for an acute MHI. MHI was defined as primary event, major trauma had been triaged for an acute MHI. MHI was open to debate. All patients re-attended for complaints after discharge (282 cases) underwent a CT scan and in this study were considered only once. All patients received written recommendations at discharge for home observation and complaints that would require referral back to hospital for further evaluation. Observers were instructed to check for symptoms and signs, and for any change in patients’ clinical status for 7 days.

According to NICE, CT scan is recommended in the presence of: (a) GCS <13 at any point and/or equal to 13 at 2 hours after injury, (b) any sign of basal skull fracture, (c) any focal neurological deficit, (d) post-traumatic seizure, (e) vomiting (> one episode), and (f) amnesia of events before impact >30 minutes, (g) risk factors (coagulopathy, age > 65 years, dangerous mechanism of injury), provided that patients have experienced some LOC or amnesia since injury. In our protocol, CT is mandatory for subjects with risk factors, in particular amnesia and/or LOC (but excluding old age), independently of signs and symptoms.

Following our protocol, 4081 out of 4547 (89.8%) eligible patients had an early CT scan. In 3580 early CT was also indicated according to the NICE protocol, in 501 CT scans were performed in subjects outside the NICE protocol. These patients had CT because of coagulopathy (warfarin therapy) in 66 cases (13.2%), diffuse headache in 178 cases (35.5%), previous neurological intervention in 26 cases (5.2%), history of seizures in 22 cases (4.4%), dangerous mechanism of injury in 172 cases (34.3%), and recent alcohol and/or drug misuse in 58 cases (11.6%).

Clinically important intracranial lesions were demonstrated in 477/3580 (13.3%) patients of the NICE group. Neurosurgical intervention was required within 7 days in 98% of patients (2.7%) for haematoma evacuation or for elevation of depressed skull fracture. At follow up (6 months), 36 patients (0.1%) had an unfavourable outcome (death, persisting vegetative state, or severe disability by the Glasgow Outcome Scale), rated by an expert physician on the basis of a structured telephone call.

In the 501 NICE negative cases, 40 patients (8.0%) had an intracranial haemorrhagic lesion: intracerebral haematoma (20 cases); intracerebral haematoma plus subarachnoid haemorrhage (2); intracerebral haematoma plus subdural haematoma (3); subarachnoid haemorrhage (2); subarachnoid haemorrhage plus subdural haematoma (1), subdural haematoma (11); and epidural haematoma (1). This prevalence is lower compared with NICE positive cases (Fisher’s exact test, p < 0.006), but nevertheless NICE recommendations would not have led to early detection of these 40 lesions, for which neurosurgical intervention was required in five (12.5%): intracerebral haematoma evacuation (1 case), subarachnoid haemorrhage (2) and epidural haematoma (2) (1). At follow up, only one patient died after 9 days for causes related to intracerebral haematoma, the remaining having a favourable outcome. In these 40 NICE negative cases with haemorrhagic lesions, coagulopathy was the main factor leading to CT scan in 16 cases (40%), and was associated with a fivefold increase in the risk of intracranial lesions (table 1). With logistic analysis, coagulopathy was the only predictor variable associated with CT lesions in asymptomatic patients not fulfilling NICE criteria for early CT. Six patients, re-evaluated for complaints after a median (interquartile range) time of 144 hours (66 to 168), had an intracranial lesion detected by a second CT; four belonged to the NICE positive group, two were in the NICE negative. None had coagulopathy.

The post hoc analysis of our prospective database demonstrates that NICE recommendations for CT scanning identify the majority of patients with intracranial lesions in subjects attending the ED for MHI. However, the exclusion of coagulopathy as a factor always indicating CT impacts the diagnostic accuracy of NICE guidance. Routine use of CT scanning is not cost effective; more than 90% of CT scanning are negative in subjects with MHI, and at least 98% are negative for epidural haematoma, the event requiring immediate intervention. A more liberal policy for CT use, making CT mandatory in patients with coagulopathy, independently of head trauma severity, would indicate only 66 additional CT in our total cohort of 3581 (less than 2.0%), with a 1:4 probability of identifying an intracranial lesion.

The indications for CT use in MHI are subject to a continuous debate.6 Our data strongly suggest that the restrictive use of CT proposed by NICE in the presence of risk

Table 1 Characteristics of the 501 patients, submitted to early CT scan according to protocol, and not considered by NICE recommendations

<table>
<thead>
<tr>
<th>Risk factor</th>
<th>CT negative (n = 461)</th>
<th>CT positive (n = 40)</th>
<th>Odds ratio (95% CI)</th>
<th>p value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median (IQR) age, years</td>
<td>53 (29 to 77)</td>
<td>68 (46 to 78)</td>
<td>–</td>
<td>0.054</td>
</tr>
<tr>
<td>Cause of injury</td>
<td>2.3 (2.0 to 2.8)</td>
<td>2.2 (2.2 to 2.6)</td>
<td>–</td>
<td>0.464</td>
</tr>
<tr>
<td>Fall</td>
<td>204 (44.3%)</td>
<td>19 (47.5%)</td>
<td>1.14 (0.59 to 2.18)</td>
<td>0.741</td>
</tr>
<tr>
<td>Crash</td>
<td>179 (38.8%)</td>
<td>15 (37.5%)</td>
<td>0.94 (0.43 to 2.08)</td>
<td>1.000</td>
</tr>
<tr>
<td>Assault</td>
<td>15 (3.3%)</td>
<td>5 (12.5%)</td>
<td>1.56 (0.34 to 7.10)</td>
<td>0.637</td>
</tr>
<tr>
<td>Occupational</td>
<td>32 (6.9%)</td>
<td>5 (12.5%)</td>
<td>0.71 (0.16 to 3.06)</td>
<td>1.000</td>
</tr>
<tr>
<td>Risk factors</td>
<td>50 (10.8%)</td>
<td>16 (40.0%)</td>
<td>5.48 (2.73 to 11.00) < 0.001</td>
<td></td>
</tr>
<tr>
<td>Coagulopathy</td>
<td>156 (33.8%)</td>
<td>16 (40.0%)</td>
<td>1.30 (0.67 to 2.53) 0.488</td>
<td></td>
</tr>
<tr>
<td>Dangerous mechanism</td>
<td>191 (41.4%)</td>
<td>22 (55.0%)</td>
<td>1.73 (0.90 to 3.31) 0.133</td>
<td></td>
</tr>
<tr>
<td>History of epilepsy</td>
<td>20 (4.3%)</td>
<td>15 (37.5%)</td>
<td>1.16 (0.26 to 5.15) 0.692</td>
<td></td>
</tr>
<tr>
<td>Previous neurosurgery</td>
<td>26 (5.6%)</td>
<td>2 (5.0%)</td>
<td>0.43 (0.06 to 3.25) 0.713</td>
<td></td>
</tr>
<tr>
<td>Alcohol and/ or drugs</td>
<td>51 (11.1%)</td>
<td>7 (17.5%)</td>
<td>1.71 (0.72 to 4.05) 0.205</td>
<td></td>
</tr>
</tbody>
</table>

*CI, confidence interval; †Mann-Whitney U test or Fisher’s exact test p < 0.05; ‡Intentional normalised ratio in patients with coagulopathy.
factors may be generally accepted. However, in the light of our data we suggest that CT should also be considered for all subjects with coagulopathy.

A Farrabi, A Vandelli
Dipartimento Emergenza-Urgenza Accettazione, Ospedale Morgagni-Pierantoni, Azienda Unità Sanitaria Locale di Forli, Italy

F Servadei
Unità Operativa di Neurochirurgia per la Traumatologia, Ospedale M Bufalini, Azienda Unità Sanitaria Locale di Cesena, Italy

G Marchesini
Alma Mater Studiorum, Università di Bologna, Italy

Correspondence to: Dr A Farrabi, Dipartimento Emergenza-Urgenza Accettazione, Ospedale Morgagni-Pierantoni, Azienda Unità Sanitaria Locale di Forli, via Forfanini 34-1, 47100 Forli, Italy; andfarrabi@libero.it
doi: 10.1136/jnnp.2004.041384

Competing interests: none declared

REFERENCES

Neurogenic T wave inversion in pure left insular stroke associated with hyperhomocysteinemia

Alterations in cardiac depolarisation and repolarisation are reported in 74% of patients with cerebrovascular events.7 They are more frequent after subarachnoid and intracerebral haemorrhage, but may also occur in acute ischaemic stroke (15–30%) and are related to an increased incidence of malignant arrhythmia and sudden death (6%).7

The most common ECG alterations are QT prolongation, ST segment alterations, T wave flattening or inversion, and abnormal U waves.8 ECG changes may be similar to those detected macrocytic anaemia, and a C reactivity test was normal. The prominent clinical features of our case are hyperhomocysteinemia, vitamin B12, and CRP were normal, and the ECG had nearly normalised. An adenosine-thallium scan performed 6 months after stroke onset showed no evidence of coronary artery disease. To date there had been no cardiac events.

Comment

Acute insular stroke may present with various clinical presentations, due to the anatomic and functional complexity of the insular lobe and its wide connections with the frontal, parietal, occipital, and olfactory cortex, and with the basal ganglia, thalamus, and limbic structures.1 It is an important gustatory, somatosensory, and visceral motor sensory processing area, a component of the blood-brain barrier, and with the basal ganglia, thalamus, and limbic structures.1

Pure insular strokes, rare entities in clinical practice, are defined as infarcts restricted to the insular cortex, with the exception of some involvement of the claustrum and capsula externa.2 This definition is justified by the complex insular arterial supply which supplies the insular cortex, the capsule externa, and the claustrum, and, sporadically, the capsula externa.2

The prominent clinical features of our case were neurophysiological disorders (expressive aphasia, dysarthria, verbal memory impairment), and electrocardiographic alterations, represented by persistent T wave inversion.

Neurogenic ECG alterations are often transient, but cause diagnostic problems, mimicking acute myocardial infarction. Some features of T waves may be suggestive of heart pathology, but they are non-specific, making it important to consider a neurogenic genesis to avoid unsuitable therapies.

The neurogenic nature of T wave inversion in our case was demonstrated by the lack of evidence of coronary artery disease or cardiac pathology, both of which were ruled out by echocardiography and adenosine-thallium scan. Myocardial enzymes, which have also been reported to be elevated mainly in large size stroke, were normal probably because of the limited extent of basal infractedar heart tissue. In insular stroke the pathophysiology of abnormalities of rate, rhythm, and conduction is related to an imbalance of autonomic cardiovascular control and to increased circulating and local myocardial tissue catecholamines, suggesting an underlying sympathetically mediated mechanism. The insular cortex has been experimentally

Figure 1 (A, B) T1 weighted spin echo axial and coronal scan (repetition time, TR = 500 ms; echo time, TE = 10 ms), showing the pure left insular stroke; (C) admission ECG showing an anterior left anterior hemiblock; (D) ECG performed 7 days after the second stroke showing the presence of neurogenic T wave inversion.
to contain an arrhythmogenic centre implicated in neurogenic electrocardiographic changes.3 There is evidence of cortical asymmetry in the regulation of cardiovascular functions: the left insula is concerned mainly with control of parasympathetic cardiac drive, and the right with control of sympathetic cardiac function.4 Damage to the left insular cortex by stroke may shift sympathovagal balance towards increased basal sympathetic tone (a pro-arrhythmic condition), with a decrease in the randomness of HR variability, and may contribute to the excess cardiac mortality following stroke.4,5

Insular infarcts so far reported are caused by artery to artery or cardiac embolisms.6 To our knowledge this is the first reported case of insular stroke associated with hyperhomocysteinaemia, which is an emerging independent risk factor for stroke and for vascular recurrence after ischaemic stroke.6

In conclusion, persistent neurogenic T wave alternation due to a left insular infarct associated with hyperhomocysteinaemia is reported in this paper. The case underlines the functional complexity of the insular cortex, its role in the generation of cardiovascular dysfunction, and the importance of cardiac monitoring in stroke patients.

J Mandrioli, A Zini, M Cerezzuti, P Ponzani
Department of Neurosciences, University of Modena and Reggio Emilia, Modena, Italy
Correspondence to: Dr Jessica Mandrioli, Neurological Clinic, Department of Neurosciences, University of Modena and Reggio Emilia, Policlinico di Modena, Via del Pozzo n 71, 41100 Modena, Italy; jessicamandrioli@hotmail.com

doi: 10.1136/jnnp.2003.035295

Competing interests: none declared

References

Prion disease at a regional neuroscience centre: retrospective audit

Timely diagnosis of prion disease is vital if appropriate information and psychosocial support is to be made available to patients and families and appropriate arrangements made for symptomatic treatment and provision of palliative care. For many of these issues optimal management remains uncertain. Guidance on the management and the importance of setting up a dedicated health professional in each regional neuroscience centre to ensure implementation of guidelines and to work with local agencies such as palliative care teams, currently seems an appropriate response.

Various symptomatic treatments were used to relieve distress in the terminal phase of disease, namely dexamethasone, midazolam, and the dopamine receptor agonist pergolide. In a case (21%) there was any comment about cardiorespiratory resuscitation policy. In seven cases it was explicitly stated that the patient was not for resuscitation; in one case the family did not agree to a DNR policy, and in one case it was not clear what policy, if any, was agreed. All the patients died in hospital; none went to a hospice. One patient with sporadic CJD temporarily went to a nursing home, before returning to hospital to die. Nursing home placement was considered for another patient, but the family preferred the patient to stay in hospital.

Although there are hopes for the efficacy of agents such as memantin and PPS, disease modifying treatment for prion disease does not currently exist. Hence, once the diagnosis is made, management is symptomatic (for example, for movement disorders, especially myoclonus, seizures, autonomic and sleep disorders, swallowing problems, and pain) and care is palliative. Hence, the provision of information and psychosocial support is of paramount importance. In the UK, patients and carers may contact various resources, such as the NCJDSU and the National Care Co-ordinator Prion Clinic, the CJD Support Network, the Human BSE Foundation, and the CJD Advice Network (Department of Health). However, these agencies may not be able to provide local solutions to the care needs of patients and families affected with prion disease. Difficulties in finding appropriate locations for palliative care of patients with vCJD have been documented, leading the Department of Health to create a National Care Package.

The heterogeneity of management revealed by our audit most likely reflects uncertainty about the optimal management of prion disease, and the absence of specific guidelines during the time covered by the audit. The development of guidelines and integrated care pathways which can address issues facing patients with prion disease and their relatives in a comprehensive yet flexible manner may be helpful, although again disease rarity suggests that completing these guidelines may be a large process. Coordination and support from at least one dedicated health professional in each regional neuroscience centre, to ensure implementation of guidelines and to work with local agencies such as palliative care teams, currently seems an appropriate response.

Acknowledgements
We thank Professor R G Will, National CJD Surveillance Unit, Edinburgh, for supplying details of cases referred from this region, and also our colleagues at WCNN for supplying patient details. Pauline Kelly, Ann Noble, Julie Richardson, and Lynette Roberts helped to recover hospital notes.

A J Lomer, M Doran
Cognitive Function Clinic, Walton Centre for Neurology and Neurosurgery, Liverpool, UK
Correspondence to: A J Lomer, Cognitive Function Clinic, Walton Centre for Neurology and Neurosurgery, Lower Lane, Fazakerley, Liverpool, L9 7UJ, UK; a.lomer@thewaltoncentre.nhs.uk

doi: 10.1136/jnnp.2003.035345

Competing interests: none declared
Myopathies in clinical practice

Text books come in two forms; some attempt to tell you all there is to know while others try and tell you what you need to know. The editors’ introduction to this book suggests that it falls into the latter category but in fact it “punches above its weight” with regard to the depth of coverage in a number of the chapters and includes observations, reminders, and pointers that all myologists, let alone general neurologists, will find extremely valuable.

Beyond the superficial level, neuromuscular disorders are complicated mainly because we now know so much about their underlying molecular biology. This book goes as far as reasonably possible in making these complexities understandable. It is divided into two sections. The first deals with basic principles, including clinical assessment and the investigation of muscle disease. The writing style is direct and almost conversational—in the style of a tutorial, which many will find attractive. The section on investigation of muscle disease is particularly clear and comprehensive with a helpful exposition on the basics of electromyography in muscle disease and neuromuscular transmission disorders. This section concludes with a chapter on the principals of therapy of neuromuscular disease—a topic which is usually tucked away in the back of a more typical text book—perhaps reflecting the editors very positive attitude to this aspect of this speciality. To quote them, to say that there is “nothing that I can do for you” is indeed a sad reflection on the lack of a holistical or rehabilitative approach from the clinicians involved.

The second section deals in turn with the muscular dystrophies, inflammatory myopathies, muscle channelopathies, metabolic myopathies, and the toxic and endocrine myopathies, and concludes with chapters on congenital myopathies and miscellaneous muscle disorders. The final chapter on neuromuscular junction disorders is included for the sake of completeness. Each of these chapters is to a similar high standard, although I would comment that there is no obvious logic in the way that these are ordered in the book. There is also a comprehensive index that proves efficient on several occasions.

This volume is commendably short and the text is arranged in a double column format. The production is lavish, profusely illustrated in colour with many diagrams and text boxes, which are beautifully clear. For general neurologists, I think this book will have few serious rivals as a convenient, modern, and comprehensive source of information on the most important aspects of muscle disease, and I can recommend it most highly.

R J M Lane

The central nervous system structure and function—third edition

This third edition of Per Brodal’s book “The central nervous system: structure and function”, last edited in 1998, attests to the efforts of the author to keep up with the rapid pace of development in the field of neurosciences. Many of us probably remember the repulsive effect of overwhelming details in some textbooks of neuroanatomy or neurophysiology, that fail to be relevant in clinical practice. Here, the dynamic and concise presentation of both the structure and the function of the central nervous system at different levels (molecular, cellular, and systems), with special emphasis on how the different components are connected and interact, manages to captivate the reader. Beside key information on the fundamental background, there are numerous clinical examples that will help the medical student to bridge the gap between basic and clinical neuroscience. The book also offers several didactic drawings and figures, and, for the reader interested in a particular topic, more detailed sections are placed in highlighted boxes. In addition, a rich selection of references recommended by the author on each topic are listed at the end of the book. The third edition includes two new sections on the vestibular system and the control of eye movements.

The principal aim of the author, who perpetuates a familial tradition (the first Norwegian edition of the book was run by Per Brodal’s father in 1949), is “to stimulate understanding rather than memorization of isolated facts” and “[to foster] a realistic attitude toward our still limited ability to explain the marvels of the human brain.”

I recommend this book to all medical students, and also to more advanced clinicians who wish to refresh their knowledge in basic neurosciences or as a useful tool for teaching their younger colleagues.

S Debette

doctor: 10.1136/jnnp.2003.034827corr1

In the Letter by Jardine et al (J Neural Neurosurg Psychiatry 2004;75:1651) the initials of Krediet were published incorrectly. The correct initials are C T P.