The cognitive neuroscience of autism

S Baron-Cohen

The psychology and biology of a complex developmental condition

Autism is diagnosed when a child or adult has abnormalities in a “triad” of behavioural domains: social development, communication, and repetitive behaviour/obsessive interests. Autism can occur at any point on the IQ continuum, and IQ is a strong predictor of outcome. Autism is also invariably accompanied by language delay (no single words before 2 years old). Asperger syndrome (AS) is a subgroup on the autistic spectrum. People with AS share many of the same features as are seen in autism, but with no history of language delay and with an IQ in the average range or above. In this editorial, the main cognitive theories of autism are summarised. These are then followed by a summary of the key neurobiological findings.

AUTISM: COGNITIVE ASPECTS

The mind blindness theory of autism proposes that in autism spectrum conditions there are deficits in the normal process of empathy, relative to mental age. These deficits can occur by degrees. The term “empathising” encompasses a range of other terms: “theory of mind”, “mind reading”, “empathy”, and taking the “intentional stance”. Empathy involves two major elements: (1) the ability to attribute mental states to oneself and others, as a natural way to make sense of the world; and (2) having an emotional reaction that is appropriate to the other person’s mental state (such as sympathy).

Since the first test of mind blindness in children with autism, there have been more than 30 experimental tests. The vast majority of these have revealed profound impairments in the development of their empathising ability. These deficits can occur by degrees. The term “empathising” encompasses a range of other terms: “theory of mind”, “mind reading”, “empathy”, and taking the “intentional stance”.

AUTISM: NEUROBIOLOGICAL ASPECTS

Neuropsychology and neuropathology

Anatomical abnormalities have been identified in many brain areas in autism. These include the cerebellum, frontal lobes, parietal lobes, hippocampus, amygdala, and the thalamus. Epilepsy also occurs commonly, at least in classic autism. In terms of neuropathology, the number of Purkinje cells in the cerebellar cortex is abnormally low. This has been postulated to lead to disinhibition of the cerebellar deep nuclei and consequent overexcitement of the thalamus and cerebral cortex. Abnormalities in the...
density of packing of neurons in the hippocampus, amygdala, and other parts of the limbic system have also been reported. An abnormally low degree of dendritic branching was also found in a Golgi analysis of the hippocampus of two autistic brains, though it remains to be seen if such an abnormality is confirmed in a larger sample. A separate report suggests a reduction in the size of cortical minicolumns and an increase in cell dispersion within these minicolumns. These might indicate an increase in the number of and connectivity between minicolumns.

Neurophysiology

Hyper arousal in response to sensory input, and decreased ability to select between competing sensory inputs, has been reported. Functional neuroimaging suggests increased activity in sensory areas of the brain normally associated with stimulus driven processing, and decreased activity in areas normally associated with higher cognitive processing. Thus, on the EFT, people with autism show unusually high activation in visual areas and cerebral white matter. This reflects an enlargement of cerebellar and cerebral white matter, and cerebral grey matter. Enlargement of superficial white matter tracts containing cortico-cortical fibres may persist abnormally late into development, while the internal capsule and corpus callosum are smaller. The visual N2 to novel stimuli is also heightened to irrelevant stimuli. The P3 in response to auditory stimuli is abnormally generalised to occipital sites in visual cortex.

Regarding EEG results, the P1 evoked potential is either abnormally heightened in response to stimuli that are the target of attention, or abnormally generalised to stimuli that are outside the target of attention. Both hemispheres show abnormal activation—indiscriminately—during shifts of attention into either hemifield. Regarding attention research, a deficit has been found in rapid shifting of attention between modalities, between spatial locations and between object features.

The “social brain”

A neural basis of empathy has built on a model first proposed by Brosch. She suggested—from animal lesion studies, single cell recording studies, and neurological studies—that social intelligence was a function of three regions: the amygdala, the orbitofrontal and medial frontal cortex, and the superior temporal sulcus and gyrus (STG). Together, she called these the “social brain”. Abnormalities in autism have been found in the amygdala, the orbito and the medial frontal cortex.

Regarding the amygdala, there are four lines of evidence for an amygdala deficit in autism. Firstly, a neuroanatomical study of autism at postmortem found microscopic pathology (in the form of increased cell density) in the amygdala, in the presence of normal amygdala volume. Secondly, patients with autism tend to show a similar pattern of deficits to those seen in patients with amygdala lesions. Thirdly, a recent structural MRI study of autism reported reduced amygdala volume. Finally, in a recent functional magnetic resonance imaging (fMRI) study, adults with high functioning autism (HFA) or Asperger syndrome (AS) showed significantly less amygdala activation during a mentalising task (Reading the Mind in the Eyes task) compared with normal.

Reduced activity has also been found in the left medial frontal cortex, during an empathising (theory of mind) task, and also in the orbitofrontal cortex.

Genetics of Autism Spectrum Conditions

Ultimately, the cognitive and neural abnormalities in autism spectrum conditions are likely to be caused by genetic factors. The sibling risk rate for autism is approximately 4.5%, or a tenfold increase over general population rates. In an epidemiological study of same sex autistic twins, it was found that 60% of monozygotic (MZ) twins were concordant for autism versus no dizygotic (DZ) pairs. When they considered a broader phenotype (of related cognitive or social abnormalities), 92% of MZ pairs were concordant versus 10% of DZ pairs. The high concordance in MZ twins indicated a high degree of genetic influence, and the risk to a co-MZ twin can be estimated at over 200 times the general population rate.

Molecular genetic studies are beginning to narrow down candidate regions. There is still little consensus, but two regions have been identified in several (but not all) studies. These are 15q11-13, near the GABA receptor subunit gene (GABRB3) and a second one on 17q11.2, near the serotonin transporter gene (SLC6A4). The latter is of interest because of reports of increased serotonin (5HT) levels of platelets in autism [204]. Serotonin innervates the limbic system, and so plausibly plays a role in emotion recognition and empathy. Mothers homozygous for GABRB3 knockout fail to engage in normal encouraging and have epileptic-
chromosome have also been implicated in autism, and are of interest for their power to explain the sex ratio in autism (markedly biased towards males). These are the neulin genes (NLGN3, NLGN4), FMRI (which causes fragile X syndrome), and MECP2. Several reviews of the genetics of autism literature are available, but this is a fast changing field. 100–102

As of yet, specific genes for autism have not yet been identified, despite the encouraging possibility of candidate regions on chromosomes. The future of research in this field will be not only to isolate the relevant genes but also to understand the function of these genes, and ultimately the relation between these different causal levels in autism. It is hoped that during this research endeavour there will also be evaluations of the most promising treatments.

ACKNOWLEDGEMENTS

The author was supported by the MRC during the period of this work. I am grateful to Matthew Belmonte for discussions of the neuroscience of autism literature. This editorial has benefited from a preview of Belmonte et al. (in press).

REFERENCES

Essential tremor

Expanding clinical dimensions of essential tremor
L J Findlay

The non-motor manifestations of essential tremor may be important

The paper in this issue by Chatterjee et al (page 594) is the first large cross sectional study of personality in people with essential tremor compared with a control group. This careful study showed higher scores in the essential tremor group on the transdimensional personality questionnaire (TPO) in the domain of harm avoidance—implying a personality with increased levels of pessimism, fearfulness, shyness, and anxiety, and easy fatigability. Essential tremor is the commonest movement disorder seen in clinical practice and has hitherto been considered a pure motor disorder without evidence of neuronal degeneration or widespread changes in the central nervous system. The age specific prevalence is reported to be between 1% and 3% of the general population. It is often given the prefix “benign,” which is unfortunate as many affected individuals have physical, social, and psychological handicaps, and some are totally disabled. As with essential tremor, the early descriptions of other less common movement disorders, such as Parkinson’s disease, did not mention or emphasise the non-motor manifestations, though these are now recognised to be an integral part of Parkinson’s disease. However, in one of the earliest large studies of essential tremor, Minor described higher intelligence, fecundity, and longevity in the essential tremor group.
group. Considering the overlap and commonality in phenomenology between essential tremor and Parkinson’s disease, it is perhaps not surprising that in recent years non-motor manifestations have been increasingly recognised as an integral part of essential tremor.

The limited studies thus far have described abnormalities of cognition, affect, and personality in essential tremor. The cognitive impairments include deficits in verbal fluency, naming, recent memory, working memory, and mental set shifting. Higher levels of depression, anxiety, and obsessive-compulsive disorder are described in comparison with control groups. Interestingly, above average performances in the essential tremor compared with controls have been reported in the areas of general verbal and intellectual abilities, and this would be in line with the early observation of Minor. The severity of the cognitive deficits ranges from unnoticeable to severe. The largest impairments have been described in verbal fluency and mental set shifting. In some studies cognitive impairment and depression were of sufficient severity to interfere with activities of daily living. In some individuals the personality changes were significant enough to cause disturbance of psychosocial functioning or to provoke comment from family members. In general, patients with Parkinson’s disease have more widespread and severe impairments.

When considering changes in the psychology, mood, and results of tests of cognition in essential tremor, consideration has to be given to the direct, or indirect, effects of the tremor itself. In none of the studies so far has any significant correlation been found between tremor severity and any measure of psychological or cognitive change. However, I am not convinced that sufficient numbers of patients with very severe essential tremor have yet been examined. Such cases may represent a separable subgroup—for example, some show clear evidence of cerebellar deficits. The concept that severe essential tremor represents a separable category was expounded eloquently by the late David Marsden.

Further longitudinal prospective comparative studies will be required to unravel the link between the tremor of essential tremor and the underlying mechanisms producing cognitive, personality, and psychological change. From the complexity of the non-motor manifestations and knowledge on the generation of essential tremor, it would seem unlikely that the phenomena can be linked to a change in a single neurotransmitter system. Non-motor manifestations of essential tremor—including changes in mood and personality and the disparate cognitive abnormalities—could be suberved by abnormalities in frontal/subcortical pathways. However, the constellation of cognitive and affective changes resembles those described in the “cerebellar cognitive affective syndrome,” which is found in cerebellar syndromes. Although the pathogenesis of essential tremor is still not understood, there is overwhelming evidence of involvement of the cerebellum, and current concepts and studies have shown that the cerebellum is functionally connected to the frontal cerebral cortex through feed forward and feed backward pathways. The cerebellar cognitive affective syndrome is more pronounced in patients with acute cerebellar lesions and therefore the slow onset of essential tremor may account for the generally milder symptoms described in the studies of this condition.

Non-motor manifestations of essential tremor will have to be considered in the assessment of patients under consideration for invasive treatments, such as stereotactic surgery or insertion of a deep brain stimulator. Limited evidence thus far available would suggest such procedures do not produce any deleterious effects on cognition and may result in a significant reduction in anxiety and an improvement in the quality of life.

REFERENCES

EDITORIAL COMMENTARY

Optimising multi-task performance: opportunities for motoric neurorehabilitation

M A Hirsch

The stops walking while talking test; a dual task for motoric neurorehabilitation—further complexities of the test?

In their study, Hyndman and Ashburn administered the stops walking while talking test (SWWT) to predict the occurrence of falls (see p 994, this issue). Optimising multi-task cognitive and motor performance and targeting individuals who may benefit from therapeutic interventions to improve gait and reduce falls after stroke are important goals of neurorehabilitation. Dual task paradigms, such as walking while talking, can substantially alter motor and cognitive performance in younger and older adults with and without pathology. The authors’ results are particularly interesting in the light of the possibilities of dual task therapies to prevent falls in persons with brain dysfunction. For example, one study showed that treatment with electromagnet fields improves dual task performance. Much time is spent during rehabilitation to improve a patient’s functional gait parameters and few therapies are evidence-based. Evidence-based techniques in motoric neurorehabilitation of gait following stroke often include treadmill training with partial body weight support (TTPBWS). Dramatic improvements in gait can be observed during a single TTPBWS session where patients practice

Motoric neurorehabilitation

Optimising multi-task performance: opportunities for motoric neurorehabilitation

M A Hirsch

The stops walking while talking test; a dual task for motoric neurorehabilitation—further complexities of the test?
up to several thousand gait cycles on a motorised treadmill, while their body-weight is partially supported by a parachute harness. This is thought to maximise motor practice time because the treadmill “forces” patients to ambulate in a safe environment with minimal fear of falling. Future studies should address the complementary nature of SWWT during TTPBWS, by assessing the precise effect of a cognitive task on gait in older adults. Rather than asking simple questions and measuring if patients respond by stopping or not stopping, future studies should examine elements of speech itself, such as speech rate, grammatical complexity, sentence length and structure, and their effects on gait patterns. Gait velocity should be controlled and this can be done with a treadmill. Then we may begin to ask if gait (and speech) patterns differ between stopper and non-stoppers. Optimally, the effects on gait should be studied in greater detail using three dimensional computerised gait analysis systems. Lower extremity leg strength and activity level should also be assessed. Most importantly, does dual task therapy transfer to functional gains in a real world environment? Answers to these questions may give further insights into the wondrous potential of the brain to recover from injury.

REFERENCES

1 Hyndman D, Ashburn AM. “Stops walking when talking” as a predictor of falls in people with stroke living in the community. J Neural Neurosurg Psychiatry 2004;75:994–7.

Clinical Evidence—Call for contributors

Clinical Evidence is a regularly updated evidence based journal available worldwide both as a paper version and on the internet. Clinical Evidence needs to recruit a number of new contributors. Contributors are health care professionals or epidemiologists with experience in evidence based medicine and the ability to write in a concise and structured way.

Currently, we are interested in finding contributors with an interest in the following clinical areas:

- Altitude sickness;
- Autism;
- Basal cell carcinoma;
- Breast feeding;
- Carbon monoxide poisoning;
- Cervical cancer;
- Cystic fibrosis;
- Ectopic pregnancy;
- Grief/bereavement;
- Halitosis;
- Hodgkin’s disease;
- Infectious mononucleosis (glandular fever);
- Kidney stones;
- Malignant melanoma (metastatic);
- Mesothelioma;
- Myeloma;
- Ovarian cyst;
- Pancreatitis (acute);
- Pancreatitis (chronic);
- Polymyalgia rheumatica;
- Post-partum haemorrhage;
- Pulmonary embolism;
- Recurrent miscarriage;
- Repetitive strain injury;
- Scoliosis;
- Seasonal affective disorder;
- Squint;
- Systemic lupus erythematosus;
- Testicular cancer;
- Varicocele;
- Viral meningitis;
- Vitiligo

However, we are always looking for others, so do not let this list discourage you.

Being a contributor involves:

- Appraising the results of literature searches performed by our Information Specialists to identify high quality evidence for inclusion in the journal.
- Writing to a highly structured template (about 2000–3000 words), using evidence from selected studies, within 6–8 weeks of receiving the literature search results.
- Working with Clinical Evidence Editors to ensure that the text meets rigorous epidemiological and style standards.
- Updating the text every eight months to incorporate new evidence.
- Expanding the topic to include new questions once every 12–18 months.

If you would like to become a contributor for Clinical Evidence or require more information about what this involves please send your contact details and a copy of your CV, clearly stating the clinical area you are interested in, to Claire Folkes (cfolkes@bmjgroup.com).

Call for peer reviewers

Clinical Evidence also needs to recruit a number of new peer reviewers specifically with an interest in the clinical areas stated above, and also others related to general practice. Peer reviewers are health care professionals or epidemiologists with experience in evidence based medicine. As a peer reviewer you would be asked for your views on the clinical relevance, validity, and accessibility of specific topics within the journal, and their usefulness to the intended audience (international generalists and health care professionals, possibly with limited statistical knowledge). Topics are usually 2000–3000 words in length and we would ask you to review between 2–5 topics per year. The peer review process takes place throughout the year, and our turnaround time for each review is ideally 10–14 days.

If you are interested in becoming a peer reviewer for Clinical Evidence, please complete the peer review questionnaire at www.clinicalevidence.com or contact Claire Folkes (cfolkes@bmjgroup.com).