Emotion processing in the minimally conscious state

As a newly described condition distinct from coma or the vegetative state, minimally conscious state (MCS) is characterised by a threshold level of consciousness, and diagnostic criteria have recently been proposed. In MCS, cognitively mediated behaviour occurs inconsistently, but is reproducible or sustained enough to be differentiated from reflexive behaviour. It is clinically essential to distinguish this condition from persistent vegetative state (PVS), due to a potentially more favourable outcome. So far, whether patients in MCS can process emotion is unknown.

Cortical processing has been described in PVS using auditory and visual functional paradigms with positron emission tomography. However, to date hardly any functional imaging studies are available in patients in MCS. We used fMRI to assess brain activity induced by an emotional stimulus in a patient in MCS.

A 17 year old man was riding his bicycle when he was hit by a train. The accident resulted in head trauma and immediate coma, progressing to MCS over the course of 4 months, when he was admitted to our institution. This research protocol was approved by the Institutional Ethics Committee. At the time of the fMRI study, 5 months after the accident, the patient localised noxious stimuli, had spontaneous eye opening, detectable sleep/wake cycles, sustained visual fixation, and contingent smiling, thus meeting criteria for MCS. A structural MRI study showed mild cortical atrophy and dilated ventricles. Auditory evoked potentials showed decreased conduction velocities at brainstorm level. The patient increased his level of awareness 2.5 months after the functional study was conducted. Auditory evoked potentials after recovery were within normal range, while MRI showed much less ventricle dilatation. Six months after recovering full consciousness, he was able to chat normally and feed himself. Currently we are retesting the patient with the same paradigm.

Non-familiar voice v silence and mother’s voice v non-familiar voice recognition were tested in an fMRI block design with 30 seconds per epoch. The patient listened to his mother reading a story, followed 30 seconds later by an age matched voice reading the same story, for 30 seconds with silence epochs in between. Blood oxygen level dependent images were acquired using a T2 weighted gradient echo planar sequence on a General Electric Signa CVI, 1.5T system with real time image processing of multislice and multi-phase images during patient stimulation and rest periods. The Medx 3.4 Sensor System was used to carry out fMRI post-processing, including motion correction and Gaussian smoothing. An uncorrected significance threshold of P<0.001 was used because amygdala and insula activation was expected, owing to emotional voice processing. Activated clusters were localised following co-registration with an anatomical T1-IR volume.

Subtraction of the phrases read by the age matched voice from silence was the control experiment, showing a significant focus of activation in the transverse and superior temporal gyrus, which spread to the planum temporale; more anterior activation was found in the superior (right) and inferior (left) insula (fig 1A). The subtraction of the mother’s phrases from the age matched voice disclosed a strong activation of the amygdala and insula spreading to the inferior frontal gyrus; there was also weaker activation of the transverse temporal gyrus, temporal operculum, and planum temporale (fig 1B,C). Activation was lower on the right hemisphere in both comparisons, non-familiar voice v silence and familiar voice v non-familiar.

To the best of our knowledge, our results provide for the first time anatomical evidence for the response of an MCS patient to a familiar voice, in which both amygdala and insula appear to play a major role.

The activation pattern of the control experiment agrees with previous studies. Our results showed that the mother’s voice activates the extended amygdala, an emotionally related structure, and a directly connected area such as the insula, perhaps acting jointly as limbic integration cortex. Although residual cerebral activity was unequivocal in our case, representing fragmentary cognitive processing, it should not be assumed that it depicts a fully integrated system required for normal levels of awareness; however, our findings highlight the legal and ethical implications of careless bedside chatter. Whether functional imaging represents a reliable method to evaluate neural processing in MCS patients, in whom cognitive output is extremely difficult to assess, remains to be seen.

References

Neurosyphilis presenting with gummatous oculomotor nerve palsy

Although epidemiological studies suggest that the incidence of primary syphilis is rising, neurosyphilis remains an uncommon manifestation of Treponema pallidum infection. In addition, the MRI appearances of this treatable neurological condition are not well known. Many patients with neurosyphilis are asymptomatic, but manifestations include subacute basal meningoencephalitis, a meningovascular syndrome of small deep cerebral and cranial nerve infarctions, chronic gummatous inflammation with focal intracranial mass lesions, chronic compartmental demyelination of general paresis, and chronic sensory-ataxic myelopathy of tabes dorsalis. We report a case in which a meningeal form of neurosyphilis presented with rapid evolution of a pupil-involving oculomotor nerve palsy to highlight the clinical, CSF, and MRI features and good response to treatment.

Case report

The patient was a 54 year old right handed homosexual man with a history of syphilis of unknown stage, treated with penicillin 25 years previously. He was well until 6 weeks prior to evaluation when he sustained minor head trauma in an automobile accident, followed by intermittent headaches, fatigue, photophobia, and anorexia. Four days before admission he developed worsening and persistent drooping of the right eyelid and double vision. On examination, his mental status was remarkable only for psychomotor slowing. The right pupil was round but enlarged at 6 mm and sluggishly constricted to 5 mm with direct and consensual light stimulation as well as near vision. The left pupil was round and 4 mm and constricted briskly to light. The right eye exhibited a moderate ptosis of the upper lid, and the globe was deviated laterally in primary gaze with markedly impaired adduction and elevation. In the left eye, ptosis was absent and ocular motility was normal. Other cranial nerve, sensory, motor, and reflex functions and gait were normal with the exception of a slight decrease in vibration and position sense in the feet. There were no signs of meningial irritation. Head computed tomography (CT) and CT angiography revealed neither blood in the subarachnoid space nor evidence of intracranial aneurysm. MRI of the head (fig 1) showed a spheroid enhancing lesion at the root of the right oculomotor nerve, which extended towards the cavernous sinus. Incidentally noted were right cerebellar and right frontal development venous abnormalities. CSF examination revealed normal opening pressure at lumbar puncture, 344 white blood cells (WBCs) (95% lymphocytes), 14 red blood cells (RBCs), protein of 167 mg%, and glucose of 39 mg%. CSF Venereal Disease Research Laboratory test (VDRL) and serum RPR titres were unchanged. At 6 months, no additional improvement in oculomotor nerve functions was seen but fatigue had subsided. Repeat MRI 7 months after hospital admission showed complete resolution of the oculomotor nerve abnormality.

Discussion

Neurosyphilis is known to cause oculomotor nerve palsies either in the meningovascular phase, due to small vessel vasculitis with resultant nerve infarction, or in granulomatous basal meningitis, due to inflammation of the nerve or its investiture; however, the literature on syphilitic mass lesions around the oculomotor nerve is sparse. Vogl et al reported a case of oculomotor nerve palsy associated with MR findings similar to ours that also resolved with penicillin treatment. Standaert et al described an enhancing penicillin-responsive lesion based in the interpeduncular cistern that compressed the ventral midbrain. The oculomotor nerve lesion in our patient was isointense to adjacent brain on T1 and T2 sequences, with brisk enhancement after intravenous injection of gadolinium contrast. We believe the lesion was a manifestation of meningeal syphilis in the form of an oculomotor nerve gumma. A gumma is a focally accentuated, exuberant granulomatous response of the meninges, typically with sparse treponemal organisms. Nonetheless, treatment of the underlying infection quiets the inflammatory process and can, as in our patient, lead to significant reversal of neurological deficit. We add our case to the growing literature on MR correlates of neurosyphilis and encourage a search for neurosyphilis when an unexplained mass lesion is present in the basal subarachnoid space. Neurosyphilis, albeit rare, still deserves inclusion among eminently treatable causes of a rapidly developing oculomotor nerve palsy.

W W Seeley, N Venna
UCSF Memory and Aging Center, PO Box 1207, San Francisco, CA 94143-1207, USA
Correspondence to: W W Seeley, UCSF Memory and Aging Center, PO Box 1207, San Francisco, CA 94143-1207, USA; wseeley@memory.ucsf.edu
doi: 10.1136/jnnp.2003.025932

References


High dose cyclophosphamide for severe refractory myasthenia gravis

Myasthenia gravis (MG) exemplifies autoimmune disease. Most patients require immuno- modulating treatment, including steroids, chemotherapy, or intravenous immunoglobulin (IV), in addition to anticholinesterase
treatment. Drachman et al published the beneficial effects of high dose cyclophosphamide in three patients with severe refractory myasthenia. We recount our experience of three myasthenic patients treated in a similar way.

Materials and methods
All patients participated in studies approved by the Drexel University College of Medicine and signed informed consent. These three patients with severe (class IVb) refractory MG include all patients treated. Patients received cyclophosphamide 50 mg/kg (adjusted ideal body weight)/day over four consecutive days. Patients received antibacterial, antiviral, and antifungal prophylaxis. Haemorrhagic cystitis prophylaxis included Mesna and forced diuresis. Packed red cells and platelets were transfused to maintain haemoglobin >8.5 g/dL and platelets >10 × 10^9/L, respectively. Patients received filgrastim (G-CSF) (5 μg/kg/day) starting day 10 until their absolute neutrophil count (ANC) reached 10 × 10^9/L for two consecutive days.

Results
Patient 1 was diagnosed with seronegative MG at 30 years of age by a positive titin test and a decremental response on repetitive stimulation. Initial treatment included pyridostigmine and plasmapheresis, but worsening symptoms prompted thymectomies at 12 and 18 months later. Her thymic pathology revealed thymic hyperplasia. Additional treatment with only transient responses included low dose oral cyclophosphamide, intravenous Ig, azathioprine, methylprednisolone, and intravenous Ig and plasmapheresis. She required 27 intubations between initial diagnosis and immunosuppressive treatment at 41 years of age.

Patient 2, previously reported, suffered from both seronegative MG and chronic inflammatory demyelinating polyneuropathy (CIDP). He presented at 47 years of age with arm weakness, and breathing difficulties. Testing revealed fluctuating double vision, ptosis, dysphagia, and severe refractory MG, which requires multi-intubations. All underwent thymectomy: patient 1, 2, and 3 repeat thymectomies. Patient 1, who required 27 intubations before treatment and only once since, and who has in the past 6 months stopped oral cyclophosphamide, may yet to enjoy the maximum benefit of this treatment. Patient 2, 3, one year after treatment, has an improving activity level. The intervals between exacerbations are increasing: 5, 8, and 11 weeks. It is 26 weeks since her last exacerbation.

Recently, Drachman et al published a single institution case series of three patients with refractory MG who were also treated with high dose cyclophosphamide. In this series, one patient had AChR antibody negative MuSK antibody positive myasthenia. Their mean disease duration was 10.3 (range: 3–15) years; one required intubation and median follow up was 24 (range: 7–40) months. In comparison, in the three patients described here, two had antibody negative myasthenia and the mean disease duration was 16.3 (range: 9–29) years. All required multiple intubations: 27, 2, and 11, and our median follow up is 25 (range: 13–48) months. During follow up, patient 3’s serum AChR levels remained detectable and did not correlate with her clinical course. Drachman et al reported a decline in antibody levels in their patients treated in a similar way, although AChR antibody titres and MuSK antibodies persisted in their patients even after 2 years. This suggests that long term remissions in MG may be possible even without achieving complete immunosuppression. High dose cyclophosphamide has the potential to significantly reduce symptoms and increase life quality among people with MG refractory compared to conventional treatment. Long term follow up is necessary to evaluate the duration effect and time to maximum benefit. High dose cyclophosphamide treatment warrants further study as a treatment for severe refractory MG.

Table 1: Patient characteristics before high dose cyclophosphamide treatment

<table>
<thead>
<tr>
<th>Age/sex</th>
<th>Patient 1 41/female</th>
<th>Patient 2 56/male</th>
<th>Patient 3 41/female</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration of MG (y)</td>
<td>11</td>
<td>9</td>
<td>29</td>
</tr>
<tr>
<td>MG severity class</td>
<td>IVb</td>
<td>IVb</td>
<td>IVb</td>
</tr>
<tr>
<td>AChR antibodies</td>
<td>Undetectable</td>
<td>Undetectable</td>
<td>Undetectable</td>
</tr>
<tr>
<td>Previous treatment</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Pyridostigmine</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Thymectomy (yes)</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>IV Ig (mg of infusions)</td>
<td>1</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>Prednisone (mg/kg)</td>
<td>10–100 mg qd, duration 3 years</td>
<td>40–100 mg qd, duration 7 years</td>
<td>10–60 mg qd, duration 4 years</td>
</tr>
<tr>
<td>Plasmapheresis (no. of procedures)</td>
<td>2/7</td>
<td>14</td>
<td>16</td>
</tr>
<tr>
<td>Azathioprine</td>
<td>50 mg/d, duration 7 months</td>
<td>200 mg qd, duration 2 months</td>
<td>50–150 mg qd, duration 15 months</td>
</tr>
<tr>
<td>Oral cyclophosphamide</td>
<td>100 mg qd, 28 months</td>
<td>limited by nausea/vomiting</td>
<td>limited by nausea/vomiting</td>
</tr>
<tr>
<td>Cyclosporine</td>
<td>30–125 mg bid, duration 7 months</td>
<td>250–500 mg qd, duration 7 months</td>
<td></td>
</tr>
<tr>
<td>Cellcept</td>
<td>50–125 mg bid, duration 7 months</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MG: myasthenia gravis; IV, intravenous; Ig, immunoglobulin; qd, four times daily; bid, twice daily.

Discussion
The patients discussed have all suffered from severe refractory MG, which requires multiple intubations. All underwent thymectomy: patients 1 and 3 repeat thymectomies. Patient 2 had an early and sustained response to the treatment. Patients 1 and 3 had multiple exacerbations. As this treatment targets IgG production, exacerbations following treatment are expected. Patient 1 required 27 intubations before treatment and only once since, and who has in the past 6 months stopped oral cyclophosphamide, may yet to enjoy the maximum benefit of this treatment. Patient 2, 3, one year after treatment, has an improving activity level. The intervals between exacerbations are increasing: 5, 8, and 11 weeks. It is 26 weeks since her last exacerbation. Patient 3 had 11 days of neutropenia, during the first 40 months of treatment. Patients 1 and 3 had multiple exacerbations, during the first 40 months after immunosuppressive treatment. Oral cyclophosphamide was necessary. She continues on pyridostigmine and occasional steroids. Her last exacerbation necessitated intubation. Between exacerbations her functional ability consistently improved. She stopped pyridostigmine at 50 weeks. At 52 weeks, a slow pyridostigmine taper began. Her serum AChR levels did not correlate with disease activity during the follow up periods.

J Neurol Neurosurg Psychiatry 2004;75:788–793
Acute head drop after cervical hyperflexion injury

Head drop is familiar to neurologists, but not widely appreciated by neurosurgeons. There are multiple causes of this condition in which the patient is unable to hold their head up because of weakness of the neck extensor musculature. It predominantly results from primary muscle pathologies in the neck extensor muscles, with occasional evidence supporting a neurogenic aetiology. 1, 2 I describe three patients in whom acute head drop closely followed cervical hyperflexion injury, and suggest that the cause is bilateral traction neurapraxia of one or more cervical dorsal rami.

Patient A was an 84 year old man who enjoyed excellent health prior to falling backwards, striking his occiput on a wall and sustaining forced flexion of the cervical spine. He complained of posterior cervical pain but, when seen in casualty for closure of an occipital laceration, was found to be neurologically intact. Cervical x rays showed only degenerative disease in the mid-lower cervical spine and loss of lordosis. Over 2 weeks the pain in his neck resolved, but he became aware of a difficulty holding his head up as the day progressed and, later, of aching in his neck extensor muscles. He was referred to neurosurgery as a possible case of delayed instability. Cervical x rays demonstrated 5˚ of forward angulation at C4/5, which did not change with neck flexion, but were otherwise unchanged. He remained neurologically intact but complained of progression of the angulation and development of neural injury, posterior segmental fixation at C4/5 with a Harthill rectangle and sublaminar wiring was advised. Surgery was remarkable only for the absence of significant ligamentous injury or abnormal mobility. Unfortunately, his head ptosis recurred after 2 months. X rays showed that the sublaminar wires at C5 had cheese-wired and had cervical x rays showing only minor degenerative changes and loss of lordosis. He was managed with analgesics and a cervical collar. Two days later he returned to casualty complaining of aching in his neck and progressive difficulty in holding up his head throughout the day. Neurological examination revealed cervical x rays showed angulation into 7˚ of flexion at C5/6, but were otherwise unchanged. He was referred to neurosurgery and at review was strikingly reminiscent of patient A. He had to hold his chin up with a hand to look ahead, had pain in the back of his neck, which developed over the day unless he used his collar, and was neurologically normal, including in the cervical dermatomes. Magnetic resonance imaging (MRI) of his neck revealed normal soft tissue anatomy. A neuro- logical opinion confirmed the normal examination, other than head ptosis. There was no evidence of inflammatory, autoimmune, or infective aetiology clinically or biochemically, the Tension test was negative, and serum creatine kinase was normal. There were no features of Parkinson’s disease or amyotrophic lateral sclerosis (ALS).

Electroneuromyography (EMG) studies of the neck muscles performed 3 weeks after injury were normal in the ventral muscles, but there were typical features of acute partial denervation in the neck extensors bilaterally, particularly in a band in the mid-to-lower cervical spine with more normal EMGs above and below this. However, electrophysiological examination of the limbs was abnormal also and consistent with an asymptomatic peripheral neuropathy. The patient declined muscle or nerve biopsy.

In view of patient A’s course and the evidence in patient B of acute denervation that might recover, patient B was managed expectantly. The collar was used to maintain range of neck movement and encourage use of the neck extensor muscles. He was given a Philadelphia collar, which was worn by day once he became aware of head ptosis. The patient was easily lift their chins and there was no evidence of ventral muscle hypertonia on clinical examination. In addition, in patients B and C, there were normal EMG findings in the ventral neck muscles but abnormal findings in the neck extensors.

Neurapraxia of dorsal primary rami would be expected to recover more quickly than dystonia in patients B and C. Equally, muscle tearing would recover in time, but it is inconceivable that sufficient fibres would have been torn to produce head drop without also producing soft tissue abnormalities of the neck. This is not the case. Only two of the cases were investigated to exclude primary neuro muscular disorders. These were excluded in patient C. Although patient B had evidence of a pre-existing peripheral neuropathy, he may simply have made him more prone to traction neurapraxia after whiplash and his eventual recovery is consistent with the proposed mechanism.

It is unclear why this syndrome has not been described before. Perhaps most whiplash injuries produce insufficient neurapraxia to provoke head drop unless patient factors adversely affect the transmission of forces to the nerves or their susceptibility to injury. In non-predisposed individuals, sufficient injuries might produce mild head drop, which is either not recognised or recovered quickly and never requires secondary referral. Furthermore, although motor deficits may simply have made him more prone to traction neurapraxia after whiplash and his eventual recovery is consistent with the proposed mechanism.

Although there are reports of head drop in conditions predominantly affecting neural rather than muscular elements, 3 Umapathi et al 4 cite Braun et al, 5 who treat refractory torticollis by multiple cervical dorsal rami without generating significant functional deficits, as evidence that focal denervation of neck extensor muscles is unlikely to cause head ptosis. This surgical denervation, however, is unilateral and the denervated muscles are allowed to be grossly abnormal because of secondary changes resulting from the underlying condition. The cat neck extensor muscle biventer cervicis (analogous to human semispinalis cervicis) has tendinous inns forming serially arranged compartments, each receiving segmental innervation from a cervical dorsal ramus. The muscle only generates useful tension if all compartments are co-stimulated; unstimulated compartments act as weak springs in series and dissipate the muscle’s force. There is some evidence for similar architecture in human neck extensors: they receive innervation from several cervical dorsal rami and have tendinous insertions producing several at least partially serial compartments. Denervation of one compartment bilaterally would produce significant weakness and fatigability in such compartmentalised muscles. Additionally, the deeper muscles only traverse one motion segment and are innervated by one posterior primary ramus. Segmental denervation of either type of muscle would lead to angulation at a motion segment, limited by intact joints, ligaments, and disc space.

Whiplash injury can cause neurapraxia of cranial nerve XI, XII, and branches of the cervical plexus, 6, 7 and there are other reports of traction neurapraxia in the neck. In the present cases, the close temporal relationship of the head drop to a forced flexion injury and the EMG findings suggesting acute denervation of neck extensor muscles are consistent with a neurogenic mechanism. Although dystonia of neck flexor muscles can produce head drop, these patients could easily lift their chins and there was no evidence of ventral muscle hypertonia on clinical examination. In addition, in patients B and C, there were normal EMG findings in the ventral neck muscles but abnormal findings in the neck extensors.

References

We report a case of acute disseminated encephalomyelitis (ADEM) temporarily associated with Campylobacter gastroenteritis in a previously fit man. A MedLine search using the keywords “ADEM”, “demyelination”, and “campylobacter” revealed no previous reports of ADEM associated with Campylobacter infection in isolation.

A 24 year old man presented to his general practitioner on the day history of non-bloody diarrhoea associated with fevers and sweats. His past medical history was unremarkable. He drank 6 units of alcohol per week and smoked occasionally. The general practitioner prescribed loperamide for symptomatic relief. Campylobacter species was later isolated from stool samples. By day 5 of his illness, his diarrhoea had settled and he had become constipated. However, he remained febrile and developed nausea and vomiting. His general practitioner prescribed erythromycin but he tolerated only two doses because of nausea.

Fourteen days into the illness he was admitted to hospital complaining of headache, fever, and sweats. Examination revealed a temperature of 38.4°C, pulse of 65 beats/min and normal blood pressure. Rectal examination revealed hard stool. There were no focal neurologic signs. His haemoglobin was 15.3 g/dl, leucocyte count was 13.3 x 10^3/mm^3 (87.1% neutrophils) and C-reactive protein was 12.8 mg/l. Two days after admission (day 16 of illness), his family reported a change in his personality and he complained of slurring of speech, intermittent diplopia, and difficulty in walking. Examination revealed mild dysarthria, left sided facial weakness, mild left pyramidal limb weakness, and decreased sensation in the leg. Tendon reflexes were brisk but plantar responses were flexor. His gait was ataxic. Cranial CT scan showed no significant abnormality. Lumbar puncture revealed an opening pressure of 160 mm CSF, total cell count of 20/mm^3 (100% lymphocytes), total protein of 541 mg/l, glucose of 3.2 mmol/l, and normal clotting profile.

In the right peri-trigonal white matter showed one lesion with no parenchymal enhancement, nontumour grey matter involvement with concomitant hyperintense signal foci in the supra- and infra-tentorial white matter, and deep grey matter. One lesion was bilateral with slight T2 hypersignal. The MRI abnormalities were consistent with ADEM.

The patient was initially treated with aciclovir 10 mg/kg four times daily, ampicillin 2 g four times daily and ciprofloxacin 500 mg twice daily, but was subsequently given intravenous methylprednisolone 1 g daily for 3 days after the diagnosis of ADEM was made. Aciclovir and ampicillin were discontinued when the negative laboratory results were available but ciprofloxacin was continued for 7 days. One day after treatment, with methylprednisolone he noticed an improvement in his speech and gait, and after 7 days of starting treatment he had no ataxia and was discharged home. He appeared to have made a full recovery when he was reviewed at 6 weeks and has since remained asymptomatic.

ADEM is an acute monophasic immune mediated inflammatory demyelinating disease of the central nervous system. It is an uncommon but a serious condition with mortality rates estimated between 10–30%. In the majority of cases, ADEM develops after systemic viral infections most commonly measles, mumps, rubella, influenza A and B, herpes simplex, Epstein-Barr virus, varicella, and vaccinia. It has been also been reported following bacterial infections such as Mycoplasma pneumoniae, Chlamydia, Legionella, and Streptococcus, or following immunisations for rabies, diphtheria/tetanus/pertussis, smallpox, measles and Japanese B encephalitis.

The pathogenesis of ADEM is poorly understood. However, the evidence suggests that activated T cells, which recognise amino acid sequences shared between microbial epitopes and myelin antigens, attack central nervous system structures alone or in synergy with antibodies. Viral or bacterial superantigens could likewise trigger autoreactive T cells with similar results.

The diagnosis of ADEM is usually made clinically with the aid of MRI scanning. Lumbar puncture findings and neuroimmunology studies. MRI scanning reveals multiple areas of increased signal on T2 weighted images in the white matter throughout the central nervous system, most being located in the sub kortical white matter of both hemispheres, which are often quite extensive and enhance with contrast. CSF findings include mononuclear pleocytosis and mild protein elevation. There are few data on evidence based treatment regimens, but treatment is usually instituted with high dose glucocorticoids. Plasmapheresis and intravenous immunoglobulin have also been used.

Campylobacter gastroenteritis is the most common cause of acute gastroenteritis in the UK, accounting for over 56 000 cases in 2000. Its incidence has risen progressively over the past 2 decades. In the majority of cases, the illness self terminates within a few days with no long term consequences. It is estimated that approximately 1/1000 reported campylobacteriosis cases lead to Guillain-Barré syndrome, and around 33% of Guillain-Barré syndrome cases in which the authors felt to be different from the pattern of signal abnormalities seen in patients with ADEM. The MRI abnormalities in our case were in keeping with ADEM although, as with the case reported by Huber et al, the amount of enhancement was minimal, indicating that the majority of the lesions were not acute. The paucity of reported cases of ADEM following Campylobacter jejuni infection and hepatitis A infection may be triggered by campylobacteriosis.

Huber et al reported a case of combined ADEM and acute motor axonal neuropathy following Campylobacter jejuni infection and hepatitis A. A immunomodulatory effect on the brain may be triggered by campylobacteriosis. Nasralla et al reported a case of postinfectious encephalomyelitis associated with Campylobacter jejuni enteritis. Cranial MRI scanning showed a combination of predomi nant grey matter involvement with concomi tant focal areas of subcortical white matter lesions, which are common presinaptic lesions, and around 33% of Guillain-Barré syndrome cases may be triggered by campylobacteriosis.
surface components of the peripheral nerves, resulting in myelin destruction and axonal degeneration.7 Furthermore, patients with ADEM often have peripheral nervous system involvement and there have been occasional cases of ADEM associated with Guillain-Barré syndrome. Our patient did not have any clinical features suggestive of peripheral nervous system involvement. However, nerve conduction studies were not performed and a degree of sub-clinical neuropathy cannot therefore be excluded.

We describe the first identifiable case of ADEM temporally associated with Campylobacter gastroenteritis alone. Our patient made an excellent recovery associated with therapy with high dose methylprednisolone.

Acknowledgements
We are most grateful to Dr D Connolly for reviewing the MRI imaging.

References
3 Hartung HP, Crossman RI. ADEM: distinct disease or part of the MS spectrum? Neurology 2001;56:1257–60.