Ischaemic stroke in chagasic patients

We read with interest the paper by Carod-Artal et al.1 that showed the relevance of Chagas’ disease as a stroke risk factor in patients of South American origin. They also confirmed a textbook view2 (not hitherto demonstrated) that cardioembolism is the main cause of stroke in Chagas’ disease, in 52% of cases. This reflects in part the underlying chagasic cardiomyopathy, characterised by congestive heart failure and arrhythmias, present in 46% of chagasic patients as compared with 25% of non-chagasic patients.

Despite the lack of comparison of stroke characteristics between both groups, one very interesting finding was the significant percentage of chagasic patients who developed stroke without any known vascular risk factors or cardiopathy. As the authors stated, undetected cardiovascular disease could account for at least part of this finding. The indeterminate form of the disease is defined by the presence of infection confirmed by serological tests, in the absence of symptoms or of electrocardiographic or radiological abnormalities. Twenty five % of subjects with the indeterminate form of the disease may present with significant structural and/or functional abnormalities when they are fully evaluated by more sensitive methods, such as ergometry and autonomic tests.3

Another possible explanation proposed by the authors would be the vasculitis phenomenon. Although there is good experimental evidence to suggest that changes in the microvasculature may contribute to chagasic heart disease,4 much less is known about the possible involvement of central nervous system microvasculature in Chagas’ disease. Indeed, most studies point to an important role for endothelin in the pathogenesis of microvascular changes in the chagasic heart,[4 5] but we are unaware of any similar studies of the central nervous system.

The authors also suggest the need for early preventive management in all patients with Chagas’ disease cardiomyopathy. This is a strong recommendation, as most chagasic patients derive from poor social economic backgrounds and have poor access to the health system.5 Chronic oral anticoagulant therapy is known to cause frequent clinical complications, especially bleeding; an alternative approach could be the use of low dose aspirin in patients that has been recently suggested for the treatment of deep vein thrombosis.6 However, further studies are still needed to investigate this possibility specifically in Chagas’ disease.

A L Teixeira Jr, M M Teixeira
Universidade Federal de Minas Gerais (UFMG), Instituto de Ciências Biológicas, Belo Horizonte, Brazil

Correspondence to: A L Teixeira Jr, Universidade Federal de Minas Gerais (UFMG), Departamento de Morfologia, Instituto de Ciências Biológicas, Av. Antônio Carlos 6627, Pampulha, Belo Horizonte, MG, 31270-901, Brazil; alteixeir@hotmail.com

References

Authors’ reply
In our recent study, we demonstrated that at least 52.2% of chagasic strokes are due to cardioembolism and 36.8% are of undetermined cause.1 A significant proportion of these cryptogenic chagasic strokes may also be cardioembolic in origin.2,3 We therefore encourage the use of transoesophageal echocardiography in all patients with chagasic stroke, especially for the better definition of aetiology in the 36% having strokes of undetermined cause.

The monitored administration of warfarin is remarkably effective in the reduction of stroke recurrence in persons with cardioembolic stroke.4 Thus, we recommend oral anticoagulation for all individuals with chagasic stroke, who have demonstrated risk factors for cardioembolism. To our knowledge, no case control study analysing these factors has yet been carried out.

Stoke of arterial origin in Chagas’ disease seems much less common than in the general population of stroke patients.5 Evidence for secondary prevention of stroke of arterial origin with oral anticoagulation as in the Warfarin-Aspirin Recurrent Stroke Study (WARSS)6 and European/Australasian Stroke Prevention in Reversible Ischaemia Trial (ESPRIT)7 clinical trials is controversial. Our follow up experience with the administration of secondary anticoagulation to persons with chagasic stroke, whether cardioembolic or not, has been encouraging in the lack of significant complications. We are therefore currently investigating the efficacy of antithrombotic therapy in chagasic stroke patients, using either low or moderate dosages of anticoagulants. Until the results of this or similar investigations are available, antithrombotic prophylaxis should be individually based in persons with chagasic stroke of undetermined cause, on the basis of the estimated risk of recurrent stroke vs the risk of complications during anticoagulation.

We thank M M Teixeira and A L Teixeira for their comments and interest in our article.

F J Carod-Artal, A P Vargas, M Mello, T A Horan
Neurology Department, Sarah Hospital, Brasilia, Brazil

Correspondence to: Dr F J Carod-Artal, Neurology Department, Sarah Hospital, SMHS quatre S01 conjunto A, CEP 7330-150, Brasilia DF, Brazil; javier@bsb.sarah.br / FJCarod@taol.com

Efficacy of methyprednisolone pulse therapy on neuroleptic malignant syndrome in Parkinson’s disease

I was astonished to find that Sato and colleagues were able to identify 40 cases of neuroleptic malignant syndrome (NMS) in patients with Parkinson’s disease from a single institution over three years.1 At a recent neurosciences grand round in Birmingham, UK, which has an interest in Parkinson’s disease research, we could only recall two such cases in living memory.

There are two possible explanations for this high incidence of NMS. Firstly, in Japan the Parkinson’s disease population may be more prone to developing NMS when their anti-Parkinsonian medication is reduced. This could be due to genotypic differences between Japanese and Western populations. Whereas a higher prevalence of the Parkin mutation has been noted in Japan,2 judging from the age range and duration of disease given in table 1 of Sato’s report,3 these were not all young onset patients as one would expect with the Parkin gene. Nevertheless, it would be of interest to know if this high incidence of NMS has been seen in other Japanese centres and whether any genotypic reason can be found.

The second possible explanation is that the reductions in anti-Parkinsonian medication that precipitated NMS were substantial. NMS has been recorded in Parkinson’s disease in the past in association with so-called ‘drug holidays’, which have now been abandoned in most countries owing to the high fatality rate. Against this explanation is the fact that three patients had no change in their medication in Sato’s study.3
The interest of this paper lies not so much with the proven benefits of methylprednisolone therapy in NMS in Parkinson’s disease, as in the high incidence of NMS in the Japanese patients treated in this unit. I would value the author’s further comments.

C E Clarke
Department of Neurology, City Hospital, Dudley Road, Birmingham B18 7OH, UK; c.e.clarke@bham.ac.uk

References

Mesencephalic ischemia and Parkinson’s disease
I read with interest the paper by Abe et al. on occipital and posterior parietal hypoperfusion in 28 Parkinson’s disease (PD) patients without dementia. These findings suggest that there was a reduced regional cerebral blood flow (rCBF) in the intraparenchymal territory of the posterior cerebral arteries (PCAs) probably due to the presence of atherosomatous plaques located in the distal end of the basilar artery.1 Atherosclerotic changes are of considerable importance because they can cause stenosis and/or occlusion at the origin of the terminal (PCAs) or collateral (superior cerebellar arteries) branches, as well as of the posterior perforating arteries (PPAs).

Based on the fact that in situ the donor tissues of catecholamines are normally highly vascularised and by contrast in PD the rCBF is reduced in the neostriatum, from February 1988 to December 2002 we have used two surgical procedures to treat PD:1 (1) transplantation of adenral medulla into the putamen by a transinsular pathway, and (2) omental transplantation on the interpeduncular fossa, anterior perforated space, and insular cortex in 16 patients with moderate or advanced stages of PD. Thus, omental tissue revascularises to the catecholaminergic (dopaminergic and noradrenergic) nuclei, as well as to the surrounding structures, and moreover prolongs the survival of the graft implanted in the putamen. In all patients, neurological improvement was better during the first weeks after surgery than in the following months or years. Our third patient is the same case previously reported by us. At present, 15 years postoperatively, she has only slight tremor on the left leg and does not require antiparkinsonian drugs. In general, the patient occasionally receives 1 mg of clonazepam at night. Her quality of life is good and she manages the daily living activities similar to any normal woman of her age.

In conclusion, the vascular impairment described by Abe and colleagues supports the autopsy findings1 and neurological results.2 Clinical data suggest that PD is initiated in the intraparenchymal territory of the PPAs caused by atherosclerotic plaques located at the mouths of these arteries. Therefore, we believe that Parkinson’s disease is wrongly classified as a neurodegenerative disorder.

H Rafael
Neurosurgeon, Universidad Nacional Autónoma de México, Mexico City, Mexico
Correspondence to: Dr H Rafael, Belgracia 411 Bis, Colonia Portales, 03300, México City, Mexico; hrafael@yahoo.com

References

Traumatic brain injury as a risk factor for Alzheimer’s disease
In a recent systematic review of case control studies investigating head injury as a risk factor for Alzheimer’s disease (AD), Fleminger et al. replicated the results of the meta-analysis by Mortimer et al. in males (OR 2.29, 95% CI from 1.47 to 3.00) but not in females (OR 0.91; 95% CI from 0.56 to 1.47). Their findings support in males only an association between a history of previous head injury and the risk of developing AD, but the study could not review the relation between head injury and ApoE gene status as risk factors for AD.

The review by Fleminger et al. was based on clinical studies alone and, as Wilson emphasised, did not consider the nature or severity of the original head injury, and the results of the first retrospective autopsy study of the relation between closed traumatic brain injury (TBI), ApoE allele frequency, and AD. Unfortunately, this was not mentioned. This present study has examined:

- the incidence of AD pathology in 55 consecutive autopsy cases (mean age 77.6 years, SD 7.1) with residuals of closed TBI lesions (old contusions in the frontal, temporal, or other brain areas)
- the frequency of TBI residuals in 53 age matched AD cases proven at autopsy.

In both series, ApoE was evaluated from archival brain material embedded in paraﬃn. The results were as follows.

In the TBI series, 12.7% (four males and three females) showed CERAD B (Consortium to Establish a Registry for Alzheimer’s Disease) deﬁnite AD (Braak stages 5 and 6), and 9.1% showed CERAD B probable AD (Braak stages 3 or 4). TBI history dated back from 10 to 30 years before death. A duration of 5 to 7 years was the most common interval. Two of the subjects with AD showed ApoE3/4, and the remainder 3/3 or 3/2, of the remaining 43 subjects without AD, three exhibited 3/4 alleles. The prevalence of AD (21.8%) in this small autopsy cohort was signiﬁcantly higher than in either a recent large clinical series (3.3%)6 or the general population over the age of 70 years (14%).7

In the AD cohort (all CERAD B or C, Braak stages 5 and 6), there was an ApoE4 allele frequency of 30% (similar to other AD series). Residuals of TBI were seen in four brains (two males and two females, each 7.5% of the cohort), all four lacking the ApoE4 allele. These data in small autopsy cohorts conﬁrmed previous clinical studies suggesting that severe TBI is a risk factor for the development of AD, particularly in subjects lacking the ApoE4 allele which is considered a risk factor for AD. No gender differences were found.

Irrespective of these data, we agree with others, that further work should consider population based cohorts and larger autopsy series of TBI and AD in order better to elucidate the relationship between TBI, ApoE alleles, and the development of AD.
of physicians who adopt a multidimensional model of care and avoid treatments commonly recognised as beneficial but burdened by a high cost-benefit ratio.

References

1. Bellelli G, Rehabilitation Unit “Ancelle della Carita” Hospital, 26100, Cremona Italy and Geriatric Research Group, Tor Vergata University, Rome Italy and Geriatric Research Group, Brescia, Italy

2. Trabucchi M, Rehabilitation Unit “Ancelle della Carita” Hospital, 26100, Cremona Italy, giuseppebelleli@libero.it; bellelli.giuseppe@poliamilbanozzi.it

References

Relationship between stridor and sleep apnoea syndrome: is it as simple as that?

We read with interest the article by Hirayama et al. in which the authors, using an original imaging method, low field magnetic resonance fluoroscopic study, proposed that upper airway obstruction preceded laryngeal occlusion causing the stridor in patients with multiple system atrophy (MSA). This issue of nocturnal stridor in MSA is of great importance since it is a common cause of sudden death and a recognised prognostic factor in this disease. It affects about 19% of patients as shown in our series and by others. We feel that the relationship proposed between obstructive apnoea respiratory events and stridor is not as simple as suggested by the authors and must be considered in light of classical standardised polysomnographic (PSG) data.

In our own series, 18 consecutive patients with MSA who were assessed for obstructive sleep apnoea syndrome (OA) were found to have upper airway obstruction. A PSG study confirmed the findings of Hirayama et al. that upper airway obstruction precedes laryngeal occlusion causing the stridor in patients with MSA. This issue of nocturnal stridor in MSA is of great importance since it is a common cause of sudden death and a recognised prognostic factor in this disease. It affects about 19% of patients as shown in our series and by others. We feel that the relationship proposed between obstructive apnoea respiratory events and stridor is not as simple as suggested by the authors and must be considered in light of classical standardised polysomnographic (PSG) data.

In our own series, 18 consecutive patients with MSA were assessed for obstructive sleep apnoea syndrome (OSA) occurred without stridor, and one of these patients presented predominantly with central apnoea that also occurred while awake. Among the patients with stridor, four presented predominantly OSA and one mainly central apnoea. Mixed and prolonged apnoea, up to 53 s, was seen along with stridor in five patients and was isolated in two others. Episodes of mixed apnoea were typical in their occurrence as
the patients getting used to CPAP took up to a month, reported better sleep, improved daytime treatment, both patients and their spouses dropped out after one week because of lack of CPAP treatment (six with stridor and sleep apnoea is common and may occur in non-obese MSA patients even in the absence of stridor, thus indicating that the mechanism underlying the two events is different. The higher incidence of typical observed in MSA patients may also be due to the severity of bradykinesia and the fact that patients with severe MSA lie predominantly, if not always, in the supine position while asleep. The reduction of nocturnal obstructive events during lateral position in patients with OSA has already been reported. In our patients, who were audio monitored, stridor was not followed by typical obstructive apnoea nor was the apnoea ended by a stridor. This, we believe that stridor and OSA in MSA are different and independent events. We also found that mixed apnoea occurred stereotypically and was very prolonged and often preceded by a harsh sound typical of stridor, as documented by audio monitoring.

Non-invasive continuous positive air pressure (CPAP) should be proposed for relief of sleep breathing disorders. It has been used successfully to treat stridor and OSA in MSA patients.

In our series, nine patients accepted CPAP treatment (six with stridor and sleep apnoea and three with isolated OSA). One patient died before initiation of the treatment and two patients without sleep complaints dropped out after one week because of lack of tolerance despite having a severe apnoea/hypopnoea index. Since the onset of CPAP treatment, both patients and their spouses reported sleep, improved daytime alertness and wellbeing. For some patients, getting used to CPAP took up to a month, after which it was generally well tolerated. After a mean follow up period of 10 months, the patients’ compliance with the continued use of CPAP was satisfactory and their relatives did not report any recurrence of stridor.

Thus we feel that the relationship between stridor and hypopnoea is far from clear, especially considering the polysomnographic association of stridor and mixed apnoea that we found. Complex supranuclear neurologiological dysfunction may account for this association, but further studies are however needed to clarify this issue and better establish the indications for CPAP.

Acknowledgements

The study was supported by a PHRC 97 grant and a CHU de Bordeaux-CNRS fellowship.

F Tison
Service de Neurologie, CHU de Bordeaux, Bordeaux, France

Correspondence to: Dr I Ghorayeb, MD, PhD, Service d’Explorations Fonctionnelles du Système Nerveux, Hôpital Pellegrin, Place Amélie Rabat-Leon, 33076 Bordeaux cedex, France, mad.ghorayeb@umr543.u-bordeaux2.fr

References

Authors’ reply

We would like to thank Dr Ghorayeb et al for their interest in our paper and their comments. We agree with the view that the relation between stridor and apnoea in MSA is very important. Unfortunately, in our experimental procedure, we could not establish a correlation between the image of the vocal cords and upper airway and stridor symptoms because it is difficult to record airflow and vocal sound simultaneously in a magnetic resonance imaging (MRI) recording.

In obstructive sleep apnoea syndrome (OSAS), even when the upper airway was obstructed completely, the vocal cords were not obstructed. Therefore, stridor does not develop although snoring may occur in OSAS. In contrast, MSA patients had an obstructed upper airway, which was frequently accompanied by stenosis of the vocal cords. However, we did not find stenosis of the vocal cords without stenosis of the upper airway. If the stridor is produced by stenosis of the vocal cords and snoring is produced by stenosis of the upper airway, snoring should be accompanied by stridor in all MSA patients. In fact, we observed that the initial narrowing of the larynx and pharynx produced snoring. Ghorayeb et al point out that OSA (SAS with upper airway obstruction) can commonly occur even in non-obese patients with MSA without the presence of stridor. We agree with this observation, but in this study, we did not find stenosis of the vocal cords without upper airway stenosis, so none of our patients developed stridor without snoring. We observed the patients in the MRI room to identify the sleep state and the presence of snoring and stridor, and we found that the highest pitch vocal sound appeared after heavy and prolonged inspiratory effort. This phenomenon is very similar to Ghorayeb et al’s observation of apnoea and stridor. We also suppose that the phenomenon of apnoea in MSA patients occurs with confinement of stenosis of the upper airway. Therefore, we think that some patients in MSA with SAS can be treated with CPAP similar to OSAS patients. However, the effect of CPAP could be diminished, since the respiratory centre is eventually involved with the progression of disease in MSA, and central apnoea and abnormal respiration may appear. Further study is required to clarify the indication of CPAP in patients with MSA.

The mechanism of SAS in MSA is unclear. Our study showed complete obstruction of the upper airway and vocal cords occurred in MSA even with the presence of tongue atrophy and without narrowing of the larynx. Thus, we suggest that there is another mechanism involved distinct from that of OSAS. Some reports have stated that a dysphonia-like phenomenon was present in the vocal cords in the stridor through electromyographic study, suggesting a similar mechanism to be present in the progression of upper airway obstruction.

M Hirayama, G Sobue
Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan

H Fukatsu
Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan

Y Koike
Department of Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan

Correspondence to: Professor G Sobue; sobueg@med.nagoya-u.ac.jp

References

The bereitschaftspotential movement-related cortical potentials

The Bereitschaftspotential (BP; readiness potential, although the sense of the German word is rather more imperative) was discovered and named in 1965 by Hans Kornhuber and Lüder Deeke. In their original description it was a negative going wave of cortical potential that was first detectable 1–1.5 s before the movement occurred. Like the deflections we now call evoked potentials, it is a technological advance (the computer of average transients or signal averager) that permitted detection of these minute waveforms. The discovery (with its implications for volition and free will) acted as a catalyst for research into the neurological aspects of the conditions with which they work.

T R E Barnes

Assessment of aphasia

This book surveys existing tests for people with aphasia, with particular emphasis on reporting studies that address their reliability and validity. In this it is admirably comprehensive, at least for the tests it covers. These are exclusively tests published in English, with, within this, a strong bias towards those originating in the United States. Many tests are widely used in the United Kingdom with people with aphasia, in both research and clinical practice—for example the Graded Naming Test—do not warrant consideration. Those used in Europe, including the Aachen Aphasia test that has the best psychometric properties of any aphasia test, get only the briefest mention. For the tests they do consider, Spreen and Risser are admirably comprehensive in surveying the literature on reliability and validity, as they point out, the development of these tests “psychometric development has been less than optimal in many instances and neglected in others” (p 33). These weaknesses are serious. They report a number of tests where the reported test-retest reliability is around 0.7 or even less. The authors do not point this out, but any test with a test-retest correlation coefficient this low is seriously compromised. The implication is that around 50% of score variance is error. As a result the test will be almost useless in monitoring change, and any of its scores will need to be treated with real scepticism.

Many of the interesting issues in the assessment of aphasia are not really addressed. Many clinicians assess people with aphasia in order to identify the nature of both their impairments and their intact processes because that provides the basis for devising treatments that are directed at the impaired functions and use the strengths of the intact processes. This book provides no guidance on how that might be done.

Many existing aphasia tests, including the two most widely used, the Boston Diagnostic Aphasia Examination and the Western Aphasia Battery, aim to classify people with aphasia into “diagnostic groups”—for example, those with Wernicke’s aphasia and Broca’s aphasia. Sadly Spreen and Risser never explore whether assigning syndrome labels in this way has any impact on patient management.

This book is an excellent source of references addressing the validity and reliability of American aphasia assessments, but less satisfying on the many complex issues that surround the uses of assessments for different purposes with people with aphasia.

D Howard

Reference

Intraoperative imaging in neurosurgery MRI, CT and ultrasound

This book forms part of a series of symposia reported by Springer-Verlag. The topics covered are important and timely. Most neurosurgical units would be evaluating the need for intraoperative imaging, the options, and possibilities. A factor that emerges is the importance of structure, and indeed then the need for courses and refresher symposia on modern operative anatomy and in particular to fully understand the fibre tracts of the brain. The first section, on interventional MRI, covers systems currently in clinical use and some background development and potential that would be valuable and necessary reading for a unit contemplating the introduction of such technology. The authors are experienced and the contribution significant. The second section deals with the role of intraoperative MRI and glioma surgery. It appears that data are emerging that the use of intraoperative MRI allows for more complete resection and probably a better outcome for patients with this devastating disease. It also gives a description of some of the difficulties that will be encountered when using neuro navigation together with the MRI system. The third section provides thoughtful reflections on the use of intraoperative ultrasound for cranial surgery and a chapter on the use of intraoperative CT scanning for navigation in spinal surgery. The final chapters provide some personal reflections on intraoperative MRI imaging technology and the use of functional MRI, together with a chapter on the cost benefit ratio of the technology. In the postscript Dr Yonekawa again highlights the need for training in basic micro-neurosurgery to continue parallel to the learning of innovative technical developments.

The book will provide essential reading for heads of service, neurosurgeons with an interest in neuronavigation and intraoperative imaging, and managers who will be faced with requests for the introduction of such equipment. It is a comprehensive and well-balanced collection of views and information on this important and emerging topic.

J van Dellen

New frontiers of MR-based techniques in multiple sclerosis

Edited by Massimo Filippi and Giancarlo Comi. Published by Springer-Verlag, Italy, 2003, pp 107, €49.95. ISBN 88-470-0198-6

Magnetic resonance (MR) is the single most important laboratory technique for diagnosis and monitoring of patients with multiple sclerosis (MS). Although some may cringe at the thought of yet another review of MR methods, development of new MR-based methodologies continues. This short book provides a succinct description of the “cutting edge” of the field in seven chapters written by acknowledged experts. Dousset, for example, describes ways in which individual cells may be tracked in the central nervous system after labelling with new iron oxide-based contrast agents. Filippi, Rocca, and Rovaris review applications of both magnetoencephalography and diffusion-weighted MRI to defining early axonal injury in normal appearing areas of a white matter. There is a further discussion of methods of diffusion tractography, which allows axonal tracts to be mapped, giving both information on the anatomy of major tracts and their integrity. Rashid and Miller describe applications of arterial spin-labelling magnetic resonance, a technique for defining perfusion changes that potentially provide an absolute measure of brain activity. The importance of better understanding cortical functional changes is emphasised in a nice review of functional MRI demonstrating ways in which the organisation of brain systems may change adaptively with the progression of pathology in MS. Part of the future of MRI clearly lies in enhancing sensitivity and spatial resolution of the imaging. An exciting approach to this has been development of ultra-high (> 5 T) field magnets. Kangarlu and his colleagues present images of human brain from an 8 Tesla (that is more than 5 times as powerful as a conventional clinical scanner) imaging system with individual plaques of MS shown.

This volume can be read quickly and the chapters are well written. It is highly recommended for neuroscientists and radiologists who want a brief, authoritative introduction to the current state of the art.

P Matthews

History of neurology in The Netherlands

Pride of place in the first century or so of Dutch neurology must go to the basic sciences of anatomy and physiology. These were my first points of contact with the Dutch neurological tradition, now almost 50 years ago. To the fledgling investigator working on proprioceptive reflexes, Ariens Kappers et al’s The comparative anatomy of the nervous system of vertebrates including man (New York, Macmillan, 1936) was the place to turn for the structural background to physiological experiments. And in physiology, the work of Magnus, de Kleijn, and Rademaker were essential to understanding posture and stability. Studies on pathological peripheral and central nerve fibres were illuminated by the early pathological studies on Beri Beri by Winkler (1853–1941) and Pekelharing (1848–1922) and Hans van Crevel’s work in the laboratory of Verhaert (1889–1983) in Leiden.

The book reviews the origins of this great tradition and charts its continuation into the late 20th century through Dusser de Barenne (who became professor of physiology at Yale) and Nauta (who also emigrated to the United States) and his student Hans Kuypers who was professor of anatomy successively in Rotterdam and Cambridge. Other aspects of neurology (the editors prefer the traditional use of the word to denote all aspects of the study of the nervous system, normal and pathological, including neurosurgery as well as clinical neurology) were later in achieving the well-deserved international recognition they now have.

The book provides a wealth of detail about the evolution of the different neurological centres in The Netherlands and the contributions coming from them. As in Germany, psychiatry and neurology remained closely linked until well into the 20th century. The development of the subspecialties is considered in some detail. A special feature of the Dutch scene was the way in which high quality original work came not infrequently from non-university settings.

Of particular interest to the general neurological reader are the more detailed accounts of the life and work of a number of the major neurological figures in The Netherlands. Ariens Kappers emerges not only as the important contributor he was, but as a rather remote, self-centred individual with his eye always to the main chance, and not especially appreciative of the work he got others to do for him. He, like most of the others in this section of the book, seems to have lived a rather austere life concentrated on his professional duties. There was tragedy for some, including Bernard Brouwer (1841–1949) who as Rector Magnificus did his best to limit the inroads of Nazism in the University; the authorities closed the university down. But after the liberation in 1945, Brouwer was judged not to have done enough in opposing the Nazis, and was refused an opportunity to return to the university. His colleagues, however, believed in his integrity and in 1947 he was appointed Director of Amsterdam’s Central Institute for Brain Research, where he continued to work until his death, as well as clinical neurology) were later in achieving the well-deserved international recognition they now have.

The book is well produced and illustrated, with portraits and a number of scientific illustrations from both the early and the recent literature.

I McDonald