Neuropsychiatric symptoms in patients with Parkinson’s disease and dementia: frequency, profile and associated care giver stress

D Aarsland, K Brønnick, U Ehrt, P P De Deyn, S Tekin, M Emre, J L Cummings

Objective: To explore the profile of neuropsychiatric symptoms in patients with dementia associated with Parkinson’s disease (PDD).

Methods: 537 patients with PDD drawn from an international multicentre clinical trial of rivastigmine were assessed using the 10-item Neuropsychiatric Inventory (NPI). A cluster analysis was used to investigate the inter-relationship of NPI items. Associations between the clusters and demographic and clinical variables were analysed.

Results: 89% of the patients presented at least one symptom on the NPI, 77% had two or more symptoms and 64% had at least one symptom with a score \(\geq 4 \). The most common symptoms were depression (58%), apathy (54%), anxiety (49%) and hallucinations (44%). Patients with more severe dementia and advanced Parkinson’s disease had more neuropsychiatric symptoms. Nearly 60% of the care givers reported at least one NPI symptom to be of at least moderate severe distress. Five NPI clusters were identified: one group with few and mild symptoms (52%); a mood cluster (11%, high scores on depression, anxiety and apathy); apathy (24%; high apathy and low scores on other items); agitation (5%, high score on agitation and high total NPI score); and a psychosis cluster (8%; high scores on delusions and hallucinations). The psychosis and agitation clusters had the lowest Mini-Mental State Examination score and the highest Unified Parkinson’s Disease Rating Scale and care giver distress scores.

Conclusion: Neuropsychiatric symptoms are common in patients with PDD. The profile of these symptoms differs from that in other types of dementia. Subgroups with different neuropsychiatric profiles were identified. These subgroups may be associated with distinct neurobiological changes, which should be explored in future studies.

A wide range of neuropsychiatric disturbances commonly occurs in patients with Parkinson’s disease.\(^1\)\(^2\) Neuropsychiatric disturbances contribute considerably to reduced quality of life,\(^3\) distress for the care giver\(^4\) and increased risk for admission to nursing home\(^5\)\(^6\) in patients with Parkinson’s disease. Most patients with Parkinson’s disease will eventually develop dementia,\(^7\) and neuropsychiatric symptoms are more common in those with Parkinson’s disease with dementia (PDD).\(^8\) Knowledge of the wide variety of psychiatric symptoms and diagnostic skills to identify and implement optimal treatment of these symptoms are thus of major importance in the management of patients with Parkinson’s disease and those with PDD.

The multiple psychiatric symptoms in patients with dementia tend to cluster into discrete psychiatric syndromes,\(^9\)\(^10\) indicating that the underlying pathophysiological constructs may explain the relationship between observed variables. Identifying these underlying constructs is important, as it may prove to be more valuable to correlate neurochemical measures with syndromes rather than with individual symptoms. Also, from the clinical point of view, treatment might be best directed towards syndromes rather than towards each specific, individual behavioural symptom. Finally, there is emerging evidence of subtypes within the major neurodegenerative disorders, including Parkinson’s disease,\(^11\) and exploring psychiatric syndromes may help in distinguishing such subtypes.

Statistical methods such as factor analysis, cluster analysis and latent class analysis have been used to identify empirically based classifications of neuropsychiatric clusters in patients with neurodegenerative disorders, with high face validity.\(^12\)\(^13\) These empirically based classifications could enhance our understanding of the heterogeneity of patients with dementia, and lead to clearer treatment strategies for different subgroups. Although factor analysis can provide information on how symptoms correlate in a sample, it is of limited value in understanding how the symptoms occur in groups of patients, and is thus of limited value in identifying groups of patients on the basis of symptoms. Rather, classification of individual patients is possible using cluster analysis, a data-driven, exploratory classification method.\(^15\)

Five different clusters of neuropsychiatric symptoms were recently identified in patients with Parkinson’s disease.\(^16\) However, to the best of our knowledge, no studies have explored how neuropsychiatric symptoms cluster in patients with PDD. Therefore, to explore whether natural subgroups of patients with Parkinson’s disease can be identified on the basis of their neuropsychiatric profile, we administered the Neuropsychiatric Inventory (NPI) to a large sample of patients with PDD, and used cluster analysis to identify the inter-relationship of neuropsychiatric symptoms. The analysis is based on the baseline data obtained in a large phase III clinical trial evaluating the safety and efficacy of rivastigmine in PDD.\(^14\)

METHODS

Patients
Men and women at least 50 years old, with a clinical diagnosis of Parkinson’s disease according to the UK Parkinson’s Disease

Abbreviations: MMSE, Mini-Mental State Examination; NPI, Neuropsychiatric Inventory; PDD, dementia associated with Parkinson’s disease; UPDRS, Unified Parkinson’s Disease Rating Scale
Neuropsychiatric symptoms in Parkinson’s disease

Society Brain Bank clinical diagnostic criteria,15 and of PDD according to the fourth edition of the Diagnostic and statistical manual of mental disorders (Code 294.1),16 were recruited from research centres in Austria, Belgium, Canada, France, Germany, Italy, The Netherlands, Norway, Portugal, Spain, Turkey and the UK.14 Patients were required to have mild to moderately severe dementia as defined by a Mini-Mental State Examination (MMSE)13 score of 10–24 inclusive, with the onset of dementia at least 2 years after the first diagnosis of idiopathic Parkinson’s disease. Patients were required to have contact with a responsible care giver on at least 3 days a week. For ambulatory patients receiving professional care (eg, living in a nursing home), the care giver could be a designated member of the medical team. Exclusion criteria included any primary neurodegenerative disorder other than Parkinson’s disease or any other causes of dementia; a major depressive episode; active, uncontrolled seizure disorder; any disability or unstable disease that might prevent the patient from completing all study requirements; and a known hypersensitivity to drugs similar to rivastigmine in structure or pharmacological action.

The study was approved by local properly constituted institutional review boards. Participants and their care givers gave written informed consent. All procedures were in accordance with ethical standards of the responsible committee on human experimentation and with the Helsinki declaration.

Clinical evaluation

Neuropsychiatric symptoms were assessed using the 10-item NPI17 by a trained rater following standard procedures. The validity of the NPI has been established,14 and high reliability in Parkinson’s disease has been reported.1 Firstly, screening questions for each of the 10 neuropsychiatric symptoms were asked. Positive responses were probed with structured questions focusing on specific features of the neuropsychiatric symptom. The informant rated the frequency of each symptom on a scale from 1 to 4, and the severity of the symptom on a scale from 1 to 3. A composite score, defined as the product of symptom rating and symptom severity, was used in the analysis. A care giver distress item is scored on a scale from 1 to 3. A composite score, defined as the product of symptom rating and distress severity, was used in the analysis. A care giver distress item is scored on a scale from 1 to 3.

Statistical analyses

Descriptive statistics were applied first (mean, standard deviation (SD), rates). Student’s t test was used for comparisons of normally distributed continuous data and χ² test for categorical variables. Non-parametric tests were used for comparison of the NPI scores owing to the skewness and non-linearity of these data.

NPI subscores of each patient with a positive score on at least one NPI item were standardised to z score values based on the mean and SD of each NPI variable, to ensure equal weighting of the different symptoms in the clustering procedure. A similarity matrix was calculated using an euclidian distance measure. K-means cluster analysis was used on the similarity matrix. For validation purposes, we used a split-sample validation procedure. The sample was divided into two, using the randomisation procedure in SPSS V.12.01. Separate similarity matrices were computed for each sample and subjected to a K-means clustering procedure. The resulting clusters were compared with the clusters from the full-sample analysis regarding classification agreement.

The clusters were analysed regarding the Hoehn and Yahr stage, MMSE and NPI care giver distress scale scores. One-way analysis of variance was used for statistical comparisons of the five clusters for continuous variables, with retrospective corrections where appropriate, using Scheffe’s test. A value of p<0.05 was considered significant. In addition, a multinomial logistic regression analysis was carried out to study the effect of clinical features on the allocation of a patient to a particular cluster, with cluster number as the dependent variable and clinical and demographic variables as predictors.

RESULTS

Sample characteristics

NPI was completed for 537 patients (65% men and 35% women). The mean (SD) age of the sample was 72.64 (6.61) years, and they had 9.00 (4.06) years of formal education. The mean (SD) duration since onset of Parkinson’s disease was 10.03 (5.9) years, and that since diagnosis of dementia was 2.15 (1.7) years. The mean MMSE score was 19.33 (3.90), UPDRS motor score 33.32 (14.07) and Hoehn and Yahr stage 2.78 (0.83). All patients received antiparkinsonian agents, 26.6% used an antidepressant, 27.4% used an antipsychotic.

Table 1 Neuropsychiatric Inventory item and care giver distress scores in the total group and in those showing symptoms

<table>
<thead>
<tr>
<th>Neuropsychiatric Inventory Item</th>
<th>All patients</th>
<th>Care giver distress score</th>
<th>Proportion with non-zero score</th>
<th>Proportion with score >4</th>
<th>Percentage of all</th>
<th>Mean</th>
<th>SD</th>
<th>Mean</th>
<th>SD</th>
<th>Mean</th>
<th>SD</th>
<th>Percentage of all</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delusions</td>
<td>1.03</td>
<td>2.29</td>
<td>0.64</td>
<td>1.3</td>
<td>132 (24.6)</td>
<td>69 (52)</td>
<td>12.8</td>
<td>4.21</td>
<td>2.9</td>
<td>2.58</td>
<td>1.4</td>
<td>80 (61)</td>
</tr>
<tr>
<td>Hallucinations</td>
<td>1.10</td>
<td>2.86</td>
<td>0.89</td>
<td>1.4</td>
<td>236 (43.9)</td>
<td>87 (37)</td>
<td>16.2</td>
<td>3.35</td>
<td>2.3</td>
<td>2.03</td>
<td>1.4</td>
<td>93 (39)</td>
</tr>
<tr>
<td>Agitation/ aggression</td>
<td>1.96</td>
<td>2.57</td>
<td>1.31</td>
<td>1.5</td>
<td>309 (57.5)</td>
<td>116 (38)</td>
<td>21.4</td>
<td>3.40</td>
<td>2.6</td>
<td>2.27</td>
<td>1.3</td>
<td>142 (46)</td>
</tr>
<tr>
<td>Depression</td>
<td>1.93</td>
<td>2.72</td>
<td>1.07</td>
<td>1.4</td>
<td>263 (49.0)</td>
<td>120 (46)</td>
<td>22.2</td>
<td>3.95</td>
<td>2.7</td>
<td>2.19</td>
<td>1.2</td>
<td>114 (43)</td>
</tr>
<tr>
<td>Anxiety</td>
<td>0.10</td>
<td>0.67</td>
<td>0.05</td>
<td>0.3</td>
<td>20 (3.7)</td>
<td>6 (30)</td>
<td>1.1</td>
<td>2.80</td>
<td>2.2</td>
<td>1.45</td>
<td>1.1</td>
<td>4 (20)</td>
</tr>
<tr>
<td>Apathy</td>
<td>2.95</td>
<td>3.43</td>
<td>1.25</td>
<td>1.5</td>
<td>291 (54.3)</td>
<td>203 (70)</td>
<td>37.7</td>
<td>5.40</td>
<td>2.9</td>
<td>2.30</td>
<td>1.3</td>
<td>145 (50)</td>
</tr>
<tr>
<td>Disinhibition</td>
<td>0.34</td>
<td>1.20</td>
<td>0.23</td>
<td>0.8</td>
<td>63 (11.7)</td>
<td>20 (32)</td>
<td>3.7</td>
<td>2.90</td>
<td>2.2</td>
<td>1.95</td>
<td>1.5</td>
<td>25 (46)</td>
</tr>
<tr>
<td>Irritability</td>
<td>1.04</td>
<td>2.21</td>
<td>0.65</td>
<td>1.2</td>
<td>159 (29.7)</td>
<td>60 (38)</td>
<td>11.2</td>
<td>3.51</td>
<td>2.8</td>
<td>2.22</td>
<td>1.4</td>
<td>69 (43)</td>
</tr>
<tr>
<td>Apathy</td>
<td>1.05</td>
<td>2.40</td>
<td>0.46</td>
<td>1.1</td>
<td>118 (22.0)</td>
<td>68 (38)</td>
<td>12.6</td>
<td>4.77</td>
<td>2.9</td>
<td>2.11</td>
<td>1.4</td>
<td>52 (44)</td>
</tr>
<tr>
<td>Total NPI</td>
<td>12.93</td>
<td>12.04</td>
<td>7.30</td>
<td>6.7</td>
<td>480 (89.4)</td>
<td>345 (72)</td>
<td>64.1</td>
<td>14.27</td>
<td>11.9</td>
<td>8.05</td>
<td>8.7</td>
<td>315 (66)</td>
</tr>
</tbody>
</table>

*Percentage of patients showing symptoms.

Table 1: Neuropsychiatric Inventory item and care giver distress scores in the total group and in those showing symptoms.

www.jnnp.com
Advanced Parkinson’s disease had higher scores and a higher proportion of non-zero scores on the items delusions (p<0.001), hallucinations (p<0.001), apathy (p = 0.001) and aberrant motor behaviour (p = 0.008).

NPI cluster analysis

The cluster analysis classified the patients in five clusters on the basis of a judgement of the interpretability of the solution (fig 1). The split-sample validation procedure gave a total classification agreement of 85%. The agreement between the cluster classification in the first and second half of the sample versus the full-sample solution was 91% and 79%, respectively.

The patients in cluster 1, the largest group (n = 279; 52.1%), consisted principally of participants reporting few and mild neuropsychiatric symptoms. The mean (SD) total NPI score of this group was 5.2 (4.6), and 64.3% showed <3 symptoms. Cluster 2 (n = 58; 10.8%) was characterised by patients with high scores on depression, anxiety and apathy, and low scores on the other items. Owing to their symptom profile, we refer to this as the “mood” group. Cluster 3 (n = 126; 23.5%), had high scores on apathy (mean 6.6 (2.1)) and low scores on the remaining items, including depression, thus labelled the “apathy” group. A small group (n = 29; 5.4%), cluster 4, consisted of patients with moderate or severe subscores on most items, including irritability and agitation items. Scores on irritability and agitation were low in the other clusters. This group was labelled the “agitation” group, with a total NPI score of 39.2, and with 55.2% showing ≥6 symptoms. The final cluster, cluster 5 (n = 45; 8.4%), was characterised by high scores on visual hallucinations (5.9 (2.9)) and delusions (6.4 (2.7)), in combination with lower scores on most other items, and was labelled the “psychosis” group. The differences in total NPI score between the groups were significant (F = 285, df = 4532, p<0.001; post-hoc Tukey test, all p values <0.001), with the exception of clusters 2 and 5, not significant (fig 2).

We found slight differences between the clusters with regard to sex distribution (p<0.05): the proportion of men was lowest in the mood group (50.9%) and highest in the apathy group.
The set of one-way analyses of variance showed that the five clusters did not differ regarding age ($F = 1.9, df = 4, p = 0.12$) or duration of Parkinson's disease ($F = 1.3, df = 4, p = 0.25$). The psychosis group had the highest mean UPDRS motor subscore (fig 3), but there were no significant between-group differences ($F = 2.3, df = 4, p = 0.06$). We found, however, highly significant differences among the clusters regarding MMSE ($F = 6.1, df = 4, p < 0.001$; fig 4): cluster 1, with minimal neuropsychiatric disturbances, and the Mood and Apathy clusters had the highest MMSE scores, and had significantly higher scores than the patients in cluster 4, the Agitation cluster. The MMSE score in the Psychosis cluster was lower than in clusters 1–3, but these differences did not reach significance, although the difference between clusters 5 and 2 approached significance ($p = 0.057$). Table 2 shows the odds ratios for effects of these clinical and demographic features on cluster allocation. A low score on the MMSE predicted allocation to clusters 4 and 5 compared with cluster 1, and male sex was associated with a higher likelihood of being placed in cluster 3 and lower likelihood of being in cluster 2 than in cluster 1. More advanced disease stage was associated with a significantly higher likelihood of being placed in all clusters with neuropsychiatric symptoms (ie, clusters 2–5) than in cluster 1. The frequency of using antidepressants did not differ among the clusters, but we found a significant difference in the use of antipsychotics ($x^2 = 28.7, df = 4, p < 0.001$). The highest proportion using antipsychotic agents was in cluster 5 (56%), intermediate in clusters 4 (34%) and 3 (33%), and lowest in clusters 2 (21%) and 1 (19%).

NPI care giver distress scores

As expected, the mean care giver distress score was highest for those items with the highest frequency. In patients with a positive score for that item, the highest care giver distress score was found for delusions, apathy, agitation, depression and irritability (table 1). Moderately severe distress—that is, a score

Table 2 Association of age, sex, disease stage and cognition with cluster allocation

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Variable</th>
<th>p Value</th>
<th>Odds ratio</th>
<th>95% confidence interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Age</td>
<td>0.053</td>
<td>0.957</td>
<td>0.916 to 1.001</td>
</tr>
<tr>
<td></td>
<td>Sex</td>
<td>0.021</td>
<td>1.993</td>
<td>1.109 to 3.579</td>
</tr>
<tr>
<td></td>
<td>Hoehn and Yahr stage</td>
<td>0.019</td>
<td>1.563</td>
<td>1.076 to 2.271</td>
</tr>
<tr>
<td></td>
<td>MMSE score</td>
<td>0.072</td>
<td>1.082</td>
<td>0.993 to 1.178</td>
</tr>
<tr>
<td></td>
<td>Age</td>
<td>0.845</td>
<td>1.003</td>
<td>0.970 to 1.038</td>
</tr>
<tr>
<td></td>
<td>Sex</td>
<td>0.029</td>
<td>0.586</td>
<td>0.363 to 0.946</td>
</tr>
<tr>
<td></td>
<td>Hoehn and Yahr stage</td>
<td>0.010</td>
<td>1.425</td>
<td>1.088 to 1.867</td>
</tr>
<tr>
<td></td>
<td>MMSE score</td>
<td>0.470</td>
<td>0.979</td>
<td>0.924 to 1.037</td>
</tr>
<tr>
<td>3</td>
<td>Age</td>
<td>0.006</td>
<td>0.922</td>
<td>0.869 to 0.977</td>
</tr>
<tr>
<td></td>
<td>Sex</td>
<td>0.696</td>
<td>1.175</td>
<td>0.523 to 2.636</td>
</tr>
<tr>
<td></td>
<td>Hoehn and Yahr stage</td>
<td>0.024</td>
<td>1.716</td>
<td>1.072 to 2.746</td>
</tr>
<tr>
<td></td>
<td>MMSE score</td>
<td>0.001</td>
<td>0.850</td>
<td>0.772 to 0.935</td>
</tr>
<tr>
<td>4</td>
<td>Age</td>
<td>0.182</td>
<td>0.967</td>
<td>0.920 to 1.016</td>
</tr>
<tr>
<td></td>
<td>Sex</td>
<td>0.797</td>
<td>0.915</td>
<td>0.467 to 1.795</td>
</tr>
<tr>
<td></td>
<td>Hoehn and Yahr stage</td>
<td>0.020</td>
<td>1.590</td>
<td>1.077 to 2.347</td>
</tr>
<tr>
<td></td>
<td>MMSE score</td>
<td>0.034</td>
<td>0.916</td>
<td>0.844 to 0.993</td>
</tr>
</tbody>
</table>

MMSE, Mini-Mental State Examination.

Results from the multivariable multinomial logistic regression analysis, using cluster 1 as reference cluster.
The identification of neuropsychiatric clusters supports and extends previous findings indicating clinical subgroups in patients with Parkinson’s disease. Several studies have suggested subgroups according to the profile of cognitive impairment, with some patients showing a pattern compatible with frontostriatal deficits and others more with a temporal–limbic deficit. Differential neurochemical deficits underlying different motor subtypes have also been previously reported. On the basis of the current study, we propose subgroups of patients with PDD based on the neuropsychiatric symptom profile, with potential treatment implications. We hypothesise specific neurobiological changes underlying the different neuropsychiatric clusters. Apathy has been linked to pathology of the anterior cingulum, and to disturbances in the medial frontostriatal circuitry, probably mediated by dopaminergic deficits. Hallucinations in patients with Lewy body disease are associated with Lewy bodies in the temporal cortex, and with cholinergic deficits, and thus cholinergic deficits may be particularly pronounced in these patients. Depression in Parkinson’s disease has been associated with serotonergic deficits, but also noradrenergic changes. Finally, agitation is common in Alzheimer’s disease, and neuropathological studies have found that neurofibrillar burden in the left orbitofrontal cortex correlates considerably with agitation scores. Thus, in patients with PDD with agitation, Alzheimer’s disease-like changes may be particularly pronounced, although other pathologies in the orbitofrontal cortex may also contribute. In summary, the neuropsychiatric profile of patients with PDD may provide information on the differential use of dopaminergic, serotonergic, noradrenergic and cholinergic drugs. However, given the complex anatomical and neurotransmitter interactions in the brain, linking complex behaviours such as psychiatric symptoms to one specific brain area or one transmitter system is clearly an oversimplification, although major anatomical and chemical contributors can be identified. In addition, the MMSE score differed significantly between clusters, and so it is possible that the neuropsychiatric syndromes to some extent may represent different stages of the dementia. Nevertheless, our findings do provide an empirical basis for testing the neurochemical hypotheses in future clinical trials.

Dopaminergic agents may have behavioural effects, and may thus contribute to the profile of neuropsychiatric symptoms, in particular to the occurrence of visual hallucinations. However, several studies have shown that antiparkinsonian agents are only weakly associated with visual symptoms.
hallucinations, suggesting that disease-related factors are more important determinants of psychiatric symptoms in patients with PDD. Furthermore, antipsychotic drugs were used by 20–30% of patients without or with only mild neuropsychiatric symptoms, indicating that these drugs may have influenced the observed symptom profile, and that psychotic symptoms are even more common than observed in this study. A proportion of patients used antidepressants. Although the use of antidepressants did not differ among clusters, it is possible that the use of such drugs might have influenced the NPI profile and the distribution of patients to the different clusters.

We note some methodological limitations of this study. Firstly, as this was a multicentre clinical trial, the inter-rater reliability of NPI may be lower and thus some important associations might have been lost. However, NPI is a highly structured instrument with proved high reliability, and the raters participated in training sessions before the study.

Secondly, recording of neuropsychiatric symptoms was observer based only, and some neuropsychiatric symptoms with more subjective character may have been missed. In addition, some symptoms, such as obsessive–compulsive symptoms, were not assessed.

Thirdly, this was a cross-sectional study, and a longitudinal approach may more accurately reflect the frequency and clustering of neuropsychiatric disturbances. The diagnosis was clinical without autopsy confirmation, and misdiagnosis may occur. However, established diagnostic criteria for Parkinson’s disease and standardised assessments of motor symptoms were used. Fourthly, a control group was not included. However, there is evidence that the frequency and severity of NPI items is low in healthy elderly people and in those without dementia. With regard to statistical methods, cluster analysis can be criticised because of the subjective nature of several decisions affecting the final outcome. However, the split-sample validation procedure showed an agreement of 85% between the cluster classification in the subsamples and the full sample, far better than the 40–50% agreement often observed in this type of study.

We acknowledge some methodological limitations of this study. Firstly, as this was a multicentre clinical trial, the inter-rater reliability of NPI may be lower and thus some important associations might have been lost. However, NPI is a highly structured instrument with proved high reliability, and the raters participated in training sessions before the study.

Secondly, recording of neuropsychiatric symptoms was observer based only, and some neuropsychiatric symptoms with more subjective character may have been missed. In addition, some symptoms, such as obsessive–compulsive symptoms, were not assessed.

Thirdly, this was a cross-sectional study, and a longitudinal approach may more accurately reflect the frequency and clustering of neuropsychiatric disturbances. The diagnosis was clinical without autopsy confirmation, and misdiagnosis may occur. However, established diagnostic criteria for Parkinson’s disease and standardised assessments of motor symptoms were used. Fourthly, a control group was not included. However, there is evidence that the frequency and severity of NPI items is low in healthy elderly people and in those without dementia. With regard to statistical methods, cluster analysis can be criticised because of the subjective nature of several decisions affecting the final outcome. However, the split-sample validation procedure showed an agreement of 85% between the cluster classification in the subsamples and the full sample, far better than the 40–50% agreement often observed in this type of study.

The patients were recruited for a clinical trial with rivastigmine. The patients had fairly low NPI scores, and this is typical for trial populations as very disturbed patients cannot participate in trials. Trial participants also tend to be better educated and have better general health, and this may affect the validity of the findings. The patients with major depression were not included. However, major depression is rare in Parkinson’s disease. Finally, only patients with a carer who must be in contact with the patient for a minimum of 3 days a week were included. Thus, a selection bias may have been introduced. However, the age, severity of motor symptoms, level of cognitive impairment and prevalence, and distribution and severity of psychiatric symptoms are remarkably similar to those of a small community-based cohort of patients with PDD. Thus, this group is representative of the overall population with PDD, supporting the validity of the findings.

ACKNOWLEDGEMENTS
This study was based on baseline data from a drug trial sponsored by the Novartis Pharmaceuticals Corporation.

Authors’ affiliations
D Aarsland, K Brannick, U Ehr, Centre for Clinical Neuroscience Research, Stavanger University Hospital, Stavanger, Norway

REFERENCES
ECHO

Misdiagnosis of epilepsy in children

A survey of children admitted to a tertiary epilepsy centre with difficult to treat paroxysmal events found that 39% of the children did not have epilepsy. In the retrospective study, case notes of 233 children admitted to the Dianalund Epilepsy Centre—the only tertiary centre of its kind in Denmark—were examined. Their median age was 8 years 6 months (range 8 months to 17 years 8 months) and 54% were boys.

The referrals were made from local hospitals’ paediatric departments in 51%, other departments in 27%, and from general or specialist practitioners in 22%. Doubt regarding the diagnosis of epilepsy was expressed in the referral note in 17%. On admission, 86% of the children were on antiepileptic drug treatment. During admission all children were subjected to a comprehensive intensive observation and 62% had EEG monitoring.

In total, 87 children (39%) were found not to have epilepsy. In 30% of children referred without any doubts about their epilepsy, the diagnosis was found to be wrong. Of the 159 children admitted for the first time, 75 (47%) were discharged with a diagnosis of non-epileptic seizures. Of 125 admitted for the first time with no doubts about the diagnosis of epilepsy, 44 (35%) did not have epilepsy. Staring episodes were the most frequently encountered non-epileptic paroxysmal event. Psychogenic non-epileptic seizures were found in 12 children.

The study shows that the treating physician should be cautious in diagnosis, especially of staring episodes. A diagnostic re-evaluation should be undertaken in difficult cases with continuing paroxysmal events in order to avoid unnecessary drug treatment and restrictions on the child’s lifestyle.