Emotion processing in the minimally conscious state

As a newly described condition distinct from coma or the vegetative state, minimally conscious state (MCS) is characterised by a threshold level of consciousness, and diagnostic criteria have recently been proposed. In MCS, cognitively mediated behaviour occurs inconsistently, but is reproducible or sustained enough to be differentiated from reflexive behaviour. It is clinically essential to distinguish this condition from persistent vegetative state (PVS), due to a potentially more favourable outcome. So far, whether patients in MCS can process emotion is unknown.

Cortical processing has been described in PVS using auditory and visual functional paradigms with positron emission tomography. However, to date hardly any functional imaging studies are available in patients in MCS. We used fMRI to assess brain activity induced by an emotional stimulus in a patient in MCS.

A 17-year-old man was riding his bicycle when he was hit by a train. The accident resulted in head trauma and immediate coma, progressing to MCS over the course of 4 months, when he was admitted to our institution. This research protocol was approved by the Institutional Ethics Committee. At the time of the fMRI study, 5 months after the accident, the patient disclosed a strong activation of the amygdala and insula spreading to the inferior frontal gyrus; there was also weaker activation of the transverse temporal gyrus, temporal operculum, and planum temporale (fig 1A). The subtraction of the mother’s phrases from the age matched voice disclosed a strong activation of the amygdala and insula spreading to the inferior frontal gyrus; there was also weaker activation of the transverse temporal gyrus, temporal operculum, and planum temporale (fig 1B-C). Activation was lower on the right hemisphere in both comparisons, non-familiar voice silence and familiar voice non-familiar.

To the best of our knowledge, our results provide for the first time anatomical evidence for the response of an MCS patient to a familiar voice, in which both amygdala and insula appear to play a major role.

The activation pattern of the control experiment agrees with previous studies. Our results showed that the mother’s voice activates the extended amygdala, an emotionally related structure, and a directly connected area such as the insula, perhaps acting jointly as limbic integration cortex. Although residual cerebral activity was unequivocal in our case, representing fragmentary cognitive processing, it should not be assumed that it depicts a fully integrated system required for normal levels of awareness; however, our findings highlight the legal and ethical implications of careless bedside chatter. Whether functional imaging represents a reliable method to evaluate neural processing in MCS patients, in whom cognitive output is extremely difficult to assess, remains to be seen.

T Bekinschtein, J Nikliison, L Sigman, F Manes
Cognitive Neurology Section, Institute for Neurological Research (FLENI), Buenos Aires, Argentina

R Leiguarda, F Manes
Department of Neurology, Institute for Neurological Research (FLENI), Buenos Aires, Argentina

J Armony
Department of Experimental Psychology, McGill University, Montreal, Canada

A Owen
MRC-CBU, Cambridge, UK

S Carpentiero
Functional Neuroimaging Laboratory, Institute for Neurological Research (FLENI), Buenos Aires, Argentina

I Olmos, F Manes
Rehabilitation Institute (FLENI), Buenos Aires, Argentina

Correspondence to: Dr F Manes, Cognitive Neurology Section, Institute for Neurological Research (FLENI), Montaﬁtese 2325 (C1428AQK), Buenos Aires, Argentina; fmanes@fleni.org.ar doi: 10.1136/jnnp.2003.019232


Figure 1 Brain areas of activation produced by non-familiar voice subtracted from silence in coronal view (control experiment, A), Brain areas of activation produced by mother’s voice subtracted from non-familiar voice in coronal view (B), and in axial view (C)
Neurosyphilis presenting with gummatus oculomotor nerve palsy

Although epidemiological studies suggest that the incidence of primary syphilis is rising, neurosyphilis remains an uncommon manifestation of *Treponema pallidum* infection. In addition, the MRI appearances of this treatable neurological condition are not well known. Many patients with neurosyphilis are asymptomatic, but manifestations include subacute basal meningitis, a meningovascular syndrome of small deep cerebral and cranial nerve infarctions, chronic gummatous inflammation with focal intracranial mass lesions, chronic compartmental dementia of general paresis, and chronic sensory-ataxic myelopathy of tabes dorsalis. We report a case in which a meningeal form of neurosyphilis presented with rapid evolution of a pupil-involving oculomotor nerve palsy to highlight the clinical, CSF, and MRI features and good response to treatment.

Case report

The patient was a 54 year old right handed homosexual man with a history of syphilis of unknown stage, treated with penicillin 25 years previously. He was well until 6 weeks prior to evaluation when he sustained minor head trauma in an automobile accident, followed by intermittent headaches, fatigue, photophobia, and anorexia. Four days before admission he developed worsening and persistent drooping of the right eyelid and double vision. On examination, his mental status was remarkable only for psychomotor slowing. The right pupil was round but enlarged at 6 mm and sluggishly constricted to 5 mm with direct and consensual light stimulation as well as near vision. The left pupil was round and 4 mm and constricted briskly to light. The right eye showed a moderate ptosis of the upper lid, and the globe was deviated laterally in primary gaze with markedly impeded adduction and elevation. In the left eye, ptosis was absent and ocular motor activity was normal. Other cranial nerve, sensory, motor, and reflex functions and gait were normal with the exception of a slight decrease in vibration and position sense in the feet. There were no signs of meningial irritation. Head computed tomography (CT) and CT angiography revealed no evidence of intracranial aneurysm. MRI of the head (fig 1) showed a spheroid contrast-enhancing lesion at the root of the right oculomotor nerve, which extended towards the cavernous sinus. Incidentally noted were right cerebellar and right frontal developmental venous anomalies. CSF examination revealed normal opening pressure at lumbar puncture, 344 white blood cells (WBCs) (95% lymphocytes), 14 red blood cells (RBCs), protein of 167 mg%, and glucose of 39 mg%. CSF Venereal Disease Research Laboratory test (VDRL) and serum RPR titres were unchanged. At 6 months, no additional improvement in oculomotor nerve functions was seen but fatigue had subsided. Repeat MRI 7 months after hospital admission showed complete resolution at 7 months.

Discussion

Neurosyphilis is known to cause oculomotor nerve palsies either in the meningovascular phase, due to small vessel vasculitis with resultant nerve infarction, or in granulomatous basal meningitis, due to inflammation of the nerve or its investiture; however, the literature on syphilitic mass lesions around the oculomotor nerve is sparse. Vogel et al reported a case of oculomotor nerve palsy associated with MR findings similar to ours that also resolved with penicillin treatment. Standaert et al described an enhancing penicillin-responsive lesion based in the interpeduncular cistern that compressed the ventral midbrain. The oculomotor nerve lesion in our patient was isointense to adjacent brain on T1 and T2 MR sequences, with brisk enhancement after intravenous injection of gadolinium contrast. We believe the lesion was a manifestation of meningeval syphilis in the form of an oculomotor nerve gumma. A gumma is a focally accentuated, exuberant granulomatous response of the meninges, typically with sparse treponemal organisms. Nonetheless, treatment of the underlying infection quiets the inflammatory process and can, as in our patient, lead to significant reversal of neurological deficit. We add our case to the growing literature on MR correlates of neurosyphilis and encourage a search for neurosyphilis when an unexplained mass lesion is present in the basal subarachnoid space. Neurosyphilis, albeit rare, still deserves inclusion among eminently treatable causes of a rapidly developing oculomotor nerve palsy.

W W Seeley, N Venna
UCSF Memory and Aging Center, PO Box 1207, San Francisco, CA 94143-1207, USA; wseeley@memory.ucsf.edu

doi: 10.1136/jnnp.2003.019232

References


High dose cyclophosphamide for severe refractory myasthenia gravis

Myasthenia gravis (MG) exemplifies autoimmune disease. Most patients require immunomodulating treatment, including steroids, chemotherapy, or intravenous immunoglobulin (Ig), in addition to anticholinesterase

Figure 1 Head MRI showing the 8 mm (antero-posterior) × 6 mm (left to right) × 6 mm (rostrocaudal) tapering spheroid lesion at the base of the right midbrain, tracing the course of the oculomotor nerve forward into the cavernous sinus (panels A–F). The lesion is isointense to adjacent brain on T1 and T2 sequences (panels A and B) and enhances on a T1 sequence after gadolinium contrast (panel C). Post-treatment (D–F) and post-treatment (G–I) coronal images demonstrate complete resolution at 7 months.
treatment. Drachman et al published the beneficial effects of high dose cyclophosphamide in three patients with severe refractory myasthenia. We recount our experience of three myasthenic patients treated in a similar way.

Materials and methods
All patients participated in studies approved by the Drexel University College of Medicine and signed informed consent. These three patients with severe (class IVb) refractory MG includes all patients treated. Patients received cyclophosphamide 50 mg/kg (adjusted ideal body weight)/day over four consecutive days. Patients received antibiotics, antiviral, and antifungal prophylaxis. Haemorrhagic cystitis prophylaxis included Mesna and forced diuresis. Packred cells and platelets were transfused to maintain haemoglobin >8.5 g/dL and platelets >10 x 10^9/L. Patients received filgrastim (G-CSF) (5 mg/kg/day) starting day 10 until their absolute neutrophil count (ANC) reached 10 x 10^9/L for two consecutive days.

Results
Patient 1 was diagnosed with seronegative MG at 30 years of age by a positive tensilon test and a decremental response on repetitive stimulation. Initial treatment included pyridostigmine and plasmapheresis, but worsening symptoms prompted thymectomies at 12 and 18 months later. Her thymic pathology revealed thymic hyperplasia. Additional treatment with only transient responses included low dose oral cyclophosphamide, intravenous Ig, azathioprine, methylprednisolone, and continued pyridostigmine with plasmapheresis. She required 27 intubations between initial diagnosis and immunoablative treatment at 41 years of age. Patient 1, previously reported, suffered from both seronegative MG and chronic inflammatory demyelinating polyneuropathy (CIDP). She presented at 47 years of age with haemoglobin <8 g/dL and platelets <10 x 10^9/L. Between ages 38 and 41 years she underwent high dose cyclophosphamide without stem cell rescue. Thymectomy revealed a 75 g lipoma. His MG resulted in two intubations. In intubations. Thymectomy to control symptoms, prednisone (25–40 mg daily) was required. At 54 years of age, CIDP was diagnosed. Despite steroids (plasmapheresis, intravenous Ig, azathioprine, and pyridostigmine) he continued with symptoms of double vision, dysphagia, and dysphasia with a continued decremental response to repetitive stimulation. At 56 years of age, he underwent high dose cyclophosphamide without stem cell rescue.

Patient 3 was diagnosed with antibody positive MG at 12 years of age, initially treated with pyridostigmine. She received her first thymectomy at 18 years and continued on pyridostigmine and occasional steroids. By 36 years of age, she was steroid dependent. Between ages 38 and 41 years she required 12 intubations and only transiently responded to intravenous Ig and plasmapheresis. A second thymectomy was performed at age 39 and cyclosporine (CsA) was initiated. She continued on prednisone 25 mg qod, scheduled intravenous Ig every 3–4 weeks, and intermittent plasmapheresis. The CsA and Cellcept were maintained but poorly tolerated. At 41 years of age, she underwent high dose cyclophosphamide without stem cell rescue.

Neurological follow up
Patient 1, intubated 27 times before treatment, required a single intubation during 48 months of follow up. To control less severe exacerbations, during the first 40 months after immunoablative treatment, oral cyclophosphamide was necessary. She continues scheduled plasmapheresis and pyridostigmine. No other immunomodulatory medications are prescribed.

Table 1 Patient characteristics before high dose cyclophosphamide treatment

<table>
<thead>
<tr>
<th>Age/sex</th>
<th>Patient 1 41/female</th>
<th>Patient 2 56/male</th>
<th>Patient 3 41/female</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration of MG (y)</td>
<td>11</td>
<td>9</td>
<td>29</td>
</tr>
<tr>
<td>MG severity class</td>
<td>IV</td>
<td>IVb</td>
<td>IVb</td>
</tr>
<tr>
<td>AChR positively</td>
<td>Undetectable</td>
<td>Undetectable</td>
<td>Detectable</td>
</tr>
<tr>
<td>Previous treatment</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Thymectomy(ies)</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>iv Ig (no of infusions)</td>
<td>1</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>Prednisone</td>
<td>10–100 mg qd, duration 3 years</td>
<td>40–100 mg qd, duration 7 years</td>
<td>10–60 mg qd, duration 4 years</td>
</tr>
<tr>
<td>Plasmapheresis (no. of procedures)</td>
<td>217</td>
<td>14</td>
<td>16</td>
</tr>
<tr>
<td>Azathioprine</td>
<td>50 mg/d, duration 7 months limited by nausea/vomiting</td>
<td>200 mg qd, duration 2 months limited by nausea/vomiting</td>
<td>50–150 mg qd, duration 15 months</td>
</tr>
<tr>
<td>Cellcept</td>
<td>100 mg qd, 28 months</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oral cyclophosphamide</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyclosporine</td>
<td>50–125 mg bid, duration 3 months</td>
<td>250–500 mg qd, duration 7 months</td>
<td></td>
</tr>
</tbody>
</table>

MG: myasthenia gravis; iv, intravenous; Ig, immunoglobulin; qd, four times daily; bid, twice daily.

Patient 2 had myasthenic symptoms of dysphagia and diplopia. Seven months after treatment pyridostigmine was stopped and after 12 months prednisone was stopped. Twenty five months after treatment, his MG is in full remission.

Patient 3 experienced five flares at 1, 6, 11, 19, and 30 weeks following treatment. The exacerbations at 1, 6, and 11 weeks required intravenous Ig and steroids; exacerbations at 1, 19, and 30 weeks required plasmapheresis. Her last exacerbation necessitated intubation. Between exacerbations her functional ability consistently improved. She stopped prednisone at 50 weeks. At 52 weeks, a slow pyridostigmine taper began. Her serum AChr levels did not correlate with disease activity during the follow up periods.

Discussion
The patients discussed have all suffered from severe refractory MG, which requires multiple intubations. All underwent thymectomy: patients 1 and 3 repeat thymectomies. Patient 2 had an early and sustained response to treatment. Patients 1 and 3 had multiple exacerbations. As this treatment targets IgG production, exacerbations following treatment are expected. Patient 1, who required 27 intubations before treatment and only once since, and who has in the past 6 months stopped oral cyclophosphamide, may yet to enjoy the maximum benefit of this treatment. Patient 3, one year after treatment, has an improving activity level. The intervals between exacerbations are increasing: 5, 8, and 11 weeks. It is 26 weeks since her last exacerbation.

Recently, Drachman et al published a single institution case series of three patients with refractory MG who were also treated with high dose cyclophosphamide. In this series, one patient had AChr antibody negative MuSK antibody positive myasthenia. Their mean disease duration was 10.3 years (range: 3–15 years; one required intubation and median follow up was 24 (range: 7–40) months. In comparison, in the three patients described here, two had antibody negative myasthenia and the mean disease duration was 16.3 years (range: 9–29) years. All required multiple intubations: 27, 2, and 11, and our median follow up is 25 (range: 13–48) months. During follow up, patient 3’s serum AChr levels remained detectable and did not correlate with her clinical course. Drachman et al reported a decline in antibody levels in their patients treated in a similar way, although AChr antibody titres and MuSK antibodies persisted in their patients even after 2 years. This suggests that long term remissions in MG may be possible even without achieving complete immunomodulation. High dose cyclophosphamide has the potential to significantly reduce symptoms and increase life quality among people with MG refractory compared to conventional treatment. Long term follow up is necessary to evaluate the duration effect and time to maximum benefit. High dose cyclophosphamide treatment warrants further study as a treatment for severe refractory MG.

D E Gladstone
Stony Brook University, Health Sciences Center, Division of Oncology, New York, USA

T H Brannagan III
Weill Medical College of Cornell University, New York, USA

R J Schwartzman, A A Prestrud, I Brodsky
Drexel University College of Medicine, Philadelphia, USA
Acute head drop after cervical hyperflexion injury

Head drop is familiar to neurologists, but not widely appreciated by neurosurgeons. There are multiple causes of this condition in which the patient is unable to hold their head up because of weakness of the neck extensor musculature. It predominantly results from primary muscle pathologies in the neck extensor muscles, with occasional evidence supporting a neurogenic aetiology.1-3 I describe three patients in whom acute head drop closely followed cervical hyperflexion injury, and suggest that the cause is bilateral traction neurapraxia of one or more cervical dorsal rami.

Patient A was an 84 year old man who enjoyed excellent health prior to falling backwards, striking his occiput on a wall and sustaining forced flexion of the cervical spine. He complained of posterior cervical pain but, when seen in casualty for closure of an occipital laceration, was found to be neurologically intact. Cervical x rays showed only degenerative disease in the mid-lower cervical spine and loss of lordosis. Over 2 weeks the pain in his neck resolved, but he became aware of a difficulty holding his head up as the day progressed and, later, of aching in his neck extensor muscles. He was referred to neurosurgery as a possible case of delayed instability. Cervical x rays demonstrated 5º of forward angulation at C4/5, which did not change with neck flexion, but were otherwise unchanged. He remained neurologically intact but continued to progress of the angulation and development of neck pain, posterior segmental fixation at C4/5 with a Harrisill rectangle and sublaminar wiring was advised. Surgery was remarkable only for the absence of significant ligamentous injury or abnormal mobility. Unfortunately, his head ptosis recurred after 2 months. X Rays showed that the sublaminar wires at C5 had “cheese-wired” through the bone and allowed recurrence of angulation. He remained neurologically intact. After some discussion, he submitted to extended fixation from C3-C7, producing good alignment, albeit with restricted neck movements. However, he had ongoing problems with neck pain because of prominence of the metalwork due to profound atrophy of the paraspinal musculature. Three months later, he again developed head drop because of “cheese-wiring”, and the Harrisill rectangle was ended under the skin, necessitating a third procedure to remove it. At this stage, a muscle biopsy was performed showing end-stage atrophy and fibrosis although no comment could be made as to aetiology. The patients was referred for further investigation or surgery and was managed in a Philadelphia collar in the long term. Despite all the above, the malalignment at C4/5 never progressed, nor did any neurological deficits develop.

Patient B was a fit 72 year old man who sustained a flexion/extension whiplash injury during a road traffic accident (RTA). On presentation to casualty, he had minor neck pain but was neurologically intact and had cervical x rays showing only minor degenerative changes and loss of lordosis. He was managed with analgesics and a Philadelphia collar. Days later, he returned to casualty complaining of aching in his neck and progressive difficulty in holding up his head throughout the day. Neurological examination remained normal, and cervical x rays showed angulation into 7º of flexion at C5/6, but were otherwise unchanged. He was referred to neurosurgery and at review was strikingly reminiscent of patient A. He had to hold his chin up with a hand to look ahead, had pain in the back of his neck, which developed over the day unless he used his collar, and was neurologically normal, including in the cervical dermatomes. Magnetic resonance imaging (MRI) of his neck revealed normal soft tissue anatomy. A neurological opinion confirmed the normal examination, other than head ptosis. There was no evidence of inflammatory, autoimmune, or metabolic, or biochemically, the Tensilon test was negative, and serum creatine kinase was normal. There were no features of Parkinson’s disease or amyotrophic lateral sclerosis (ALS). Electroneuromyography (EMG) studies of the neck muscles performed 3 weeks after injury were normal in the ventral muscles, but there were typical features of acute partial denervation in the neck extensors bilaterally, particularly in a band in the mid-to-lower cervical spine with more normal EMGs above and below this. However, electrophysiological examination of the limbs was abnormal also and consistent with an asymptomatic peripheral neuropathy. The patient declined muscle or nerve biopsy.

In view of patient A’s course and the evidence in patient B of acute denervation that might recover, patient B was managed expectantly. Muscle biopsy was used to maintain range of neck movement and encourage use of the neck extensor muscles. He was given a Philadelphia collar, which was worn by day once he became aware of head ptosis. With this regime he recovered to normal over 4 months, including recovery of the spinal alignment at C5/6, and the Philadelphia collar was withdrawn. There has been no recurrence of head ptosis.

Patient C, a 54 year old man, was similar to patient B. He suffered a whiplash injury in an RTA and developed head ptosis and angulation at C5/6 on cervical x rays 2 weeks later. Investigation and management mirrored patient B. His right head drop was consistent with his neck extensor muscle EMG, which suggests partial denervation, but otherwise was normal clinically, biochemically, and electrophysiologically. We did not suspect muscle or nerve biopsy as it was clear he would be managed conservatively. With physiotherapy and external bracing, patient C made a complete recovery in 2 months, including recovery of spinal alignment at C5/6. There was no recurrence of head drop.

Although there are reports of head drop in conditions predominantly affecting neural rather than muscular elements,1-7 Umapathi et al11 cite Braun et al,8 who treat refractory torticollis by section of multiple cervical dorsal rami without generating significant functional deficits, as evidence that focal denervation of neck extensor muscles is unlikely to cause head ptosis. This surgical denervation, however, is unilateral and the denervated muscles are at risk of being grossly abnormal because of secondary changes resulting from the underlying condition. The cat neck extensor muscle biventer cervicis (analogous to human semispinalis capitis) has tendinous insertions defining serially arranged compartments, each receiving segmental innervation from a cervical dorsal ramus. The muscle only generates useful tension if all compartments are co-stimulated; unstimulated compartments act as weak springs in series and dissipate tension in the muscle. There is some evidence for similar architecture in human neck extensors: they receive innervation from several cervical dorsal rami and have tendinous insertions producing several at least partially serial compartments. Denervation of one compartment bilaterally would produce significant weakness and fatigability in such compartmentalised muscles. Additionally, the deeper muscles only traverse one motion segment and are innervated by one posterior primary ramus. Segmental denervation of either type of muscle would lead to angulation at a motion segment, limited by intact joints, ligaments, and disc space.

Whiplash injury can cause neurapraxia of cranial nerve XI, XII, and branches of the cervical plexus,9,10 and there are other reports of secondary neurapraxia or plexus injuries. In the present cases, the close temporal relationship of the head drop to a forced flexion injury and the EMG findings suggesting acute denervation of neck extensor muscles are consistent with a neurogenic mechanism. Although dystonia of neck flexor muscles can produce head drop, these patients could easily lift their chins and there was no evidence of ventral muscle hypertonia on clinical examination. In addition, in patients B and C, there were normal EMG findings in the ventral neck muscles but abnormal findings in the neck extensors.

Neurapraxia of dorsal primary rami would be expected to recover more quickly in patients B and C. Equally, muscle tearing would recover in time, but it is inconceivable that sufficient fibres would have been torn to produce head drop without also producing soft tissue abnormality of the adjacent muscles. This is not the case. Only two of the cases were investigated to exclude primary neuro-muscular disorders. These were excluded in patient C. Although patient B had evidence of a pre-existing peripheral neuropathy, this may simply have made him more prone to traction neurapraxia after whiplash and his eventual recovery is consistent with the proposed mechanism.

It is unclear why this syndrome has not been described before. Perhaps most whiplash injuries produce insufficient neurapraxia to provoke head drop unless patient factors adversely affect the transmission of forces to the nerves or their susceptibility to injury. In non-predisposed individuals, sufficiently severe injuries might instead produce fractures/dislocations, whose management masks signs of a concomitant neurapraxia. Less severe injuries may produce overt head drop, which is either not recognised or recovers quickly and never requires secondary referral. Furthermore, although motor deficits may be rare after whiplash, sensory symptoms may be common in the patient’s symptoms in a case of “typical” whiplash syndrome. There is support for this

References

notion from reports of symptomatic relief after cervical nerve blocks in cases of “third occipital nerve headache” and other post-whiplash syndromes.14,15

Finally, Umapathi et al suggest that cervical spinal fusion might be useful in optimising head position for patients with head drop. I would caution against this approach following their experience with patient A, although alternative fixation methods, such as lateral mass plating, with careful attention paid to achieving bony fusion, might be appropriate on occasion if conservative measures have failed.

Acknowledgements

I would like to acknowledge the contribution of the neurophysiologists involved in these cases, particularly Dr Roger Cull, Consultant Neurophysiologist, Department of Clinical Neurosciences, Western General Hospital, Edinburgh, UK.

R F Price
Department of Neurosurgery, Royal Adelaide Hospital, North Terrace, Adelaide SA5000, Australia. Rupert_price@hotmail.com

doi: 10.1136/jnnp.2003.019232

References


Acute disseminated encephalomyelitis temporally associated with Campylobacter gastroenteritis

In our case, the patient was a 24 year old man who presented to his general practitioner with a 2 day history of non-bloody diarrhoea associated with fevers and sweats. Past medical history was unremarkable. He drank 6 units of alcohol per week and smoked only occasionally. The general practitioner prescribed loperamide for symptomatic relief. Campylobacter species was later isolated from stool samples. By day 5 of his illness, his diarrhoea had settled and he had become constipated. However, he remained febrile and developed nausea and vomiting. His general practitioner prescribed erythromycin but he tolerated only two doses because of nausea.

Fourteen days into the illness he was admitted to hospital complaining of headache, fever, and sweats. Examination revealed a temperature of 38.4°C, pulse of 65 beats/min and normal blood pressure. Rectal examination revealed hard stool. His family reported a change in his personality and he complained of slurring of speech, intermittent diplopia, and difficulty in walking. Examination revealed mild dysphoria, left sided facial weakness, mild left pyramidal limb weakness, and decreased sensation in the left leg. Tendon reflexes were brisk but plantar responses were flexor. His gait was ataxic. Cranial CT scan showed no significant abnormalities. Lumbar puncture revealed an opening pressure of 160 mm CSF, total cell count of 34/mm³ with a white cell count of 20/mm³ (100% lymphocytes), total protein of 541 mg/l, glucose of 3.2 mmol/l, and negative oligoclonal banding. No organisms were seen and PCR was negative for enteroviruses and herpes virus. An EEG showed mild excess of generalised slow wave activity. Cranial MRI scan was performed on a 1.5 T Siemens magnetic system. T2 weighted imaging of the head showed multiple high signal foci in the supra- and infratentorial compartments involving the cortex, white matter, and deep grey matter. One lesion in the right peri-trigonal white matter showed slight enhancement following intravenous gadolinium diethylene-triaminopenta-acetic acid (gadolinium DTPA) injection (fig 1). The abnormalities were consistent with ADEM.

The patient was initially treated with aciclovir 10 mg/kg three times daily, amoxicillin 2 g four times daily and ciprofloxacin 500 mg twice daily, but was subsequently given intravenous methylprednisolone 1 g daily for 3 days after the diagnosis of ADEM was made. Aciclovir and amoxicillin were discontinued when the negative laboratory results were available but ciprofloxacin was continued for 7 days. One day after treatment with methylprednisolone he noted an improvement in his speech and gait, and after 7 days of starting treatment he had no ataxia and was discharged home. He appeared to have made a full recovery when he was reviewed at 6 weeks and has since remained asymptomatic.

ADEM is an acute inflammatory immune mediated inflammatory demyelinating disease of the central nervous system. It is an uncommon but a serious condition with mortality rates estimated between 10–30%.17 In the majority of cases, ADEM develops after systemic viral infections most commonly measles, mumps, rubella, influenza A and B, herpes simplex, Epstein-Barr virus, varicella, and vaccinia.18 It has also been reported following bacterial infection with Mycoplasma pneumoniae, Chlamydia, Legionella, and Streptococcus, or following immunisations for rables, diphtheria/tetanus/pertussis, smallpox, measles and Japanese B encephalitis.19 The pathogenesis of ADEM is not fully understood. However, the evidence suggests that activated T cells, which recognize amino acid sequences shared between microbial epitopes and myelin antigens, attack central nervous system structures alone or in synergy with antibodies.20 Viral or bacterial superantigens could likewise trigger autotoxic T cells with similar results.

The diagnosis of ADEM is usually made clinically with the aid of MRI scanning, lumbar puncture finding, and electrodiagnosis. MRI scanning reveals multiple areas of increased signal on T2 weighted images in the white matter throughout the central nervous system and not being located in the subcortical white matter of both hemispheres, which are often quite extensive and enhance with contrast. CSF findings include mononuclear pleocytosis and mild protein elevation. There are few data on evidence based treatment regimens, but treatment is usually instituted with high dose glucocorticoids. Plasmapheresis and intravenous immunoglobulin have also been used. Campylobacter gastroenteritis is the most common cause of acute gastroenteritis in the UK, accounting for over 56 000 cases in 2000. Its incidence has risen progressively over the past 2 decades. In the majority of cases, the illness self terminates within a few days with no long term consequences. It is estimated that approximately 1/1000 reported campylobacteriosis cases leads to Guillain-Barré syndrome, and around 33% of Guillain-Barré syndrome cases in the UK may be triggered by campylobacteriosis. Huber et al reported a case of combined ADEM and acute motor axonal neuropathy following Campylobacter jejuni infection and hepatitis A.22 A immunosuppressive therapy was ceased and it was noted that a paired clinical and MR imaging changes possibly due to the tight correlation between Campylobacter jejuni infection and Guillain-Barré syndrome and the pathogenesis of the latter. In these cases, Campylobacter jejuni induces humeral and cellular immune responses due to molecular mimicry and induces specific lipopolysaccaride epitopes on the infecting agent and target epitopes on the
surface components of the peripheral nerves, resulting in myelin destruction and axonal degeneration. Furthermore, patients with ADEM often have peripheral nervous system involvement and there have been occasional cases of ADEM associated with Guillain-Barre syndrome. Our patient did not have any clinical features suggestive of peripheral nervous system involvement. However, nerve conduction studies were not performed and a degree of sub-clinical neuropathy cannot therefore be excluded.

We describe the first identifiable case of ADEM temporally associated with Campylobacter gastroenteritis alone. Our patient made an excellent recovery associated with therapy with high dose methylprednisolone.

Acknowledgements
We are most grateful to Dr D Connolly for reviewing the MRI imaging.

Figure 1 Axial T2 weighted image showing supra- and infra-tentorial high signals in both hemispheres, and coronal T1 weighted images showing peri-trigonal white matter lesions with slight enhancement following intravenous gadolinium DTPA injection in keeping with ADEM.

References


