Autism

The cognitive neuroscience of autism

S Baron-Cohen

The psychology and biology of a complex developmental condition

Autism is diagnosed when a child or adult has abnormalities in a “triad” of behavioural domains: social development, communication, and repetitive behaviour/obsessive interests. Autism can occur at any point on the IQ continuum, and IQ is a strong predictor of outcome. Autism is also invariably accompanied by language delay (no single words before 2 years old). Asperger syndrome (AS) is a subgroup on the autistic spectrum. People with AS share many of the same features as are seen in autism, but with no history of language delay and with an IQ in the average range or above.

The vast majority of these have revealed more than 30 experimental tests. Asperger syndrome (AS) is a subgroup on the autistic spectrum. People with AS share many of the same features as are seen in autism, but with no history of language delay and with an IQ in the average range or above. People with autism spectrum conditions show unusually strong repetitive behaviour, a strong desire for routines, and a “need for sameness”. One cognitive account of this aspect of the syndrome is the executive dysfunction theory. This assumes that autism involves a fronto-limbic pathology leading to persevering or inability to shift attention. There is some evidence for such executive deficits. But the fact that it is possible for people with AS to exist who have no demonstrable executive dysfunction while still having deficits in empathising and talents in systemising, suggests that executive dysfunction is unlikely to be a core feature of autism spectrum conditions.

The executive account has also traditionally ignored the content of “repetitive behaviour”. The E-S theory in contrast draws attention to the fact that much repetitive behaviour involves the child’s “obsessional” or strong interests in mechanical systems (such as light switches or water faucets) or other systems that can be understood in terms of rules and regularities. Rather than these behaviours being a sign of executive dysfunction, these may reflect the child’s intact or even superior interest in systems. One study suggests that autistic obsessions are not random with respect to content (which would be predicted by the content free executive dysfunction theory), but that these test to cluster in the domain of systems.

Weak central coherence (CC) refers to the individual’s preference for local detail over global processing. This has been demonstrated in terms of an autistic superiority on the embedded figures task (EFT) and the block design subtest. It has also been shown in terms of an autistic deficit in integrating fragments of objects and integrating sentences within a paragraph. The faster and more accurate performance on the EFT and block design test have been interpreted as evidence of good segmentation skills, and superior attention to detail. The latter has also been demonstrated on visual search tasks.

Systemising requires excellent attention to detail, identifying parameters that may then be tested for their role in the behaviour of the system under examination. So, both the E-S theory and the CC theory predict excellent attention to detail. However, the E-S and CC theories also make opposite predictions when it comes to an individual with autism being able to understand a whole system. The E-S theory predicts that a person with autism, faced with a new system to learn, will show a stronger drive to learn the system compared with someone without autism, so long as there are underlying rules and regularities that can be discovered. Moreover, they will readily grasp that a change of one parameter in one part of the system may have distant effects on another part of the system. In contrast, the CC theory predicts that they should fail to understand whole (global) systems or the relation between parts of a system. This has not yet been tested.

AUTISM: NEUROBIOLOGICAL ASPECTS

Neuroanatomy and neuropathology

Anatomical abnormalities have been identified in many brain areas in autism. These include the cerebellum, the brain stem, frontal lobes, parietal lobes, hippocampus, and the amygdala. Epilepsy also occurs commonly, at least in classic autism. In terms of neuropathology, the number of Purkinje cells in the cerebellar cortex is abnormally low. This has been postulated to lead to disinhibition of the cerebellar deep nuclei and consequent overexcitement of the thalamus and cerebral cortex. Abnormalities in the
density of packing of neurons in the hippocampus, amygdala, and other parts of the limbic system have also been reported. An abnormally low degree of dendritic branching was also found in a Golgi analysis of the hippocampus of two autistic brains, but it remains to be seen if such an abnormality is confirmed in a larger sample. A separate report suggests a reduction in the size of cortical minicolumns and an increase in cell dispersion within these minicolumns. These might indicate an increase in the number of and connectivity between minicolumns.

Neurophysiology

Hyper arousal in response to sensory input, and decreased ability to select between competing sensory inputs, has been reported. Functional neuroimaging suggests increased activity in sensory areas of the brain normally associated with stimulus driven processing, and decreased activity in areas normally associated with higher cognitive processing. Thus, on the EFT, people with autism show unusually high activation in ventral occipital areas and abnormally low activation in prefrontal and parietal areas. In one study they also failed to show normal activity in the fusiform “face area,” instead showing abnormally high activity in the peristriate cortex and inferior temporal gyrus. The visual N2 to novel stimuli is also heightened to irrelevant stimuli. The P3 in response to auditory stimuli is abnormally generalised to occipital sites in visual cortex.

Regarding EEG results, the P1 evoked potential is either abnormally heightened in response to stimuli that are the target of attention, or abnormally generalised to stimuli that are outside the target of attention. Both hemispheres show abnormal activation—indiscriminately—during shifts of attention into either hemifield. Regarding attention research, a deficit has been found in rapid shifting of attention between modalities, between spatial locations and between object features.

Morphometry

Magnetic resonance imaging (MRI) shows volume deficits in the cerebellum, and posterior corpus callosum. Regarding the cerebellar abnormalities, a subgroup shows increased cerebellar volume. A volume deficit has also been reported in the parietal lobe. Neurropsychology suggests this is associated with a narrowed spatial focus of attention.

Longitudinal morphometry

Using either MRI volumetric analysis, or measures of head circumference, the autistic brain appears to involve transient postnatal macroencephaly. Neonates later diagnosed with autism or PDD-NOS (Pervasive Developmental Disorder-Not Otherwise Specified) have normal head circumference, but by 2–4 years of age 90% of these have MRI based brain volumes larger than average. This reflects an enlargement of cerebellar and cerebral white matter, and cerebral grey matter. Enlargement of superficial white matter tracts containing cortico-cortical fibres may persist abnormally late into development, while the internal capsule and corpus callosum are smaller. Cerbellar and cerebral white matter volumes, and cerebellar vermis size can distinguish 95% of toddlers with autism from normal controls, and predict if the child with autism will be high or low functioning. The overgrowth is anterior to posterior (frontal lobes being the largest). This increase in volume of cortical grey matter may reflect a failure of synaptic pruning, or an excess of synaptogenesis.

The “social brain”

A neural basis of empathy has built on a model first proposed by Brothers. She suggested—from animal lesion studies, single cell recording studies, and neurological studies—that social intelligence was a function of three regions: the amygdala, the orbitofrontal and medial frontal cortex, and the superior temporal sulcus and gyrus (STG). Together, she called these the “social brain”. Abnormalities in autism have been found in the amygdala, the orbito and the medial frontal cortex.

Regarding the amygdala, there are four lines of evidence for an amygdala deficit in autism. Firstly, a neuroanatomical study of autism at postmortem found microscopic pathology (in the form of increased cell density) in the amygdala, in the presence of normal amygdala volume. Secondly, patients with autism tend to show a similar pattern of deficits to those seen in patients with amygdala lesions. Thirdly, a recent structural MRI study of autism reported reduced amygdala volume. Finally, in a recent functional magnetic resonance imaging (fMRI) study, adults with high functioning autism (HFA) or Asperger syndrome (AS) showed significantly less amygdala activation during a mentalising task (Reading the Mind in the Eyes task) compared with normal.

Reduced activity has also been found in the left medial frontal cortex, during an empathising (theory of mind) task, and also in the orbitofrontal cortex.

GENETICS OF AUTISM SPECTRUM DISORDER

Ultimately, the cognitive and neural abnormalities in autism spectrum conditions are likely to be caused by genetic factors. The sibling risk rate for autism is approximately 4.5%, or a tenfold increase over general population rates. In an epidemiological study of same sex autistic twins, it was found that 60% of monozygotic (MZ) pairs were concordant for autism versus no dizygotic (DZ) pairs. When they considered a broader phenotype (of related cognitive or social abnormalities), 92% of MZ pairs were concordant versus 10% of DZ pairs. The high concordance in MZ twins indicates a high degree of genetic influence, and the risk to a co-MZ twin can be estimated at over 200 times the general population rate.

Molecular genetic studies are beginning to narrow down candidate regions. There is still little consensus, but two regions have been identified in several (but not all) studies. These are 15q11-13, near the GABAB 1b receptor subunit gene (GABRB1) and a second one on 17q11.2, near the serotonin transporter gene (SLC6A4). The latter is of interest because of reports of increased serotonin (5HT) levels of platelets in autism [204]. Serotonin innervates the limbic system, and so plausibly plays a role in emotion recognition and empathy. Mothers homozygous for GABRB1 knockout fail to engage in normal nurturing behaviour and have epileptiform EEG. At least four loci on the X
chromosome have also been implicated in autism, and are of interest for their power to explain the sex ratio in autism (markedly biased towards males). These are the neurexin genes (NLGN3, NLGN4), FMRI1 (which causes fragile X syndrome), and MECP2. Several reviews of the genetics of autism literature are available, but this is a fast changing field.

As of yet, specific genes for autism have not yet been identified, despite the encouraging possibility of candidate regions on chromosomes. The future of research in this field will be not only to isolate the relevant genes but also to understand the function of these genes, and ultimately the relation between these different causal levels in autism. It is hoped that during this research endeavour there will also be evaluations of the most promising treatments.

ACKNOWLEDGEMENTS

The author was supported by the MRC during the period of this work. I am grateful to Matthew Belmonte for discussions of the neuroscience of autism literature. This editorial has benefited from a preview of Belmonte et al. (in press).

J Neurol Neurosurg Psychiatry 2004;75:943–948.
doi: 10.1136/jnnp.2003.018713

Correspondence to: S Baron-Cohen, Autism Research Centre, Departments of Experimental Psychology and Psychiatry, University of Cambridge, Douglas House, Cambridge CB2 2AH, UK; sb203@cam.ac.uk

REFERENCES

Essential tremor

Expanding clinical dimensions of essential tremor

L J Findlay

The non-motor manifestations of essential tremor may be important

The paper in this issue by Chatterjee et al. (page 958)1 is the first large cross sectional study of personality in people with essential tremor compared with a control group. This careful study showed higher scores in the essential tremor group on the transdimensional personality questionnaire (TPQ) in the domain of harm avoidance—implying a personality with increased levels of pessimism, fearfulness, shyness, and anxiety, and easy fatigability.

Essential tremor is the commonest movement disorder seen in clinical practice and has hitherto been considered a pure motor disorder without evidence of neuronal degeneration or widespread changes in the central nervous system. The age specific prevalence is reported to be between 1% and 3% of the general population. It is often given the prefix “benign,” which is unfortunate as many affected individuals have physical, social, and psychological handicaps, and some are totally disabled.1

As with essential tremor, the early descriptions of other less common movement disorders, such as Parkinson’s disease, did not mention or emphasise the non-motor manifestations, though these are now recognised to be an integral part of Parkinson’s disease. However, in one of the largest studies of essential tremor, Minor described higher intelligence, fecundity, and longevity in the essential tremor group.
EDITORIAL COMMENTARY

949

Motoric neurorehabilitation

Optimising multi-task performance: opportunities for motoric neurorehabilitation

M A Hirsch

The stops walking while talking test; a dual task for motoric neurorehabilitation—further complexities of the test?

In their study, Hyndman and Ashburn administered the stops walking while talking test (SWWT) to predict the occurrence of falls (see p 994, this issue). Optimising multi-task cognitive and motor performance and targeting individuals who may benefit from therapeutic interventions to improve gait and reduce falls after stroke are important goals of neurorehabilitation. Dual task paradigms, such as walking while talking, can substantially alter motor and cognitive performance in younger and older adults with and without pathology. The authors’ results are particularly interesting in the light of the possibilities of dual task therapies to prevent falls in persons with brain dysfunction. For example, one study showed that treatment with electromagnetic fields improves dual task performance. Much time is spent during rehabilitation to improve a patient’s functional gait parameters and few therapies are evidence-based. Evidence-based techniques in motoric neurorehabilitation of gait following stroke often include treadmill training with partial body weight support (TTPBWS). Dramatic improvements in gait can be observed during a single TTPBWS session where patients practice
up to several thousand gait cycles on a motorised treadmill, while their body-weight is partially supported by a parachute harness. This is thought to maximise motor practice time because the treadmill “forces” patients to ambulate in a safe environment with minimal fear of falling. Future studies should address the complementary nature of SWT during TTPBWS, by assessing the precise effect of a cognitive task on gait in older adults. Rather than asking simple questions and measuring if patients respond by stopping or not stopping, future studies should examine elements of speech itself, such as speech rate, grammatical complexity, sentence length and structure, and their effects on gait patterns. Gait velocity should be controlled and this can be done with a treadmill. Then we may begin to ask if gait (and speech) patterns differ between stopper and non-stoppers. Optimally, the effects on gait should be studied in greater detail using three dimensional computerised gait analysis systems. Lower extremity leg strength and activity level should also be assessed. Most importantly, does dual task therapy transfer to functional gains in a real world environment? Answers to these questions may give further insights into the wondrous potential of the brain to recover from injury.


Correspondence to: Dr M A Hirsch, Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, Massachusetts, USA; mhirsch@jhmi.edu

REFERENCES

1 Hyndman D, Ashburn AM. “Stops walking when talking” as a predictor of falls in people with stroke living in the community. J Neurol Neurosurg Psychiatry 2004;75:994–7.

Clinical Evidence—Call for contributors

Clinical Evidence is a regularly updated evidence based journal available worldwide both as a paper version and on the internet. Clinical Evidence needs to recruit a number of new contributors. Contributors are health care professionals or epidemiologists with experience in evidence based medicine and the ability to write in a concise and structured way.

Currently, we are interested in finding contributors with an interest in the following clinical areas:

- Altitude sickness
- Autism
- Basal cell carcinoma
- Breast feeding
- Carbon monoxide poisoning
- Cervical cancer
- Cystic fibrosis
- Ectopic pregnancy
- Grief/bereavement
- Halitosis
- Hodgkins disease
- Infectious mononucleosis (glandular fever)
- Kidney stones
- Malignant melanoma (metastatic)
- Mesothelioma
- Myeloma
- Ovarian cyst
- Pancreatitis (acute)
- Pancreatitis (chronic)
- Polymyalgia rheumatica
- Post-partum haemorrhage
- Pulmonary embolism
- Recurrent miscarriage
- Repetitive strain injury
- Scoliosis
- Seasonal affective disorder
- Squint
- Systemic lupus erythematosus
- Testicular cancer
- Variocele
- Viral meningitis
- Vitiligo

However, we are always looking for others, so do not let this list discourage you.

Being a contributor involves:

- Appraising the results of literature searches (performed by our Information Specialists) to identify high quality evidence for inclusion in the journal.
- Writing to a highly structured template (about 2000–3000 words), using evidence from selected studies, within 6–8 weeks of receiving the literature search results.
- Working with Clinical Evidence Editors to ensure that the text meets rigorous epidemiological and style standards.
- Updating the text every eight months to incorporate new evidence.
- Expanding the topic to include new questions once every 12–18 months.

If you would like to become a contributor for Clinical Evidence or require more information about what this involves please send your contact details and a copy of your CV, clearly stating the clinical area you are interested in, to Claire Folkes (cfolkes@bmjgroup.com).

Call for peer reviewers

Clinical Evidence also needs to recruit a number of new peer reviewers specifically with an interest in the clinical areas stated above, and also others related to general practice. Peer reviewers are health care professionals or epidemiologists with experience in evidence based medicine. As a peer reviewer you would be asked for your views on the clinical relevance, validity, and accessibility of specific topics within the journal, and their usefulness to the intended audience (international generalists and health care professionals, possibly with limited statistical knowledge). Topics are usually 2000–3000 words in length and we would ask you to review between 2–5 topics per year. The peer review process takes place throughout the year, and our turnaround time for each review is ideally 10–14 days.

If you are interested in becoming a peer reviewer for Clinical Evidence, please complete the peer review questionnaire at www.clinicaledicine.com or contact Claire Folkes (cfolkes@bmjgroup.com).