Emotion processing in the minimally conscious state

As a newly described condition distinct from coma or the vegetative state, minimally conscious state (MCS) is characterised by a threshold level of consciousness, and diagnostic criteria have recently been proposed. In MCS, cognitively mediated behaviour occurs inconsistently, but is reproducible or sustained enough to be differentiated from reflexive behaviour. It is clinically essential to distinguish this condition from persistent vegetative state (PVS), due to a potentially more favourable outcome. So far, whether patients in MCS can process emotion is unknown.

Cortical processing has been described in PVS using auditory and visual functional paradigms with positron emission tomography. However, to date hardly any functional imaging studies are available in patients in MCS. We used fMRI to assess brain activity induced by an emotional stimulus in a patient in MCS.

A 17 year old man was riding his bicycle when he was hit by a train. The accident resulted in head trauma and immediate coma, progressing to MCS over the course of 4 months, when he was admitted to our institution. This research protocol was approved by the Institutional Ethics Committee. At the time of the fMRI study, 5 months after the accident, the patient localised noxious stimuli, had spontaneous eye opening, detectable sleep/wake cycles, sustained visual fixation, and contingent smiling, thus meeting criteria for MCS. A structural MRI study showed mild cortical atrophy and dilated ventricles. Auditory evoked potentials showed decreased conduction velocities at brainstorm level. The patient increased his level of awareness 2.5 months after the functional study was conducted. Auditory evoked potentials after recovery were within normal range, while MRI showed much less ventricle dilatation. Six months after recovering full consciousness, he was able to chat normally and feed himself. Currently we are retesting the patient with the same paradigm.

Non-familiar voice v silence and mother’s voice v non-familiar voice recognition were tested in an fMRI block design with 30 seconds per epoch. The patient listened to his mother reading a story, followed 30 seconds later by an age matched voice reading the same story, for 30 seconds with silence epochs in between. Blood oxygen level dependent images were acquired using a T2 weighted gradient echo planar sequence on a General Electric Signa CVI. 1.5T system with real time image processing of multislice and multi-phase images during patient stimulation and rest periods. The Medx 3.4 Sensor System was used to carry out fMRI post-processing, including motion correction and Gaussian smoothing. An uncorrected significance threshold of P<0.001 was used because amygdala and insula activation was expected, owing to emotional voice processing. Activated clusters were localised following co-registration with an anatomical T1-IR volume.

Subtraction of the phrases read by the age matched voice from silence was the control experiment, showing a significant focus of activation in the transverse and superior temporal gyrus, which spread to the planum temporale; more anterior activation was found in the superior (right) and inferior (left) insula (fig 1A). The subtraction of the mother’s phrases from the age matched voice disclosed a strong activation of the amygdala and insula spreading to the inferior frontal gyrus; there was also weaker activation of the transverse temporal gyrus, temporal operculum, and planum temporale (fig 1B,C). Activation was lower on the right hemisphere in both comparisons, non-familiar voice v silence and familiar voice v non-familiar.

To the best of our knowledge, our results provide for the first time anatomical evidence for the response of an MCS patient to a familiar voice, in which both amygdala and insula appear to play a major role.

The activation pattern of the control experiment agrees with previous studies. Our results showed that the mother’s voice activates the extended amygdala, an emotionally related structure, and a directly connected area such as the insula, perhaps acting jointly as limbic integration cortex. Although residual cerebral activity was unequivocal in our case, representing fragmentary cognitive processing, it should not be assumed that it depicts a fully integrated system required for normal levels of awareness; however, our findings highlight the legal and ethical implications of careles bedside chatter. Whether functional imaging represents a reliable method to evaluate neural processing in MCS patients, in whom cognitive output is extremely difficult to assess, remains to be seen.

References


Figure 1 Brain areas of activation produced by non-familiar voice subtracted from silence in coronal view (control experiment, A). Brain areas of activation produced by mother’s voice subtracted from non-familiar voice in coronal view (B), and in axial view (C)
Neurosyphilis presenting with gummatous oculomotor nerve palsy

Although epidemiological studies suggest that the incidence of primary syphilis is rising, neurosyphilis remains an uncommon manifestation of Treponema pallidum infection. In addition, the MRI appearances of this treatable neurological condition are not well known. Many patients with neurosyphilis are asymptomatic, but manifestations include subacute basal meningitis, a meningovascular syndrome of small deep cerebral and cranial nerve infarctions, chronic gummatous inflammation with focal intracranial mass lesions, chronic compartmental dementia of general paresis, and chronic sensory-ataxic myelopathy of tabs dorsalis. We report a case in which a meningeval form of neurosyphilis presented with rapid evolution of a pupil-involving oculomotor nerve palsy to highlight the clinical, CSF, and MRI features and good response to treatment.

Case report

The patient was a 54 year old right handed homosexual man with a history of syphilis of unknown stage, treated with penicillin 25 years previously. He was well until 6 weeks prior to evaluation when he sustained minor head trauma in an automobile accident, followed by intermittent headaches, fatigue, photophobia, and anorexia. Four days before admission he developed worsening and persistent drooping of the right eyelid and double vision. On examination, his mental status was remarkable only for psychomotor slowing. The right pupil was round but enlarged at 6 mm and sluggishly constricted to 5 mm with direct and consensual light stimulation as well as near vision. The left pupil was round and 4 mm and constricted briskly to 2 mm with direct and consensual light stimulation. In the left eye, ptosis was absent and oculomotor motility was normal. Other cranial nerve, sensory, motor, and reflex functions and gait were normal with the exception of a slight decrease in vibration and position sense in the feet. There were no signs of meningial irritation. Head computed tomography (CT) and CT angiography revealed no blood in the subarachnoid space nor evidence of intracranial aneurysm. MRI of the head (fig 1) showed a spheroid contrast-enhancing lesion at the root of the right oculomotor nerve, which extended towards the cavernous sinus. Incidentally noted were right cerebellar and right frontotemporal venous anormalies. CSF examination revealed normal opening pressure at lumbar puncture, 344 white blood cells (WBCs) (95% lymphocytes), 14 red blood cells (RBCs), protein of 167 mg%, and glucose of 39 mg%. CSF Venereal Disease Research Laboratory test (VDRL) and serum RPR titres were unchanged. At 6 months, no additional improvement in oculomotor nerve functions was seen but fatigue had subsided. Repeat MRI 7 months after hospital admission showed complete resolution at 7 months.

Discussion

Neurosyphilis is known to cause oculomotor nerve palsies either in the meningovascular phase, due to small vessel vasculitis with resultant nerve infarction, or in granulomatosus basal meningitis, due to inflammation of the nerve or its investiture; however, the literature on syphilitic mass lesions around the oculomotor nerve is sparse. Vogl et al1 reported a case of oculomotor nerve palsy associated with MR findings similar to ours that also resolved with penicillin treatment. Standaert et al4 described an enhancing penicillin-responsive lesion based in the interpeduncular cistern that compressed the ventral midbrain. The oculomotor nerve lesion in our patient was isointense to adjacent brain on T1 and T2 sequences (panels A and B) and enhances on a T1 sequence after gadolinium injection of gadolinium contrast. We believe the lesion was a manifestation of meningeval syphilis in the form of an oculomotor nerve gumma. A gumma is a focally accentuated, exuberant granulomatous response of the meninges, typically with sparse treponemal organisms. Nonetheless, treatment of the underlying infection quiets the inflammatory process and can, as in our patient, lead to significant reversal of neurological deficit. We add our case to the growing literature on MR correlates of neurosyphilis and encourage a search for neurosyphilis when an unexplained mass lesion is present in the basal subarachnoid space. Neurosyphilis, albeit rare, still deserves inclusion among eminently treatable causes of a rapidly developing oculomotor nerve palsy.

W W Seeley, Venna
UCSF Memory and Aging Center, PO Box 1207, San Francisco, CA 94143-1207, USA
Correspondence to: W W Seeley, UCSF Memory and Aging Center, PO Box 1207, San Francisco, CA 94143-1207, USA; wseeley@memory.ucsf.edu
doi: 10.1136/jnnp.2003.013433

References


www.jnnp.com

High dose cyclophosphamide for severe refractory myasthenia gravis

Myasthenia gravis (MG) exemplifies autoimmune disease. Most patients require immunomodulating treatment, including steroids, chemotherapy, or intravenous immunoglobulin (Ig), in addition to anticholinesterase...
treatment. Drachman et al published the beneficial effects of high dose cyclophosphamide in three patients with severe refractory myasthenia. We recount our experience of three myasthenic patients treated in a similar way.

Materials and methods
All patients participated in studies approved by the Drexel University College of Medicine and signed informed consent. These three patients with severe (class IVb) refractory MG includes all patients treated. Patients received cyclophosphamide 50 mg/kg (adjusted ideal body weight)/day over four consecutive days. Patients received antibacterial, antifungal, and antifungal prophylaxis. Haemorrhagic cystitis prophylaxis included Mesna and forced diuresis. Packed red cells and platelets were transfused to maintain haemoglobin >8.5 g/dL and platelets >10 x 10^9/L respectively. Patients received filgrastim (G-CSF) (5 μg/kg/day) starting day 10 until their absolute neutrophil count (ANC) reached 10 x 10^9/L for two consecutive days.

Results
Patient 1 was diagnosed with seronegative MG at 30 years of age by a positive tensilon test and a decremental response on repetitive stimulation. Initial treatment included pyridostigmine and plasmapheresis, but worsening symptoms prompted thymectomies at 12 and 18 months later. Her thymic pathology revealed thymic hyperplasia. Additional treatment with only transient responses included low dose oral cyclophosphamide, intravenous ig, azathioprine, methylprednisolone, and continued pyridostigmine with plasmapheresis. She required 27 intubations between initial diagnosis and immunomodulatory treatment at 41 years of age.

Patient 2, previously reported, suffered from both seronegative MG and chronic inflammatory demyelinating polyneuropathy (CIDP). He presented at 47 years of age with fluctuating double vision, ptosis, dysphagia, arm weakness, and breathing difficulties. Testing revealed a decremental response on repetitive stimulation. Pyridostigmine was initiated. Thymectomy revealed a 75 g lipoma. His MG resulted from two intubations. After thymectomy, to control symptoms, prednisone (25–40 mg daily) was required. At 54 years of age, CIDP was diagnosed. Despite steroids (plasmapheresis, intravenous ig, azathioprine, and pyridostigmine) he continued with symptoms of double vision, dysphagia, and dysphagia with a continued decremental response to repetitive stimulation. At 56 years of age, he underwent high dose cyclophosphamide without stem cell rescue.

Patient 3 was diagnosed with antibody positive MG at 12 years of age, initially treated with pyridostigmine. She received her first thymectomy at age 18 years and continued on pyridostigmine and occasional steroids. By 36 years of age, she was steroid dependent. Between ages 38 and 41 years she required 11 intubations and only transiently responded to intravenous ig and plasmapheresis. A second thymectomy was performed at age 39 and cyclosporine (CsA) was initiated. She continued on prednisone 25 mg qod, scheduled intravenous ig every 3–4 weeks, and intermittent plasmapheresis. The CsA and Cellcept were maintained but poorly tolerated. At 41 years of age, she underwent high dose cyclophosphamide without stem cell rescue.

Treatment course
Patient 1 had 13 days of neutropenia, required three units of packed red cells and three platelet transfusions. Patient 2 had 9 days of neutropenia, required two units of packed red cells, and three platelet transfusions. Patient 3 had 11 days of neutropenia, required five units of packed red cells, and two platelet transfusions. Patients 1 and 3 experienced MG flares requiring intravenous Ig and plasmapheresis, but neither required intubation.

Neurological follow up
Patient 1, intubated 27 times before treatment, required a single intubation during 48 months of follow up. To control less severe exacerbations, during the first 40 months after immunomodulatory treatment, oral cyclophosphamide was necessary. She continues scheduled plasmapheresis and pyridostigmine. No other immunomodulatory medications are prescribed.

Patient 2 had myasthenic symptoms of dysphagia and diplopia. Seven months after treatment pyridostigmine was stopped and after 12 months prednisone was stopped. Twenty five months after treatment, his MG is in full remission.

Patient 3 experienced five flares at 1, 6, 11, 19, and 30 weeks following treatment. The exacerbations at 1, 6, and 11 weeks required intravenous Ig and steroids; exacerbations at 1, 19, and 30 weeks required plasmapheresis. Her last exacerbation necessitated intubation. Between exacerbations her functional ability consistently improved. She stopped steroids at 50 weeks. At 52 weeks, a slow pyridostigmine taper began. Her serum AchR levels did not correlate with disease activity during the follow up periods.

Discussion
The patients discussed have all suffered from severe refractory MG, which requires multiple intubations. All underwent thymectomy: patients 1 and 3 repeat thymectomies. Patient 2 had an early and sustained response to treatment. Patients 1 and 3 had multiple exacerbations. As this treatment targets IgG production, exacerbations following treatment are expected. Patient 2, who required 27 intubations before treatment and only once since, and who has in the past 6 months stopped oral cyclophosphamide, may yet to enjoy the maximum benefit of this treatment. Patient 3, one year after treatment, has an improving activity level. The intervals between exacerbations are increasing: 5, 8, and 11 weeks. It is 26 weeks since her last exacerbation.

Recently, Drachman et al published a single institution case series of three patients with refractory MG who were also treated with high dose cyclophosphamide. In this series, one patient had AchR antibody negative MuSK antibody positive myasthenia. Their mean disease duration was 10.3 (range: 3–15) years; one required intubation and median follow up was 24 (range: 7–40) months. In comparison, in the three patients described here, two had antibody negative myasthenia and the median disease duration was 16.3 (range: 9–29) years. All required multiple intubations: 27, 2, and 11, and our median follow up is 25 (range: 13–48) months. During follow up, patient 3’s serum AchR levels remained detectable and did not correlate with her clinical course. Drachman et al reported a decline in antibody levels in their patients treated in a similar way, although AchR antibody titres and MuSK antibodies persisted in their patients even after 2 years. This suggests that long term remissions in MG may be possible even without achieving complete immunomodulation. High dose cyclophosphamide has the potential to significantly reduce symptoms and increase life quality among people with MG refractory compared to conventional treatment. Long term follow up is necessary to evaluate the duration effect and time to maximum benefit. High dose cyclophosphamide treatment warrants further study as a treatment for severe refractory MG.

Table 1: Patient characteristics before high dose cyclophosphamide treatment

<table>
<thead>
<tr>
<th>Age/sex</th>
<th>Patient 1 41/female</th>
<th>Patient 2 56/male</th>
<th>Patient 3 41/female</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration of MG (y)</td>
<td>11</td>
<td>9</td>
<td>29</td>
</tr>
<tr>
<td>MG severity class</td>
<td>IVb</td>
<td>IVb</td>
<td>IVb</td>
</tr>
<tr>
<td>ACHR positivity</td>
<td>Undetectable</td>
<td>Undetectable</td>
<td>Detectable</td>
</tr>
<tr>
<td>Previous treatment</td>
<td>Pyridostigmine X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Thymectomy(ies)</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>iv Ig (no of infusions)</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Prednisone 100–100 mg qd, duration 3 years</td>
<td>100–100 mg qd, duration 7 years</td>
<td>10–60 mg qd, duration 4 years</td>
<td></td>
</tr>
<tr>
<td>Plasmapheresis 217</td>
<td>14</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>(no. of procedures)</td>
<td>Azathioprine 50 mg/d, duration 7 months limited by nausea/vomiting</td>
<td>200 mg qd, duration 2 months limited by nausea/vomiting</td>
<td>50–150 mg qd, duration 15 months</td>
</tr>
<tr>
<td>Oral cyclophosphamide 100 mg qd, 28 months</td>
<td>50–125 mg bid, duration 6 months</td>
<td>250–500 mg qd, duration 7 months</td>
<td></td>
</tr>
<tr>
<td>Cellcept</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MG: myasthenia gravis; iv, intravenous; Ig, immunoglobulin; qd, four times daily; bid, twice daily.
Head drop is familiar to neurologists, but not widely appreciated by neurosurgeons. There are multiple causes of this condition in which the patient is unable to hold their head up because of weakness of the neck extensor musculature. It predominantly results from primary muscle pathologies in the neck extensor muscles, with occasional evidence supporting a neurogenic aetiology.1 1 I describe three patients in whom acute head drop closely followed cervical hyperflexion injury, and suggest that the cause is bilateral traction neurapraxia of one or more cervical dorsal rami.

Patient A was an 84 year old man who enjoyed excellent health prior to falling backwards, striking his occiput on a wall and sustaining forced flexion of the cervical spine. He complained of posterior cervical pain but, when seen in casualty for closure of an occipital laceration, was found to be neurologically normal. Cervical x-rays showed angulation into 7° of flexion at C5/6, but were otherwise unchanged. He was referred to neurosurgery and at review was strikingly reminiscent of patient A. He had to hold his chin up with a hand to look ahead, had pain in the back of his neck, which developed over the day unless he used his collar, and was neurologically normal, including in the cervical dermatomes. Magnetic resonance imaging (MRI) of his neck revealed normal soft tissue anatomy. A neurological opinion confirmed the normal examination, other than head ptosis. There was no evidence of inflammatory, autoimmune, or metabolic disease. Clinically and biochemically, the Tensilon test was negative, and serum creatine kinase was normal. There were no features of Parkinson's disease or amyotrophic lateral sclerosis (ALS).

Electroneuromyography (EMG) studies at the neck muscles performed 3 weeks after injury were normal in the ventral muscles, but there were typical features of acute partial denervation in the neck extensors bilaterally, particularly in a band in the middle to lower cervical spine with more normal EMGs above and below this. However, electromyographic examination of the limbs was abnormal also and consistent with an asymptomatic peripheral neuropathy. The patient declined muscle or nerve biopsy.

In view of patient A's course and the evidence in patient B of acute denervation that might recover, patient B was managed expectantly. The collar was used to maintain range of neck movement and encourage use of the neck extensor muscles. He was given a Philadelphia collar, which he easily lift their chins and there was no evidence of ventral cervical hypotonia on clinical examination. In addition, in patients B and C, there were normal EMG findings in the ventral neck muscles but abnormal findings in the neck extensors.

Neurapraxia of dorsal primary rami would be expected to recover in time. This was not the case. Only two of the cases were investigated to exclude primary neuro-muscular disorders. These were excluded in patient C. Although patient B had evidence of a pre-existing peripheral neuropathy, this may simply have made him more prone to traction neurapraxia after whiplash and his eventual recovery is consistent with the proposed mechanism.

It is unclear why this syndrome has not been described before. Perhaps most whiplash injuries produce insufficient neurapraxia to provoke head drop unless patient factors adversely affect the transmission of forces to the nerves or their susceptibility to injury. In non-predisposed individuals, sufficiently severe injuries might instead produce fractures/dislocations, whose management masks signs of a concomitant neurapraxia. Least injuries, might produce a subtle drop, which is either not recognised or recovers quickly and never requires secondary referral. Furthermore, although motor deficits may be rare after whiplash, sensory symptoms may be more common, mimicking the patient’s symptoms in a case of “typical” whiplash syndrome. There is support for this.

References


Acute head drop after cervical hyperflexion injury

Head drop is familiar to neurologists, but not widely appreciated by neurosurgeons. There are multiple causes of this condition in which the patient is unable to hold their head up because of weakness of the neck extensor musculature. It predominantly results from primary muscle pathologies in the neck extensor muscles, with occasional evidence supporting a neurogenic aetiology.1 1 I describe three patients in whom acute head drop closely followed cervical hyperflexion injury, and suggest that the cause is bilateral traction neurapraxia of one or more cervical dorsal rami.

Patient A was an 84 year old man who enjoyed excellent health prior to falling backwards, striking his occiput on a wall and sustaining forced flexion of the cervical spine. He complained of posterior cervical pain but, when seen in casualty for closure of an occipital laceration, was found to be neurologically normal. Cervical x-rays demonstrated 5° of forward angulation at C4/5, which did not change with neck flexion, but were otherwise unchanged. He remained neurologically intact but complained of posterior cervical pain but, when seen in casualty for closure of an occipital laceration, was found to be neurologically normal. Cervical x-rays showed angulation into 7° of flexion at C5/6, but were otherwise unchanged. He was referred to neurosurgery and at review was strikingly reminiscent of patient A. He had to hold his chin up with a hand to look ahead, had pain in the back of his neck, which developed over the day unless he used his collar, and was neurologically normal, including in the cervical dermatomes. Magnetic resonance imaging (MRI) of his neck revealed normal soft tissue anatomy. A neurological opinion confirmed the normal examination, other than head ptosis. There was no evidence of inflammatory, autoimmune, or metabolic disease. Clinically and biochemically, the Tensilon test was negative, and serum creatine kinase was normal. There were no features of Parkinson’s disease or amyotrophic lateral sclerosis (ALS).

Electroneuromyography (EMG) studies at the neck muscles performed 3 weeks after injury were normal in the ventral muscles, but there were typical features of acute partial denervation in the neck extensors bilaterally, particularly in a band in the middle to lower cervical spine with more normal EMGs above and below this. However, electromyographic examination of the limbs was abnormal also and consistent with an asymptomatic peripheral neuropathy. The patient declined muscle or nerve biopsy.

In view of patient A’s course and the evidence in patient B of acute denervation that might recover, patient B was managed expectantly. The collar was used to maintain range of neck movement and encourage use of the neck extensor muscles. He was given a Philadelphia collar, which he easily lift their chins and there was no evidence of ventral cervical hypotonia on clinical examination. In addition, in patients B and C, there were normal EMG findings in the ventral neck muscles but abnormal findings in the neck extensors.

Neurapraxia of dorsal primary rami would be expected to recover in time. This was not the case. Only two of the cases were investigated to exclude primary neuro-muscular disorders. These were excluded in patient C. Although patient B had evidence of a pre-existing peripheral neuropathy, this may simply have made him more prone to traction neurapraxia after whiplash and his eventual recovery is consistent with the proposed mechanism.

It is unclear why this syndrome has not been described before. Perhaps most whiplash injuries produce insufficient neurapraxia to provoke head drop unless patient factors adversely affect the transmission of forces to the nerves or their susceptibility to injury. In non-predisposed individuals, sufficiently severe injuries might instead produce fractures/dislocations, whose management masks signs of a concomitant neurapraxia. Least injuries, might produce a subtle drop, which is either not recognised or recovers quickly and never requires secondary referral. Furthermore, although motor deficits may be rare after whiplash, sensory symptoms may be more common, mimicking the patient’s symptoms in a case of “typical” whiplash syndrome. There is support for this.
We report a case of acute disseminated encephalomyelitis (ADEM) temporally associated with Campylobacter gastroenteritis in a previously fit and healthy patient. We used the keywords "ADEM," "demyelination," and "campylobacter" revealed no previous reports of ADEM associated with Campylobacter infection in isolation.

A 24-year-old man presented to his general practitioner complaining of a day history of non-bloody diarrhoea associated with fevers and sweats. His past medical history was unremarkable. He drank 6 units of alcohol per week and smoked only occasionally. One general practitioner prescribed loperamide for symptomatic relief.

Fourteen days into the illness he was admitted to hospital complaining of headache, fever, and sweats. Examination revealed a temperature of 38.4°C, pulse of 65 beats/min and normal blood pressure. Rectal examination revealed hard stool. There were no focal neurological signs. His haemoglobin was 15.3 g/dL, leucocyte count was 13.3 × 10⁹/L (87.1% neutrophils) and C-reactive protein was 12.8 mg/L. Two days after admission (day 16 of illness), his family reported a change in his personality and he complained of slurring of speech, intermittent diplopia, and difficulty in walking. Examination revealed mild dysarthria, left sided facial weakness, mild left pyramidal limb weakness, and decreased sensation in the left leg. Tendon reflexes were brisk but plantar responses were flexor. His gait was ataxic. Cranial CT scan showed no significant abnormalities. Lumbar puncture revealed an opening pressure of 160 mm CSF, total cell count of 34/mm³ with a cell count of 20/mm³ (100% lymphocytes), total protein of 541 mg/L, glucose of 3.2 mmol/L, and negative oligoclonal bands. No organisms were seen and PCR was negative for enteroviruses and herpes virus. An EEG showed mild excess of generalised slow wave activity. Cranial MRI scan was performed on a 1.5 T Siemens magnetic system. T2 weighted imaging of the brain revealed multiple high signal foci in the supra- and infra-tentorial compartments involving the cortex, white matter, and deep grey matter. One lesion in the right peri-trigonal white matter showed slight enhancement following intravenous gadolinium diethylene-triaminopenta-acetic acid (gadolinium DTPA) injection (fig 1). The abnormalities were consistent with ADEM.

The patient was initially treated with aciclovir 10 mg/kg per day, ampicillin 2 g four times daily and ciprofloxacin 500 mg twice daily, but was subsequently given intravenous methylprednisolone 1 g daily for 3 days after the diagnosis of ADEM was made. Aciclovir and ampicillin were discontinued when the negative laboratory results were available but ciprofloxacin was continued for 7 days. One day after treatment with methylprednisolone he noted improvement in his speech and started to walk again, and after 7 days of starting treatment he had no ataxia and was discharged home. He appeared to have made a full recovery when he was reviewed at 6 weeks and has since remained asymptomatic.

ADEM is an acute monophasic immune-mediated inflammatory disease of the central nervous system. It is an uncommon but a serious condition with mortality rates estimated between 10–30%. In the majority of cases the syndrome develops after systemic viral infections most commonly measles, mumps, rubella, influenza A and B, herpes simplex, Epstein-Barr virus, varicella, and vaccinia. It has also been reported following bacterial infection with Mycoplasma pneumoniae, Chlamydia, Legionella, and Streptococcus, or following immunisations for rubies, diphtheria/tetanus/pertussis, small-pox, measles and Japanese B encephalitis.

The pathogenesis of ADEM is not understood. However, the evidence suggests that activated T cells, which recognize amino acid sequences shared between microbial epitopes and myelin antigens, attack central nervous system structures alone or in synergy with antibodies. Viral or bacterial super-antigens could likewise trigger autoreactive T cells with similar results.

The diagnosis of ADEM is usually made clinically with the aid of MRI scanning. Lumbar puncture findings, EEG, and electrophysiology studies. MRI scanning reveals multiple areas of increased signal on T2 weighted images in the white matter throughout the central nervous system. These are located in the subcortical white matter of both hemispheres, which are often quite extensive and enhance with contrast. CSF findings include mononuclear pleocytosis and mild protein elevation. There are few data on evidence based treatment regimens, but treatment is usually instituted with high dose glucocorticoids. Plasmapheresis and intravenous immunoglobulin have also been used. Campylobacter gastroenteritis is the most common cause of acute gastroenteritis in the UK, accounting for over 56 000 cases in 2000. Its incidence has risen progressively over the past 2 decades. In the majority of cases, the illness settles within a few days with no long-term consequences. It is estimated that approximately 1/1000 reported campylobacteriosis cases leads to Guillain-Barré syndrome, and around 33% of Guillain-Barré syndrome cases in children may be triggered by campylobacteriosis. Huber et al reported a case of combined ADEM and acute motor axonal neuropathy following Campylobacter jejuni infection and hepatitis. A immunological basis for this relation may be triggered by campylobacteriosis. Huber et al reported a case of combined ADEM and acute motor axonal neuropathy following Campylobacter jejuni infection and hepatitis. A immunological basis for this relation may be triggered by campylobacteriosis. Najar et al reported a case of postinfectious encephalomyelitis associated with Campylobacter jejuni enteritis. Cranial MRI scanning showed a combination of predominately grey matter involvement with concomitant focal areas of subcortical white matter lesions. With no pathological test which the authors felt to be different from the pattern of signal abnormalities seen in patients with ADEM. The MRI abnormalities in our case were in keeping with ADEM although, as with the case reported by Huber et al, the amount of enhancement was minimal, indicating that the majority of the lesions were not acute. The paucity of reported cases of ADEM following Campylobacter infection is surprising given the number of cases in which the authors felt to be different from the pattern of signal abnormalities seen in patients with ADEM. The MRI abnormalities in our case were in keeping with ADEM although, as with the case reported by Huber et al, the amount of enhancement was minimal, indicating that the majority of the lesions were not acute.
surface components of the peripheral nerves, resulting in myelin destruction and axonal degeneration. Furthermore, patients with ADEM often have peripheral nervous system involvement and there have been occasional cases of ADEM associated with Guillain-Barré syndrome. Our patient did not have any clinical features suggestive of peripheral nervous system involvement. However, nerve conduction studies were not performed and a degree of sub-clinical neuropathy cannot therefore be excluded.

We describe the first identifiable case of ADEM temporally associated with Campylobacter gastroenteritis alone. Our patient made an excellent recovery associated with therapy with high dose methylprednisolone.

Acknowledgements

We are most grateful to Dr D Connolly for reviewing the MRI imaging.

References